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M. T. Hanson 
Department of Engineering Mechanics, 

University of Kentucky, 
Lexington, KY 40506-0046 

Mem. ASME 

Elastic Fields Resulting From 
Concentrated Loading on a 
Three-Dimensional 
Incompressible Wedge 
This paper considem point force or point moment loading applied to the surface of  
a three-dimensional wedge. The wedge is two-dimensional in geometry but the loading 
may vary in a direction parallel to the wedge apex, thus creating a three-dimensional 
problem within the realm of  linear elasticity. The wedge is homogeneous, isotropic, 
and the assumption of  incompressibility is taken in order for  solutions to be obtained. 
The loading cases considered presently are as follows: point normal loading on the 
wedge face, point moment loading on the wedge face, and an arbitrarily directed 
force or moment applied at a point on the apex of  the wedge. The solutions given 
here are closed-form expressions. For point force or point moment loading on the 
wedge face, the elastic field is given in terms of  a single integral containing associated 
Legendre functions. When the point force or moment is at the wedge tip, closed- 
form ( nonintegral ) expressions are obtained in terms of  elementary functions. An 
interesting result of  the present research indicates that the wedge paradox in two- 
dimensional elasticity also exists in the three-dimensional case for  a concentrated 
moment at the wedge apex applied in one direction, but that it does not exist for a 
moment applied in the other two directions. 

1 Introduction 

A considerable amount of research in the field of elasticity 
has been directed at determining fundamental solutions for con- 
centrated loading. The search for these solutions has been partic- 
ularly fruitful in the case of point forces. In three-dimensions 
the classic solutions found by Kelvin for point force loading in 
an isotropic full space and Boussinesq and Cerruti for point 
loading on an isotropic half-space are milestones which have 
proven invaluable in the application of linear elasticity to prob- 
lems of practical interest. Subsequent investigations have found 
point force solutions for even more complicated problems. 
Mindlin (1936) presented the solution for buried loading in a 
half-space. Rongved (1955) evaluated the solution for a point 
force in one of two bonded dissimilar elastic, isotropic half- 
spaces. Dundurs and Hetenyi (1965) solved the analogous prob- 
lem when the interface was frictionless. Pan and Chou (1976) 
have evaluated the solution for arbitrary point loading in a 
transversely isotropic full space. 

The solutions for point force loading, so-called Green's func- 
tions, are valuable for several reasons. Obviously, they can be 
used to model material response to concentrated loading. More 
importantly, however, the solution for any loading condition 
can be obtained from the point force solutions by quadrature. 
Furthermore, solutions for other nuclei of strain such as center 
of dilatation, concentrated moments and force doublets become 
readily available. Even infinitesimal dislocation loops can be 
obtained from the Green's functions by certain combinations 
of force doublets (Mura, 1982). 
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final revision, May 5, 1994. Associate Technical Editor: X. Markenscoff. 

Although Green's functions for a half-space geometry have 
received the most attention, point force solutions for other three- 
dimensional geometric regions have also been obtained. As a 
noninclusive illustration of this point we mention the solutions 
for point loading at the tip of a solid cone reviewed by Love 
(1927), the hollow cone solution given by Knops (1958) and 
Lure (1964), the transversely isotropic cone given in Lekhnit- 
skii (1963) and Chert (1965) (these are not general Green's 
functions since the force is applied at the cone tip only), and 
the general Green 's  functions for a point force in an elastic, 
isotropic layer derived by Benitez and Rosakis (1987). Analyti- 
cal point force solutions for another three-dimensional geometry 
of great interest presently, here denoted as the three-dimensional 
wedge, have received minimal attention in past literature. Until 
recently, the only consideration of this geometry was in the 
Russian literature, mainly available through the translation of 
the classic book by Uflyand (1965). The Papkovich-Neuber 
potential function formulation for cylindrical coordinates is out- 
lined there along with the application of the Kontorovich-Lebe- 
dev integral transform developed in Russia for this geometry. 
Uflyand presents solutions for the potential functions in the 
special case of point force loading applied to the surface of a 
three-dimensional wedge, with wedge angle such that the prob- 
lem is equivalent to a full space with a half-plane slit. The 
papers by Babeshko and Berkovich (1972) and Berkovich 
(1974) discuss contact problems for a three-dimensional wedge 
but no results are given. Although concentration is directed at 
analytical solutions, the analytical/numerical analysis presented 
by Hetenyi (1970), Keer et al. (1983, 1984) and Hanson and 
Keer (1990) for loading on a quarter space are deserving of 
mention since a quarter space is a special case of a three- 
dimensional wedge with a 90 degree total wedge angle. The 
analytical solution for arbitrary point force loading in a general 
three-dimensional wedge region is still an unsolved problem in 
linear elasticity. 

Recent research by the author has made some progress to- 
wards finding Green's functions for this geometry. This interest 
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Z 

Fig.  1 Geometry and coordinate system for a three-dimensional wedge 
of angle 2a .  A point normal force P or moments Mr or Mz are applied at 
the point r = re, 0 = a ,  z = 0. 

stems from the application of a wedge geometry in performing 
stress analysis of cutting tools and in rail-wheel contact. In a 
recent paper (Hanson and Keer, 1991 ), the potential functions 
for point normal loading on the face of a three-dimensional 
wedge with arbitrary wedge angle were evaluated. The solution 
was obtainable though only for the case of an incompressible 
material. Since this analysis was directed at contact problems 
for a wedge region, the elastic field was not evaluated. Subse- 
quent to the publication of this paper, the authors have discov- 
ered a similar evaluation of the potential functions for this prob- 
lem by Efimov and Efimov (1986), but in a slightly different 
form. The extension of this research to include point tangential 
loading on the surface of a three-dimensional incompressible 
wedge and internal point loading (for a special direction of the 
point force) was completed by Hanson et al. (1994). Again 
only the potential functions were evaluated. 

The present analysis derives closed-form expressions for the 
entire elastic field when point force loading is applied on the 
surface of a three-dimensional incompressible wedge. The solu- 
tion is obtained through differentiation of the potential func- 
tions. The elastic field is given in terms of a single integral 
containing associated Legendre functions. The solution for the 
point force is utilized to obtain the elastic field for concentrated 
couples applied to the wedge face. A limiting case is also con- 
sidered where the concentrated action (force or moment) moves 
to the wedge apex. The solution in this case is given explicitly 
in terms of elementary functions. It is well known in the field 
of plane-strain linear elasticity that a paradoxical solution exits 
when a concentrated couple is applied at the apex of a two- 
dimensional wedge, which was apparently first investigated by 
Sternberg and Koiter (1958). In particular, the solution for the 
elastic field becomes infinite at a particular value of the wedge 
angle. The present analysis reveals the elastic field for the three- 
dimensional analog to this problem. It is shown that for a point 
couple applied to the tip of the wedge, the elastic field exhibits 
the same paradox if the couple vector is directed parallel to the 
wedge apex. No such paradox exists for a couple with a vector 
contained in a plane perpendicular to the wedge apex. 

2 E l a s t i c  F i e l d  f o r  C o n c e n t r a t e d  N o r m a l  F o r c e  

L o a d i n g  

The problem under consideration is shown in Fig. 1. Cylindri- 
cal coordinates r, 0, z are employed and the three-dimensional 

wedge occupies the region 0 < r < 0% -oo < z < 0% - a  < 
0 < a,  where the z-axis falls along the apex of the wedge. Thus 
the three-dimensional wedge actually has a two-dimensional 
geometry but the problem is three-dimensional since the loading 
will vary in both the r and z directions. In this section the 
loading is a point normal compressive force of magnitude P 
(Mr = M~ = 0) located at r = r0, z = 0, 0 = a and all other 
stresses on the wedge faces being taken as zero. 

The Papkovich-Neuber potential function formulation is used 
in the solution procedure. The radial, tangential and axial dis- 
placements as well as the stresses are written in terms of the 
four potential functions ~0, ~ ,  ~2, ~3 as (Ultyand, 1965) 

O F  
2 # u  = - - -  

Or 
+ 4(1 - v){cos (0)~1 + sin (0)~2} 

1 O F  
21zv . . . .  

r O0 
+ 4(1 - v){cos (0)02 - sin (0)(I)l } 

O F  
2#w = - - - +  4(1 - v)O3 (1) 

Oz 

where F is the following combination of potentials: 

F = 00 + r cos (0)01 -~- r sin (0)~D 2 + Z~3 (2) 

with /z as the shear modulus and v is Poisson's ratio. The 
stresses follow suit as 

O'rr 
020° { - -  + sin (0) Or 2 + 2(1 -- u) COS (0) 001 002~ 
- -  Or --g-r J 

0201 0202 
- r cos (0) ~ - r sin (0) Or 2 

2v { 002 00, "~ 
+ -~- cos (0) - ~ -  - sin (0) - ~ - j  

O(I) s 02(1)3 
+ 2 v  Oz z Or 2 (3) 

croo = + ~ o  

0 
- (1 - 2 v )  ~ r  { cos  ( O ) ~ l  + sin ( 0 ) ~ 2 }  

+ 2(1 - v) ~ 0~2 O~l'~ 
r L cos (0) - ~ -  - sin (0) 00 J 

02(i) 1 02(I)2 l 
_ _lr cos (0) - ~ -  + sin (0) - ~ - j  

+ 2 v  
Oz 7 r  ~ 

(4) 

0 2 0203 
cr~ = - Oz-- S { ~ o  + r cos (0)@~ + r sin (0)~2} - z Oz 2 

0(1)3 f OCI)I ~(~)2 
+ 2(1 - u) ~ + 2u ~ cos (0) O--r- + sin (0) 0--7 

+ ~ cos (O) - ~ -  - sin (O) - ~ - j  (5) 
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Tr z --  
0 2 F  

OzOr 

00~ 
- - +  2(1 - v) c o s ( 0 )  0--T 

0~2 003 + sin (o) ~ + - ~ - j  

"Fr o = - -  -~- - -  
Or 

r cos (0) - ~ -  + sin (0) 

0~ 2(1 - v) 0~3 
TzO = " ~ "  + - - r  - -00  

where • in Eqs. (7),  (8) is given as 

= 1 0~o z0~3 ~ 0~1 0~2"~ 
- 7 0--0- - 7 0-0- - [ cos (0)  - ~ -  + sin (0)  -77- -  o u j  

(6) 

(7) 

(8) 

+ (1 - 2v){cos (0)~52 - sin (0)~1}.  (9) 

For point normal loading on the upper face (all other surface 
tractions zero) the potentials were derived by Hanson and Keer 
( 1991 ) for an incompressible wedge (v = 0.5 ). The results can 
be put in the following form: 

~0 = 'I~3 = 0 

fo o (~)1 = ~ + P A ( r ,  O ) P i ~ - l / 2 ( c o s h  (13) )dr 
2rrR 2rv(rro) In 

P 
f :  B ( r ,  O)Pir-|t2(cosh ( f l ) ) d r  (10) 

~2 = 27r(rro)l/2 

where R = ( r 2 + r o 2 + z 2 - 2rro sin (0))  in and the functions 
A ( r ,  O) and B ( r ,  O) are given as 

1 
A ( r ,  O) = 

D ( r )  cosh (rrr)  ( 
× ~ r l ( r ) r  sinh (~rr) sinh [r(O + a ) ]  

t 

- r2 ( r ) r  sinh (~rr) sinh [ r ( O  - a ) ]  

r tanh (Trr) 
B ( r ,  O) - {q l ( r )  sinh [ r (0  + a ) ]  

D ( r )  

-- q2(7") sinh [r(O - a ) ] } .  (11) 

In Eqs. (10) for the potentials, the first term for ~ is the solution 
for an incompressible half-space while the integral terms are 
the wedge effect, P~,_m(cosh (/3)) is a Legendre function of 
the first kind and/3 is defined by the relation 

r 2 + ro z + z 2 
cosh (/3) - (12) 

2rro 

The functions r l ( r ) ,  r2(r ) ,  q l ( r ) ,  q2(r) ,  and D ( r )  in Eqs. 
(11) are given in Hanson and Keer (1991). 

Knowing the potentials allows the elastic field to be evaluated 
by differentiation. Using the results above allows the elastic 
field to be given as (v = 0.5) 

2#u - P C°s (O-------~ { ~  + r(r  - r°sin (O)) R 3 

3P p= 
I F l ( r ,  0)Pt , - ln(cosh (13))dr 

+ 4rr(rro) 1/----------i J o  

2#v = - - -  

p ( r  2 - ro 2 - Z 2) 
- 4 ~ r r o ~ / g ~ i ~  ~ )  ff F~(r, O) 

× P / , -m(cosh  (~3))dr 

P ( s i n R ( O ) + r r o c ° s 2 ( O )  } 
27r R 3 

(13) 

21.zw = 

O-rr - -  

0"00 - -  

fizz - -  

Trz = -- 

P 
J o  F2(r, O)PiT-l;2(cosh (~3))dr (14) 

+ 27r(rro),n 

P zr cos (0) Pz 
27r R 3 27r(rro)l/2ro sinh (/3) 

yo o × Ft ( r ,  O)P~- tn(cosh  ( /3 ) )dr  (15) 

3P r cos (O)(r  - ro sin (0))  2 
27r R 5 

P 
f :  F3(r ,  O)Pi,_ln(cosh ( p ) ) d r  

87rr(rro) In 

p ( r  2 -  2ro 2 -  2z 2) 
+ 2~rrS ,7~7~nl~  ( ~ f :  F , ( r ,  O) 

× P]~-tn(cosh (~3))dr 

P ( r  2 -  r ~ -  z2) 2 F 

× P/2~_in(cosh (/3))dr (16) 

P 3rrg cos 3 (0) 
27r R 5 

+ 21rr(~ro)l/2 Fa(r ,  O)Pi~-l/2(cosh (~3))dr (17) 

3P rz 2 cos (0) 
2~r R 5 

P 
f :  Fs( r, O)Pir-l/2(cosh (~3))dr 

+ 47rr(rro)l/2 

f; P coth (/3) F l ( r ,  0 )P] , - ln(cosh  ( /3))dr  
21rr( rro) 1/2 

--  P z 2  f :  F1(7-, 0) 
27r(rro)anro sinh 2 (/3) 

× P~r-ln(cosh ( /3 ) )dr  (18) 

3 P rz cos ( O ) ( r - ro sin (0))  
2~r R s 

3Pz i,= 
Jo  F l ( q ' ,  O)  + 47r(rro) 3n sinh (/3) 

× P]~-ln(cosh ( /3))dr  

Pz(r  2 -  r ~ -  z 2) I ~  
- 47r(rr0-~ s/-? ~ 1 ~ £ ~ )  ~o Fl( ' r ,  0) 

× P~2¢_ln(cosh (~3))dr (19) 

3P rro cos 2 (O)(r  - ro sin (0))  
TrO ~ - -  

27r R 5 

3P 
: o  F6(r ,  0)Pi~_ln(cosh (~3))dr 

+ 47rr(rro)m 

P ( r  2 - rE -- Z z) 

- 47r(---r~oro)-?72r s~--nl~7--/3 ) f :  F6(% 0) 

X P]r-l/2(cosh (~3))dr (20) 
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3 P  rroz cos 2 (0) P z  

r~o = 27r R 5 - 2rr(rr0) 3/2 sinh (/3) 

Y: X f 6 ( ' r ,  0)P]~_l/2(cosh (~0))dr (21) 

where the functions F~(r,  0) (i = 1 . . . . .  6) are given in 
Appendix A and the Legendre functions are defined by the 
integral representation (where the zero superscript is suppressed 
above, P/°~_,/2(cosh (/3)) = Pi~-_l/2(cosh (/3))). 

Pi~_l/2(cosh (/3)) = (-1)m21/27r -3/2 cosh (71"7") sinh m (/3) 

f: t , , -  l/2 e . . . . .  h(~) K,~( t )d t  × (22) 

Some differential relations used to derive the above expressions 
are given in Appendix B. It is easy to verify that the closed- 
form term in each of these expressions represents a point force 
on an incompressible half-space. The integral terms are the 
alterations caused by the effect of the wedge which vanish for 
a = rr/2. 

3 Elastic Field for Point Loading at the Edge 
In this section point force loading at the wedge tip is consid- 

ered. Efimov and Efimov (1986) also analyzed this case but 
their solution was not general since point force loading parallel 
to the edge was not included and the present choice of coordi- 
nates effects a simpler solution algebraically. 

A first consideration might be to let ro ~ 0 in the above 
solution. Using the result (which can be established by using 
Eq. (30) from Hanson and Keer (1991)) 

1 cosh ( l r r ) 6 ( r )  
Lim - -  P i r - i / 2 ( cosh  (fl))  : z2)1/2 (23) 
ro--~ ( r ro)  I/2 ( r2 + 

where 6 ( r )  is the Dirac delta function, the potentials can be 
obtained in closed form as 

P sin ( a )  ~l  = 
2(sin (2a )  + 2 a ) ( r  2 + z2) In ' 

P cos (or) 
O2 = 2(sin (2a )  - 2 a ) ( r  2 + Z2)  1/2 " (24) 

In this case the force is applied at the wedge tip but its direction 
is perpendicular to the upper wedge face and hence not a general 
solution. 

To obtain a general solution, based on the form of the poten- 
tials above, the potentials are taken as 

c, 
D0 : 0, ~, (t.2 + Z2)1 /2  , i = 1, 2, 3. (25) 

This satisfies the condition that the potentials must be harmonic, 
have a singularity only at the origin and leads to traction-free 
wedge faces as seen below. The elastic field for these potentials 
is easily found to be (v  = 0.5) 

2#u = { [ C  1 c o s  ( 0 )  + C 2 sin ( 0 ) ] (2 r  2 + z 2) 

1 
+ C3zr}  (26) ( r  2 + Z2)  3/2 

2#v = [Cz cos (0) - C1 sin (0)] 

2#w = {[C~ cos (0) + C2 sin ( O ) ] r z  

+ C 3( r  z + 2z2)} 

( r  2 + z2) 1/2 

( r  2 + Z2) 3/2 

0"00 : TrO : 7"zO : 0 

(27) 

(28) 

(29) 

Y I .dA = rd0dz 

/ / t ~ r r  dA 

Fig. 2 Wedge section used for equilibrium loaded by point forces and 
momenta at the odgin 

O'rr = - 3 { [ C l  cos (0) + C2 sin (O)]r  3 

1 
+ C3zr  2 } (30) ( r  2 + z2) 5/2 

~= = - { [ C i  cos (0) + C2 sin (O)](2r  3 + 3rz 2) 

1 
+ 3C3z a } (31) ( r  E + z2) 5/2 

rrz = - 3 { [ C 1  cos (0) + C2 sin (O)]rEz  

1 
+ C3rz 2 } (32) ( r  2 + Z2)  5/2 • 

In order to determine the constants Ct, C2, C3, equilibrium 
of a portion of the wedge tip with radius r shown in Fig. 2 is 
considered. Point forces are applied at the origin in the positive 
x, y, and z directions, where the x-axis is located in the midplane 
of the wedge. Force equilibrium of this element leads to the 
relations 

fY Px = - [cos (0)crrr - sin (O)rro l rdOdz  (33) 

£f_ Py = - [sin (0)a~r + cos (O)rro]rdOdz  (34) 
ot 

Pz = - ~',zrdOdz. (35) 
a 

Substituting the stress field into the above integrals leads to the 
following values for the constants: 

Cl = P~ C2 = PY , 
2 (2a  + sin ( 2a ) )  ' 2 ( 2 a  - sin ( 2a ) )  

ez 
C3 = - -  (36) 

12a 

It can also be shown by using Eqs. ( 6 6 ) - ( 6 8 )  below that the 
above stress fields give no net moment on the element of the 
wedge shown in Fig. 2 (Mx = My = M z = 0). The above 
solutions for point force loading are valid for any wedge angle 
since the denominators in Eq. (36) are never zero (except when 
a = 0).  
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4 Elastic Field for Concentrated Moment Loading 
In this section the elastic field is derived.for the case when 

a concentrated moment is applied on the upper surface of the 
wedge, all other surface stresses taken to be zero. The moments 
to be considered are shown in Fig. 1 (P = 0). The moments 
Mr and M~ are applied at the point r = r0, z = 0, 0 = a with 
moment vectors pointing in the positive r and z directions, 
respectively. 

The solution for M~ can be obtained by differentiating with 
respect to r0 the solution in Section 2 for a point normal force 
and replacing P with -M~. Using this procedure leads to the 
following results: 

2 # u = M ~ c ° s ( O ) { ~  + 3 r ( r - r ° s i n ( O ) ) ( r ° - r s i n ( O ) ) } 2 7 r  R e 

3M~ ~ Fl (% O)Pir-ll2(cosh (~3))dr 
+ 87rro(rro) 1/2 do 

M = ( 3 z  ~ - 2rg) fo ° 
+ 4 7 r ~ $ 7 ~ o  ; i ~ f l  ) Fl ( r ,O)  

X P~-l/2(cosh (~3))dr 

2 2 2 f[ M~(r - ro) 
- 87r(rro---~-o ~i-~5(/3) F~(T, O) 

× P,?~_~n(cosh ( /3))dr  (37) 

M~ ( ( r -  rosin(O)) 3r rocosZ(O) ( ro -  r s i n ( O ) ) }  
2#v = ~ R3 Rs 

2#w = - -  

M~ 
J o  F2( r, O)Pi~-l/2( cosh (~3))dr 

4rrro( rro) t/2 

M~( r o 2 - r 2 _ z 2) f f  
47r(---~----ro),~r~s~--nl~F/3 ) - o  F2(r ,O)  

X P l r - l l z ( c o s h  (~3))dr (38) 

3 M z zr cos ( O ) ( ro - r sin (0)) 
21r R s 

L o _ 3Mzz F l ( r ,  O) 
4 7r( r ro ) l nr o 2 sinh (/3) 

X P~- ln (Cosh  ( /3 ) ) t i t  

Mzz(ro 2 -  r z _ z  2) f °  
+ 4rr(rgo)~27g~rt~iT/3) _ .  el(7,O) 

X P}r-ln(cosh (~3))dr (39) 

3 M~r cos ( O ) ( r - ro sin (0)) 
CTrr ~ -- 

27r 

2 sin (0) 5(r  - ro sin (O))(ro - r sin ( 0 ) ) ]  
X R-----T--- + R7 

M~ g= 
J o  F3('7-, O)Pir - l l2 (  Cosh (~3))dr 

16rr(rro) 3n 

M ~ ( r ~ -  r 2 -  z 2) f f  
+ 1 6 ~ r r o ~ T i ~ -  h ~ )  - ~  F3(r, 0) 

X P]r- l /z (COSh (~3))dr 

_ M~(6z____~_.~_3r~.~ 2ro z) f ;  F~(r, O) 
4rr(rro) 5n sinh (/3) 

X P ) r - l l 2 ( c o s h  (~3))dr 

0"00 

O'zz 

Tr z - -  

M~(llro 4 - 9r 4 - 13z 4 + 6rZz 2 - 2z2ro 2 - 10r2ro 2) q 
16rr(rro) w2 sinh 2 (/3) 

× f f  Fr('r, 0)P~T-i/2(cosh (f l))d'r  

Mz(r 2 - r~ - z2)2(r~ - r 2 - z 2) 
+ 

167r(rro) 9n sinh 3 (/3) 

× f :  El(r ,  0)p/3T_m(cosh (/3))dr (40) 

3Mzrr°c°s3(O)  { 2 2 7 r  ~ 5ro ( ro -  rsin(O))}~_7 

+ Mz f ;  F4(T, 0)P,~-,n(cosh (/3))dr 
47r(rro) 3/2 

_ M~(r_______~- r _ ~ z  2) f ~  F4(r, 0) 
47r(rro) 5/2 sinh (/3) 

× P~-l/2(cosh (/3))dr (41) 

15Mz rz 2 cos (O)(ro - r sin (0)) 
27r R 7 

M~ 
f ;  Fs(r,  O)P,~_ll2( cosh (~3))dr 

+ 87r(rro)3/2 

M~(ro 2 -  r 2 _  z 2) 
¢o 

F~(r, O) 8- (Lo  Jo 
X P~-l/2(cosh ( /5))dr  

yo o Mz(r°2 - 3r2 - 3z2) Fl ( r ,  O) 
+ 87r(r-----'~o) - ; /7 s-in-h (/3) 

× P]~_l/2(cosh (/3))dT- 

M~(r~ - ror z - roz z - 5rz z) + 
47r(rro)S'Zro sinh 2 (/3) 

L o × Fl ( r ,  O)P~¢_m(cosh (~3))dr 

M~z2(r~ - r z _ z z) f f  
+ 4~r(rro),/------~r-~ln~3 ~ )  __ Fl(r, 0) 

× P~_,/z(cosh ( /3))dr  (42) 

3Merz cos (0) 
27r 

sin (0) 
× R 5 

5(r  - ro sin (O))(ro - r sin (0)) '[  

f R 7 

9 Mzz g~ 

J o  F,(T, 0) + 87r(rro)3/2ro sinh (/3) 

× P~¢_l/2(cosh (~))d'r  

Mzz( 4z 2 - r 2 _ ro 2) f ~  
+ 47r(rro)5-------h~o ~-nh i ~ )  - v  Fl ( r ,  0) 

× P~2~_,/2(cosh (~ ) )d r  

M~z(r 2 - ro 2 - z2)(ro 2 - r z _ z 2) + 
87r(rro)7nro sinh 3 (fl) 

× F Fl ( r ,  O)P~_l/2(cosh ( ~ ) ) d r  
do 

(43) 
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3Mzr cos ~ (0) r r - 2ro sin (0) 
TrO = 27r 1. R 5 

5ro(r - ro sin (O))(ro - r sin (0))'[ 
R 7 

"l'zO 

3M~ g~ 
Jo  F6(% 0)P,._m(cosh (/3))d-r 

+ 8 7 r ( r r o ) 3 / 2  

Mz(3ZZ - 2r°2) .I~ 
+ ?2f fD)  . o  F6(,, 0) 

× P]~-l/2(cosh (/3))d'r 

M~(r ~ -  ro 2 -  zU)(ro 2 -  r 2 _ z  2) + 
87r(rro) 7/2 sinh / (/3) 

× f f  F6(% 0)P~._m(cosh ( /3))dT 

3Mzzrc°sa(O)27r { /~51 5ro(ro -R 7r sin (0))} 

(44) 

3 M~z p= 
-- J o  F6(7", 0) 47r(rro)3/2ro sinh (/3) 

× P]._l/2(cosh (~3))dr 

M z z ( r ~ -  r 2 -  z 2) f f  
+ 4~(~ro)S/~r0 ~-n~2-~/3) -~  F6(T, 0) 

× P~_l/2(cosh (/3))d~-. (45) 

The solution for Mr can be obtained by differentiating with 
respect to z the solution in Section 2 for a point normal force 
and replacing P with - M .  This leads to the following results: 

2 # u - M ~ z c ° s ( O ) { ~  + 3 r ( r - r ° s i n ( O ) ) } 2 7 r  R 5 

-- 5ZMr Fl (~', 0) 
47r(rro) 3/2 sinh (/3) 

× P].-l/2(cosh (fl))d~- 

M~z(r 2 -  ro 2 - z  2) 
+ 47r(r ro---~ 5/'7 si-~h ~ (3) 

2 # v  Mrz ~sin (0) 3rro 
= - 2 - - T [  R + 

; Fi(T,  O) 

× P~-l/2(cosh (3 ) )d r  

cos 2 R  s (0)} 

(46) 

2~w 

/VLz p= 
- J0  F 2 ( r ,  O) 27r(rro) 3/2 sinh (3) 

× P~._l/2(cosh (~3))dr 

Mrr cos (0) f 1 3Z2~ 
27r [/~3 ~ j  

(47) 

Mr Fx (~-, 0) 
+ 27r(rro)l12ro sinh (/3) 

× P]._l/2(cosh (~3))dr 

Mrz 2 
fo ~ Fl(~-, O) + 27r(rro)3/2ro sinh 2 (/3) 

× P/2~_t/2(eosh ( f l ) )dr  (48) 

O'rr ~ - -  - -  

+ 

× 

x 

+ 

O'00 = -- - -  

15M~ zr cos (O)(r  - ro sin (0)) 2 
27r R 7 

M~z f/Fs0-, 0) 87rr( rro) 3/2 sinh (/3) 

P].-1/z(cosh (/3))d'r 

MrZ(2r________~ Z 3Z__~ 3roZ)~ = 
F1 (7-, 0) 

27rr(rro) 512 sinh 2 (/3) do 

P/2~-1/2 (cosh (/3))dT 

M~z(r  2 - ro z - z2) 2 
8~r~rro)572~l~;~ f~  Fi(T, 0) 

X P~-l/2(cosh (/3))d'r 

15Mr zrr~ cos 3 (0) 
27r R 7 

(49) 

_ M~z f f  
27rr( rro) 3/2 sinh (fl) 

F40-, 0) 

× P}~_m(cosh (/3))d~- (50) 

3M,.zr cos (0) f 2 5z2~ 

T r z  = 

M~z 
Jo FTO-, O) + 47rr(rro) 3/2 sinh (/3) 

× P),_l/2(cosh (3) )d ' r  

MrZ(ro 2 "4- 5r 2 + z 2) 1 "~ 
+ 47rr(rro) 5/2 sinh 2 (/3) Jo F i ( T ,  0) 

× P~.-l/2(cosh (~3))dr 

Mrz 3 
f f  E i ( T  , 0)  + 27r(rro)5/2ro sinh 3 (/3) 

× P~.-j/2(cosh (/3))d~- (51) 

5Z2~ 

g _ 3Mr F1 (7-, 0) 
47r(rro) 3/2 sinh (/3) 

X P~._m(cosh (3))dT 

Mr(r  2 - ro 2 - 6z 2) 
+ 4 r ~ r r o ) ~ 2 ~ i ~ / ~  f f  Fl(r, 0) 

× P/2~_l/z(cosh (~3))dr 

MrZ2(r2 - roE -- Z2) f 7  
+ ~ , T s ~ - n h S  (-- ~ -~  Fl(% O) 

p/3 l/2(cosh (/3))dr (52) 

15M~ zrro cos 2 (O)(r  - ro sin (0)) 
27r R 7 

fo o _ 5MrZ F6(T, 0)  
47rr(rro) 3/2 sinh (3) 

× P~.-l/2(cosh (/3))d'r 

Mrz(r_______~ _- r~ - z 2) f f  
+ 47rr(rro)5/2 ~-n~2- ~ )  __ F6(T, 0) 

× P~._m(cosh (/3))d~" (53) 

3Mrr cos ( O ) ( r  - ro sin (0)) r 1 
27r ]. /~5 

T r O  = - -  
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3Mrrro cos 2 (0) I 1 5z2~ 

M~ f :  F6(r,  O) 
+ 27r(rro) 3/2 sinh (~)  

× P)~_l/2(cosh (¢/))dr 

f; MrZE F6 (~-, 0) 
+ 27r(rro)5/: sinh E (fl) 

× P/2._t/2(cosh (¢/))dr.  

5 Elast ic  Field for Point  Couples  at the Edge  

The solution for concentrated couples applied at a point on 
the edge of the wedge is now considered. Taking a limit of the 
above equations would provide a solution but not a general one. 
To get a general solution for the moments Mx, My, and Mz 
applied at the origin as shown in Fig. 2 (P~ = Py = P~ = 0), 
we proceed as in Section 3. The potentials are now taken as 

'170 = ~s = 0 

Clr sin (0) + DlZ CEr COS (0) + D2Z 
~ l  = ( r  2 -/- zE) 3/2 , ~2 = ( r  2 ÷ zE)3/E (55 )  

This choice of harmonic functions leads to the elastic field 

3[Ci  + CE]r  3 cos  (0 )  sin (0) 
+ [D~ cos (0) + DE sin (O)]z(4r E + z 2) 

2#u = (r  2 + zE)5/E (56) 

[CE -- C~]r + [DE cos (0) - Dj sin (0)]z 
2#v = ( r  E + Z2)3/2 (57) 

3[Cl + C:]rZz cos (0) sin (0) 
+ [D1 cos (0) + DE sin (O)]r(Ez E - r 2) 

2#w = (r  E + zE)S/2 

O'00 ~ 0 

3[C1 cos 2 (0) - C2 sin E (0)] r  2 
T~0 = (r  E ÷ Z2)5/2 

3[C1 cos E (0) - CE sin E (O)]zr 
7"zO = (r E + ZE)5/E 

3[C1 + CE]r 2 cos (0) sin (0)(2Z 2 
- 3r 2) -- 15[D1 dos (0) + D2 sin (O)]zr 3 

(62) 
t T r r  = ( r  E ÷ zE) 7/2 

--15[C1 + CE]FEZ 2 cos (0 )  sin (0) 
+ 3[D1 cos (0) + DE sin (O)]zr(Er 2 -- 3z 2) 

O'zz = @2 + zE)7/2 

- 3 [ G  + CE]rZ COS (0) sin (0)(4r  2 - Z 2) 
+ 3[D1 cos (0) + D2 sin (O)]rE(r a - 4z E) 

(64) Tr~ = (r 2 + Z2)712 

From Eqs. ( 5 9 ) -  (61) it is apparent that the wedge surfaces 
are stress free if 

Ci cos E (c~) -- C2 sin 2 (a) .  (65) 

If the stress field above is substituted into Eqs. ( 3 3 ) - ( 3 5 )  
and use is made of Eq. (65), it is easily shown that the net 
force resulting from the above stresses is zero. The unknown 
constants can be found from the moment relations resulting 
from equilibrium of Fig. 2 as 

M~ = - [r sin (O)~-rz -- ZCrrr sin (0) 
a 

- Z'rro cos (O)]rdOdz (66) 

f;of' My = - [z COS ( O ) O ' r r  - -  Z sin (O)rrO 
ct 

- r cos (O)rrz]rdOdz (67) 

Mz = - rrrerdOdz (68) 
t~ 

(54) 
Substituting the stress field into the above equations and using 
Eq. (65) determines the constants as 

Mz sin z (a )  
C 1 = 

212a cos (Ea) - sin (2c~)] 

Mz cos 2 ( a )  
CE = (69) 

212a COS (2or) -- sin (2o~)] 

O , =  My 
212a + sin (2c~)] ' 

Mx 
D2 = - (70) 

212a - sin (Ea)] 

It was pointed out by Dundurs that Eqs. (66)- (68)  may not 
be a strong enough requirement to eliminate other second-order 
(self-equilibrated) singularities such as a center of dilatation or 
a force dipole without moment. Indeed, the presence of an 
additional self-equilibrated singularity of this type might be a 
possibility since the procedure in this section was to guess a 
form of the potentials and only the net force and net moment 
equilibrium conditions were enforced to evaluate the unknown 
constants. In order to make a definitive statement on this matter, 
the solution in Section 4 is again considered. In this section the 
elastic field for two concentrated moments Mr and Mz applied 

(58) to the upper wedge face were evaluated. These solutions were 
obtained by taking a single force doublet and thus can not 
contain any other second-order self-equilibrated singularities. 

(59) The nonintegral closed-form terms in these expressions corre- 
spond to the incompressible half-space result for each couple. 

(60) The integral terms all vanish for a = 7r/2. If one lets r0 ~ 0 in 
these half-space expressions the solutions for Mr and M~ applied 
at the origin are obtained. This half-space result is in exact 

(61) agreement with the solution in this section for M~ when a = 
7r/2 in Eq. (69). Furthermore, the half-space solution for Mr at 
the origin in the previous section agrees with the solution for 
My above with a = 7r/2 in Eq. (70). 

After a further consideration of this matter it was also recog- 
nized that the solution for the couple My positioned at the edge 
for an arbitrary wedge angle could be obtained by differentiating 
the solution for P~ in Section 3 with respect to z and replacing 
Px with - M y .  This leads directly to the solution for My above. 

(63) Similarly, taking the solution for Py in Section 3, differentiating 
with respect to z and replacing Py with Mx also leads to the 
general solution for Mx above. The solution for Mr can not be 
obtained in this way. In light of the above comments, it is most 
probable that additional self-equilibrated second-order singular- 
ities are not present in the solution of this section. 

6 Di scuss ion  and Con c lu s ion s  

The results derived in this paper present the closed-form 
expressions to various concentrated loadings applied to an in- 
compressible wedge. In most cases the solutions are well be- 
haved, exhibiting a displacement or stress singularity only at 
the location of the concentrated action (force or moment). How- 
ever, in some situations an additional singularity will arise. If 
the wedge angle is larger than 90 deg (half-space) there will 
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be an additional singularity at the apex of the wedge. In this 
case the wedge resembles a notch, and a power singularity in 
the stress field should result. If the wedge angle takes on the 
value a = 7r, the wedge becomes a full space with a half-plane 
crack. In this case the stress field should exhibit the well-known 
square root singularity as the crack front is approached. 

The solution derived in Section 5, for concentrated couples 
at the edge, also exhibits a singularity in addition to that noted 
above. From Eq. (69) for the concentrated moment Mz, the 
denominator contains the quantity 2o~ cos (2a) - sin (2a) .  
This is identical to the denominator in the Airy stress function 
for the plane-strain problem. This term, and hence the denomi- 
nator in the displacement and stress fields becomes zero at an 
angle of a = .7157r. Thus, the solution for the entire elastic 
field becomes infinite as this wedge angle is approached. It 
was this pathological behavior in the two-dimensional solution 
which motivated, in part, the present three-dimensional investi- 
gation. The two-dimensional plane-strain solution is a line cou- 
ple uniformly distributed along the edge and hence the total 
moment applied to the wedge is infinite. It was questioned 
whether the three-dimensional counterpart to this problem 
would display analogous behavior when there is only a point 
couple along the edge, the total moment being finite. The present 
three-dimensional solution as noted above displays identical 
behavior, at least for the incompressible wedge. In retrospect 
this is not so surprising since three-dimensional incompressible 
solutions in elasticity behave very similar to their two-dimen- 
sional counterparts. 

However, there is another very interesting result in the present 
analysis which has not been previously reported in the literature. 
The solution in Section 5 also considers the concentrated cou- 
ples Mx and My. It is apparent that the solution for each of these 
moments is not singular for any wedge angle greater that zero. 
The reason as to why these solutions do not behave pathologi- 
cally and the solution for M~ does puzzled the author. It was 
not until consideration was given to the possibility of other 
second-order self-equilibrated singularities as mentioned above 
that the reason for this was revealed. At the end of Section 5 
it was pointed out that the solutions for the moments M~ and 
My applied at the edge could be obtained by differentiation with 
respect to z the solutions in Section 3 for Px and Py. Hence the 
denominator in the solution for My is identical to the denomina- 
tor in the solution for P~. Similarly, the denominator in the 
solution for Mx is identical to the denominator in the solution 
for Py. Therefore, the well behaved point force solutions in the 
x and y directions dictate that these two concentrated couple 
solutions must also be well behaved. Since a similar procedure 
can not be applied to obtain the solution for M~ at the edge, a 
restriction on the behavior of this solution can not be inferred. 

In conclusion, the only anomalous behavior occurs for the 
moment with the M~ orientation. A detailed investigation into 
the cause of this behavior for the moment M~ has been conducted 
by Sternberg and Koiter (1958), Dempsey ( 1981 ), Ting ( 1984, 
1985), and Dundurs and Markenscoff (1989) as well as the 
references mentioned therein. 
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A P P E N D I X  A 
The functions Fi(~-, 0) (i = 1 . . . . .  8) are defined as 

Fi(T, 0) = COS (O)A(T, O) + sin (O)B(T, O) (A1) 

F2(T, 0) = cos (O)B(T, O) - sin (o)a(r, O) 

oao', O) OB('r, O) 
- c o s ( 0 ) - -  s i n ( 0 ) - -  (A2) 

00 00 

F3(T, 0) = 5 cos (O)A(T, 0) + 5 sin (O)B(-r, O) 

OA(T, O) OB(T, O) 
+ 4 s i n ( 0 )  - -  4 c o s ( 0 ) - -  (A3) 

00 00 

F4(T, 0) = cos (0) OB(T, 0.....) sin (0) OA('r, O) 
O0 O0 

- cos (O)'rZa(T, O) -- sin (O)'r2B('r, O) (A4) 

Fs(~', 0) = 2 cos (0) OB(T, 0) 2 sin (0) OA(7-, O) 
00 00 

- cos (O)A(T, O) -- sin (O)B(T, O) (A5) 
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OA(r. O) OB(T, O) 
F 6 ( r , O ) = c o s ( O ) ~ +  s i n ( O ) - -  (A6) 

00 00 

FT(r, 0) = 3 cos (o )a ( r ,  0) + 3 sin (O)B(r, O) 

- 2 cos (0) OB(r, 0._...._~)t_ 2 sin (0) OA(r, O) (A7) 
00 00 

Fa(r,  0) = 21 cos (O)A(r, O) + 21 sin (O)B(r,  O) 

Oa(r,  O) OB(r, O) 
+ 4 s i n ( 0 ) - -  4 c o s ( 0 ) - -  (AS) 

00 00 

where A (r ,  0) and B (r ,  0) are defined in Eq. (11 ) and their 
derivatives are 

Oa(r, O) r 
O0 D ( r )  cosh (Trr) 

× ~ 'r l ( r ) r  sinh (Trr) cosh [r(O + a ) ]  
t 

- r2(r)r  sinh (rrr) cosh [r(O - a) ]  

- D ( r )  s i n h [ r ( O + ~ ) l }  (A9) 

OB(r, O) r 2 tanh (~rr) 

O0 D ( r )  
{ql( r )  cosh [ r (0  + a ) ]  

- q2(r)  cosh [r(O - a ) ]} .  (A10) 

A P P E N D I X  B 

Some useful differential relationships for the Legendre func- 
tions used here can be obtained from Eq. (22). For example it 
is easy to show that 

0 
0--~ P/~_~n(cosh (13)) = P]r-,n(cosh (fl)) (B1) 

Pl~-,n(cosh (13)) 
o13 

= coth (13)P]~_l/2(cosh (13)) + P/2~-t/2(cosh (3) ) .  (B2) 

Using these results, the chain rule and the definition for 3 in 
Eq. (12) the following derivatives can be obtained: 

_ _  0 3  ( B 3 )  0 Pir-l/2(cosh (13)) = P~T-l/z(cosh (fl)) Or  
Or 

013 (B4) 0 Pi~-l/2(cosh (/3)) = P~_,n(cosh (13)) ~ z  
Oz 

013_ r 2 -  r ~ -  z: 013_ z (B5) 
Or 2r2ro sinh (13) ' Oz rro sinh (/3) ' 

In a similar manner the second derivatives can be obtained as 

02 ro 2 + z 2 
Or-'- 5 Pi~_t/2(cosh (13)) = P~._l/2(cosh (13)) 

r3ro sinh (13) 

(r  2 - r~ - Z2) 2 
+ ~r4~o 2 s~nff i ~ p 2  l/2(cosh (/3)) (B6) 

0 2 1 
- -  Pi._,,2(cosh (13)) - P)~_,n(cosh (13)) 
Oz 2 rro sinh (13) 

z 2 
+ P/2._l/E(COsh (13)) (B7) 

r2ro 2 sinh 2 (13) 

0 2 
"7"-'2- P,.-l/2(cosh (13)) - Z P~ ,/2(cosh (13)) 
oroz r2ro sinh (/3) 

z(r 2 - r g - z  2 ) ~ 2  , . 
+ " " v - z - - - r - - -  l"ir-l/2l, cosn (13)). (B8) 

2r"r~ sinh ~ (13) 

Some other useful relations are 

0 { ---------1-------- P ~._,/2 (cosh (13) ) } 
Or sinh (/3) 

_ 1 P~_,,2(cosh (fl)) 0/5 
sinh (13------) ~ 

0 { sinh~ (13) P~-l/2(c°sh (P))  } Or 

(B9) 

_ 1 P~-,/2(cosh (13)) 013 
sinh 2 ( ~-"""""---~ "~" 

where these also apply with r replaced by z. 

(B10) 
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A Generalized Self-Consistent 
Mechanics Method for Solids 
Containing Elliptical Inclusions 
The determination of  the effective moduli for a material containing elliptical inclu- 
sions is the objective of this paper. This is done by incorporating an inclusion/ 
matrix/composite model into a general energy equivalence framework. Through the 
evaluation of the average strain in each individual inclusion, the current approach 
can handle the inclusion' s orientation dependency in a straightforward manner. The 
case of an in-plane isotropic distribution of elliptical inclusions is addressed in detail. 
For the case of reinforcements, or hard inclusions, the effect of the inclusion aspect 
ratio on in-plane effective moduli is small if the aspect ratio is larger than 0.5. For 
aspect ratios less than 0.3, the effective moduli increase dramatically, which implies 
that flat reinforcements are much more effective than traditional cylindrical reinforce- 
ments. It is also established that the generalized self-consistent method predicts a 
stronger dependence of  effective moduli on the inclusion aspect ratio than does the 
Mori-Tanaka method, especially for shear moduli. 

1 Introduction 
There are several approaches that can be used to estimate 

the effective moduli of composite materials. The Mori-Tanaka 
method (Taya and Chou, 1981; Weng, 1984, 1990; Benveniste, 
1987) has many diverse applications in that it can accommodate 
elliptical inclusions, thereby accounting for a wide range of 
variations in inclusion shapes (Zhao et al., 1989; Zhao and 
Weng, 1990). Another method, the inclusion/matrix/composite 
model (also referred to as the generalized self-consistent 
method; Christensen and Lo, 1979; Luo and Weng, 1987, 1989; 
Christensen, 1990) provides accurate predictions that are well 
suited for extreme types of inclusions (i.e., voids and rigid 
inclusions), and the method also gives the correct asymptotic 
behavior of composites as the inclusion volume fraction ap- 
proaches 1 (fully packed). Moreover, Cherkaev et al. (1992), 
Day et al. (1992), and Thorpe and Jasiuk (1992) established, 
from both a general formulation and a numerical solution, that 
the effective Young's modulus for a two-dimensional isotropic 
matrix containing voids, E2o is independent of the Poisson's 
ratio, u, for the matrix material. Chdstensen (1993) pointed out 
that the inclusion/matrix/composite model meets this criterion. 
Recently, Huang et al. (1994) showed that the solution for a 
composite material containing single-phase inclusions obtained 
by the inclusion/matrix/composite model can be equivalently 
addressed within the general energy balance framework pro- 
posed by Budiansky (1965). Huang et al. (1994) extended 
the applicability of the inclusion/matrix/composite model to 
multiphase composite materials. The predictions for multiphase 
composites and for a material containing voids (an extreme 
type of inclusion) show excellent agreement with experimental 
data and with exact numerical solutions, even at high inclusion 
volume fractions. The inclusion/matrix/composite model, how- 
ever, can currently accommodate only cylindrical and spherical 
inclusions. A solution for elliptical inclusions, which can ac- 
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count for a wide range of shape variations, is highly desirable 
so that a full comparison to the Mort-Tanaka method can be 
made. It should be noted that the approach of Christensen and 
Lo (1979) for the inclusion/matrix/composite model has diffi- 
culty in accommodating the elliptical inclusions for two reasons: 
(1) the inclusion's orientation dependency, which is not an 
issue for cylindrical or spherical inclusions, cannot be handled 
in a trivial fashion and (2) for a material containing elliptical 
inclusions, the effective shear modulus in the eigenvalue equa- 
tions will not decouple from other effective elastic constants, 
for example, the effective Poisson's ratio. Therefore, a remote 
shear loading cannot, in general, lead to the solution of the 
shear modulus. 

Benveniste (1985) described an approach using the inclu- 
sion/matrix/composite model for composite materials, and Mi- 
loh and Benveniste (1988) applied it to composite conductivity. 
This paper presents a solution to the effective modnli of a 
material containing elliptical inclusions within a general energy 
framework incorporating the inclusion/matrix/composite 
model. Through the evaluation of the average strain in each 
individual inclusion, the current approach can handle the inclu- 
sion's orientation dependency in a straightforward manner. The 
case of in-plane isotropic distribution of elliptical inclusions is 
addressed in detail. The effects of the aspect ratio of an elliptical 
inclusion on the effective in-plane moduli are examined for 
extreme types of inclusions, i.e., voids and rigid inclusions. 

2 The Energy Equivalence Framework and the In- 
clusion/Matrix/ Composite Model 

We consider a large cube of a multiphase composite made 
of a coherent mixture of several isotropic elastic materials with 
elliptical shapes. The spatial distributions of the phases are as- 
sumed to be such that the composite material is homogeneous. 
There are a total of N-1 phases of elliptical inclusions embedded 
in the matrix material. The elastic modulus and Poisson's ratio 
of the matrix are E and u, and the elastic modulus, Poisson's 
ratio, and volume concentration of the lth individual phase are 
Et, v~, and c~ (I  = 1, 2 . . . . .  N - 1), respectively. In general, 
the composite material is anisotropic, due to geometrical shapes 
and spatial orientations of inclusions, and is characterized by 
the following general stress-strain relation: 
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0"0 = Cuktekt or c o = C~k~0-kt, (1)  

where C0k~ is the elastic moduli tensor of the composite material. 
To determine C0~t or its inverse (tensor of elastic constants), 
apply a uniform stress, 0"0 = 0"~, to the surface of the cube of 
composite material. The strain energy of the composite material 
is given exactly as 

1 ~ - 1  0 OLr U = ~Ok~O0"kl~, (2) 

where V is the total volume of the composite material. Also, in 
terms of the stress, strain, and moduli of each individual phase 
(Budiansky, 1965 ), 

0 0 o 0 
- J v  a ° % d V  = -- '~ 0-0~0 -- 0"iiO'jJ U = 2  2[. E b7 

N - I  [ (  l + v E / ~  o_ 1 
+ Z c, 1 - -  ~ ) 0 - 0 ' 0  

/=1 1 + u~ 

I ) - - 1 ) 1  E l  0 - . ' ] }  
+ (1 - 2u'~(1 + u,) -E aiiejj V, (3) 

where L~ = 1/v~.fv ' eodV is the average strain in the Ith phase 

and V~ = c y  is the volume of the Ith phase. Equations (2) and 
(3) lead to 

t.-,-I 0 0 1 + // o o t/ o o 
t'~Okl0-ij0-kl : E 0"ij0"ij E 0"ii0"jj 

+ ~ c~ 1 Crog o 
I=i 1 + u1E ] 

u - u, Et 0",~r;~1 ] 
+ (1 - 2v~)(1 + v~) E 

(4) I 

Equation (4) can be interpreted as an energy equivalence between 
two different views of the composite: one regards the composite 
as an overall effective medium, and the other goes into the details 
of the individual phases. Within the framework of linear elastic- 
ity, the average strain in inclusions is proportional to the remote 
stress. Therefore, Eq. (4) is quadratic with respect to remote 
stress, 0-~, and comparison of the coefficients on the left and 
right-hand sides of Eq. (4) leads to the equations that govern the 
effective moduli of the composite, C0kt (or C ~ ) .  

In order to illustrate the procedure for the determination of the 
effective moduli of composite materials, we consider a material 
containing single-phased, unidirectionally aligned elliptical in- 
clusions. The matrix and the inclusions are isotropic, with elas- 
tic moduli, E and Ex, Poisson's ratios, v and u~, and inclusion 
volume concentration, c. It is assumed that these unidirection- 
ally aligned inclusions are parallel to the x3-axis and are ran- 
domly distributed in the x~-x2 plane such that the composite 
possesses transverse isotropy and is characterized by an in-plane 
isotropic stress-strain relation 

a , ,  = 2Cc , ,  + ( B -  C ) % ~ 6 , ,  a, /3 = 1,2 (5) 

where C is the in-plane shear modulus and/7 is the in-plane 
bulk modulus, i.e., e,,, = 0-,J(2B-). Assuming that a biaxial 
tension (0-H = 0-z2 = a0) and a biaxial tension/compression 
(0-H = -7-0, azz = 7"o) are applied separately to the composite, 
the energy equivalence, Eq. (4), gives 

= = - + c  1 -  (6) 
B B 0-0 

3 = ~ + c  1 -  - - ,  (7) 
TO 

~y 

t w 
X 

l W W W W W W W W W . I  
Fig. 1 Schematic diagram of an inclusion/matrix/composite model 

where B = El[2(1 + v)(1 - 2v)] and G = El[2(1 + u)];  
Bt = E / [ 2 ( 1  + ut)(1 - 2ul)] and Gi = E / [ 2 ( 1  + ul)] are 
the in-plane bulk and shear moduli, respectively, for the matrix 

7(1)  and E~) -~(2) and inclusions; and ~ I  ) + ~22 - ~1 are the average 
strains in the inclusions due to biaxial tension, 0-H = 022  = 0"0, 
and biaxial tension/compression, 0"1~ = -0"22 = -~'o, respec- 
tively. 

It should be emphasized here that Eqs. (6) and (7) (or their 
parental form, Eq. (4)) are exact presentations of energy equiv- 
alence. The approximation nature of various approaches comes 
solely from the evaluation of the average strains for inclusions. 
The dilute approximation evaluates ~j by the strain that would 
occur in an isolated inclusion embedded in the matrix material, 

a n d  the self-consistent approximation by the strain that would 
occur in an isolated inclusion embedded in the composite. Obvi- 
ously, the dilute solution neglects the inclusion interaction, 
while the self-consistent solution overly estimates it. 

Huang et al. (1994) proposed an evaluation of the average 
strain based on the inclusion/matrix/composite model, i.e., an 
inclusion is embedded in a finite matrix that, in turn, is embedded 
in an infinite composite. Their estimation of composite moduli 
is in excellent agreement with experimental data and accurate 
numerical calculations. We will use the inclusion/matrix/com- 
posite model to evaluate ~ )  + ~ )  and ~(2) _ r(2) ~22 , , i.e., the 
average strain of all inclusions is approximated by the average 
strain in a single inclusion surrounded by a finite matrix that is 
embedded in an infinite medium that has the as-yet-unknown 
moduli of composite materials. An elliptical inclusion and a sur- 
rounding elliptical ring of the matrix with coinciding major axes 
are placed at an arbitrary angle qt with the xl-axis of the composite 
(Fig. 1). The surrounding elliptical ring shares the same aspect 
ratio as the elliptical inclusion. For two-dimensional cases, the 
aspect ratio of the inclusion can be taken as 0 -< k -< 1 without 
loss of generality. The lengths, a~ and am, of the major axes of 
the inclusion and the matrix ring are chosen so as to preserve 
the inclusion volume fraction of the composite, that is, 

C = ( a " L )  2 ( 8 )  

\am~ " 

Averaging of the strains should be taken over the volume of 
the elliptical inclusion, as well over as the orientation 0. Obvi- 
ously, it is the averaging over the orientation ~O that accounts 

Journal of Applied Mechanics SEPTEMBER 1995, Vol. 62 / 567 

Downloaded 04 May 2010 to 171.66.16.28. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



¢ --- 

t 

F 1 : t 

Fig. 2 Fundamental problems: (a) remote biaxial tension in the direction of major 
axes of the elliptical inclusion; (b) remote biaxial tension/compression; (c) remote 
shear 

for the randomness of the distribution of elliptical inclusions in 
a statistical sense. 

For the biaxial tension 0"n = cr22 = ~r0, the remote stresses 
in the local x '  - y '  coordinate system (Fig. 1; x '-axis coincides 
with the principal axis of the inclusion) are 

' ' = 0"0, ' = 0  ( 9 )  0"xx : 0"yy T x y  

and the strain in the inclusion in terms of local strains is 

6 ( 1 )  .q_ . ( t )  r ( I )  ,~p(1) 
11 ~22 ~ Cx.x ~ ~yy  • (10) 

Let exx~; eyy~; and e~y~' denote the strains, in the local x ' - y '  
coordinate system, of the inclusion subject to a unit biaxial 

' = ' = 1, as shown in Fig. 2 (a ) .  This remote loading 0"x~ 0"yy 
fundamental solution is established in the next section. Obvi- 
ously, 

II 

0"0 
- -  = rr~, + ~y~ ,  ( 1 1 )  

where ~ - '  ' over the inclusion -Jr Eyy I are the average o f e ~  + eyy~ 
(refer to Fig. 2 ( a ) ) .  

For the biaxial tension/compression O'tt = --0"22 = --"7-0, w e  

have remote stresses in the local coordinates of the elliptical 
inclusion, 

~ , ~ ,  = - a y , y ,  = - t o  cos 20, 0.x'y' = r o  sin 2~0, (12) 

and ~(2)22 - e~] ) in the inclusion in terms of local strains, 

C(2) ~(2) ( f  ¢(2) ,c t (2) 9 ~ t ( 2 )  22 - ~ n  =,~yy - ~  ) c o s 2 @ +  sin2@. 

(13) 

Let e=2,' eyy2,t and exy2' denote the strains of the inclusion subject 
' - 1 ,  as to a unit remote tension/compression 0.~ = -Cryy = 

shown in Fig. 2 (b ) ,  and e~3,' e~y3, ely3 denote the strains of the 
inclusion subject to a unit remote shearing a~y = 1, as shown 
in Fig. 2(c) .  These two fundamental solutions are also given 
in the next section. Therefore, 

r (2) ~ t (2) 
~yy  - -  ~xx  

= ro cos 2~O(e~y2 - e~.~) + 7-0 sin 2~b(e~y3 - e~x3) (14) 

~y(2) = '7-0 COS 2 ~ £ ~ y  2 + "7-0 s i n  2 ~ b ~ y  3. ( 1 5 )  

It is important to note that e'~2 and ePafl3 a r e  independent of the 
inclusion orientation 0 (refer to Figs. 2 (b )  - (c) ) ,  so averaging 
over the inclusion and over the orientation ~ can be carried out 
separately. First, averaging over the inclusion, we have 

.~P (2) ~¢(2) - - t  yy - -  e= = 7"0 cos 2~b(g~y2 - e=z) (16) 

~ 2 )  = r0 sin 2qsr~y3. (17) 

In arriving at Eqs. (16) and (17),  use is made of the fact that 
Cxx3; eyy3; and Cxyz' are asymmetric about the x'-axis, thus the 
average of these quantities over the inclusion is zero. 

Using Eqs. (16) and (17) and averaging Eq. (13) over the 
inclusion and the inclusion orientation, ~0 (0 < 0 < 7Q, we 
have 

E ( 2 )  _ 7(2) 1 22 c 11 
"7"0 = 2 (~iy2 --  "~'~'2) "~ ~;y3,  ( 1 8 )  

where the fact that the average of cos 2 2~0 or sin 2 20 is ½ has 
been used. 

With Eqs. (11) and (18) in mind, the solution to in-plane 
bulk and shear moduli through Eqs. (6) and (7) then boils 
down to obtaining the average inclusion strain quantities of the 
three fundamental problems shown in Figures 2 ( a ) - ( c ) .  This 
will be treated in the next section. 

3 F u n d a m e n t a l  S o l u t i o n s  

The fundamental solutions needed in Section 2 are the aver- 
age strains in an elliptic inclusion embedded in an elliptic ma- 
trix; which in turn is embedded in an infinite composite. The 
inclusions and matrix have the same aspect ratio. The composite 
is subject to three sets of unit remote stress (Fig. 2),  
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' = 1  (I)  remote biaxial tension: cr~ = ~ryy 
r = 1 (II)  remote biaxial tension/compression: ~r~ = - 1, Oyy 

(III) remote pure shear: a~'y = 1. 

where x '  and y '  are the major axes of the ellipse, as shown in 
Fig. 1 .  

The Airy stress function, 4,, for a plane-strain problem sym- 
metric about axes x '  and y '  (e.g., subject to sets I and II) ,  has 
the following general structure: 

4, = Aor 2 + Bo In r 

+ Y~ cos nO(An r"+2 + B.r" + Cnr 2-" + D,,r-"), (19) 
n = 2 , 4 , 6  . . . .  

where (r ,  0) are the polar coordinates for axes x '  and y ' .  The 
corresponding stress components are 

1 04, 1 024, 
tr~r - + - -  = 2A0 + Bo r-2 

r Or r 2 O02 

+ ~ cos n0[ (2  - n ) (1  + n)a . r"  
n = 2 , 4 , 6  . . . .  

+ n(1 - n)B . r  "-z + (2 + n) (1  - n ) C . r  " 

- n(1 + n ) D . r  -"-2] (20) 

024, 
or00 = - -  = 2Ao - Bor -2 

Or 2 

+ ~ cos n0[ (2  + n) (1  + n)a,,r" 
n = 2 , 4 , 6  . . . .  

- n(1  - n)B . r  n-z + (2 - n ) ( t  - n)C . r - "  

+ n(1 + n)D,,r -"-2] (21) 

o : 
err° = - ~ \ r  0 0 ]  ~. sin nO[n(1 + n )a . r"  

n = 2 , 4 , 6  . . . .  

- n(1  - n ) B . r  "-2 + n(1 - n )C . r - "  

- n(1 + n)D.r -" -2] .  (22) 

The corresponding displacements are 

u~ = All { 2Aor - Bor -l + xZ cos n0[ (2  - n)A . r  "+1 
n = 2 , 4 , 6  . . . .  

- nB.r "-I + (2 + n)C . r  l-" + nD.r-"-~]} 

+ al2{2aor  + Bor -l + Y~ cos n0[ (2  + n)A,,r "+1 
n = 2 , 4 , 6  . . . .  

+ nB.r "-t + (2 ~ 1-,, - n ) c . r  - n D . r - " - l ] }  (23) 

u0 = All ~ sin nO[(n + 4)A.r  "+= + nB.r "-~ 
n = 2 , 4 , 6  .... 

+ (n - 4 ) C . r  ~-" + nD.r -"-~] 

- A~z ~ n sin nO[A.r "+~ + B.r "-~ 
n = 2 , 4 , 6  .... 

+ C.r ~-" + D.r  -"-~] (24) 

where the rigid-body rotation is neglected since the loading is 
symmetric about axes x '  and y ' ,  and the elastic compliances, A .  
and A~2, are related to the shear and bulk moduli, G and B, by 

1 t 
2 ( A .  + Ai2) = ~ and 2(Art - Ai2) = ~ .  (25) 

For the inclusion, the stress must be finite at the origin, which 
requires B0 = 0, C. = D. = 0 (n = 2, 4, 6 . . . .  ), and A0, A.,  
and B. to be replaced by A~, A~, and B~ (n = 2, 4, 6 . . . .  ), 
where the superscript stands for the inclusion. The elastic mod- 
uli B and G are substituted by the corresponding moduli of the 

inclusion, B~ and G~, respectively. For the matrix, the constants 
to be determined are A~, B~, A~', B~", C~, and D,7 (n = 2, 
4, 6 . . . .  ) and the moduli are replaced by the corresponding 
moduli in the matrix, B and G. For the composite, the stress in 
the remote field must also be finite, which requires A2 = 0 a n d  
A. = B. = 0 (n = 4, 6 . . . .  ), Thus, the nonzero constants to be 
determined are A~, B~, B~, C,~, and D~ (n = 2, 4, 6 . . . .  ). The 
corresponding moduli in the composite are B and G, respec- 
tively. The constants A~ and B~ are directly determined by the 
remote applied stress. For loading set I, A~ = ½ and B~ = 0. 

1 For loading set II, A~ = 0 and B~ = ~. Other constants are 
determined by the continuity conditions across the inclusion/ 
matrix and matrix/composite interfaces. The normal and shear 
stress components at the interfaces are 

\ O'rO O'oo] no 

where nr and no are the directional cosines of a unit normal at 
the interfaces in polar coordinates, given by 

n r  = C O S  Or ,  no = sin a ,  

a = tan -t (1 - h 2) sin 0 cos 0 (28) 
k 2cos 2 0 + s i n  20 

for an ellipse with aspect ratio k. Without loss of generality, 
the length of a major axis of the elliptical inclusion can be taken 
as 1 (one).  Thus, the elliptical inclusion is characterized by the 
following equation in polar coordinates: 

k 
r = po(O) --- (k 2 cos2 0 + sin 2 0) l/z " (29) 

The continuity conditions at the inclusion/matrix interface 
are 

[ann] = 0, [ a n s ] =  0, [Ur] = O, [Uo] = 0, (30 )  

where [-]  stands for the difference in the argument across the 
interface, and the radial coordinate r in the expressions of tr.., 
cr..,, ur, and uo is substituted by po(O) at the inclusion/matrix 
interface. It is emphasized that the moduli in the expressions 
of ur and Uo must be used for the corresponding regions. The 
continuity conditions at the matrix/composite interface are the 
same as for equation (30) ,  except that po(O)/~cc is substituted 
for the radial coordinate r. 

Equation (30) at two interfaces forms the governing equa- 
tions to determine the unknowns A~, A~', Bg', BS, At ,  B~., 
A",  B~', C~, D m, C~, and D~ (n = 2, 4, 6 . . . .  ). Equation 
(30) is solved by the standard collocation method for converged 
truncation in the number of expansions of unknowns. 

The average strain for loading set I is given by 

- t  r 1 
e~l  + ~yyl = (~Y~= + 

_ 1 1 f 2~ f "o<°) 
- ~ i ' ~  do dO oo (o'Ll + cr~,yl)rdr, (31) 

where 

t r ~ t 
O'xx I -[- O'yy 1 O'rr I -~- O'SOi, 

The average strain for loading set II is 

(32) 
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. . . .  1 l f ~ ' d O r P O  <°> - - - -  (Cr~yz - ~ r ~ ) r d r ,  
Eyy2 Exx2 2G~ 7rh ~o 

where 

(33) 

t t t 
- -  = - -  O'rr2) C O S  2 0  + 20"tO 2 Cryy 2 O.xx 2 ( 0 . ~ 0 2  t s i n  2 0 .  

(34) 

For a stress distribution antisymmetric about axis x' ,  such as 
loading set III, the Airy stress function in Eq. (19) needs to be 
modified as follows: 

go = AoO + Bor  sin 0 + ]~ sin n O [ A , r  "+2 
n = 2 , 4 , 6  . . . .  

+ B.r"  + C.r 2-" + D . r - " ] ,  ( 3 5 )  

where AoO corresponds to pure shear; Bor sin 0 is the rigid- 
body rotation, which is important in matching displacement 
across interfaces because the loading is asymmetric; and the 
terms in summation are similar to those in Eq. (19) except that 
cos nO is changed to sin nO. The above procedure to determine 

• 1 unknowns holds, except that A~ = 0, B~ = 0, and B~ = -~z. 
The average strain is 

_ ,  1 _ ,  l l f ~ ' f , o  °̀) 
= ~ = - - " -  a~y3rdr,  exy3 O'xy3 2Gi  7rk dO oo t (36) 

where 

t t ! 
Oxy3 = (~rrr3 - a~o3) sin 0 cos 0 + crre3 cos 20. (37) 

It is noted that the series solution can warrant the convergence 
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Fig. 3 Variation of moduli with aspect ratio ~. for glass-epoxy compos- 
ites: Et = 72.4 GPa, E = 2.76 GPa, vt = 0.2, and v = 0.35: (a) in-plane bulk 
modulus; (b) in-plane shear modulus 

Fig. 4(b) 

Fig. 4 Variation of moduli with aspect ratio ,k for rigid inclusions: EJE 
= co and u = 0.3: (a) in-plane bulk modulus; (b) in-plane shear modulus 

for h greater than 0.1. For h < 0.1, oscillation occurs as the 
number of terms increases. 

4 Resul ts  and Conc lus ions  

The in-plane bulk and shear moduli for various types of 
inclusions are presented in this section. Of primary interest here 
are the effects of aspect ratio on effective moduli. Two extremes 
of inclusions--voids and rigid particles--will be addressed in 
order to cover commonly encountered inclusions ranging from 
defects to reinforcements. (For voids and rigid particles, the 
analysis in Sections 2 and 3 must be modified. See the Appendix 
for details.) 

Variation of the in-plane bulk modulus and of the shear mod- 
ulus with the inclusion aspect ratio is shown in Figs. 3 (a) and 
3 (b) for glass-epoxy composites with three different inclusion 
volume fractions, c = 0.2, 0.4, and 0.6. The epoxy matrix has 
the properties E = 2.76 GPa and u = 0.35, and the glass fibers 
have E1 = 72.4 GPa and ul = 0.2. The moduli estimated by the 
Mori-Tanaka method (Zhao and Weng, 1990) are also shown 
in Figs. 3(a)  and 3(b) for comparison. It is clearly seen that 
the inclusion/matrix/composite model exhibits a stronger de- 
pendence on the inclusion aspect ratio than does the Mori- 
Tanaka method. In particular, aspect ratio has little effect on 
the effective moduli if the aspect ratio is greater than 0.5. In 
an attempt to confirm this conclusion for a wide range of rein- 
forcements, we consider an extreme case: a material containing 
rigid elliptical inclusions. Figures 4 (a) and 4 (b) show the vari- 
ation of effective in-plane bulk and shear moduli with the aspect 
ratio of rigid inclusions for inclusion volume fractions c = 0.2, 
0.4, and 0.6 (matrix Poisson's ratio u = 0.3) for both methods. 
It is affirmed that the aspect ratio, or shape, of the inclusion 
has little effect on the effective moduli if the aspect ratio is 
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Fig. 5 Variation of moduli with aspect  ratio k for voids: EiIE = 0 a n d ,  
= 0.3: (a) in-plane bulk modulus; (b) in-plane shear modulus 

greater than 0.5. The effective moduli, however, can be sharply 
enhanced by reducing the aspect ratio to a value of less than 
0.3. For example, the shear modulus at aspect ratio k = 0.1 is 
more than seven times larger than that for cylindrical rigid 
inclusions (k = 1) for rigid inclusion volume fraction c = 0.4. 
This observation is similar to that discovered by Zhao and Weng 
(1990) and implies that relatively fiat reinforcements are much 
more effective than traditional cylindrical reinforcements. How- 
ever, it is observed that the inclusion/matrix/composite model 
and the Mori-Tanaka method give the same in-plane bulk modu- 
lus for cylindrical inclusions (k = 1) and the effect of aspect 
ratio on the composite bulk modulus is much smaller. The bulk 
modulus at k = 0.1 is less than twice that at k = 1 for c = 0.4. 
It is noted that all the results we present here are within the 
Hashin-Shtrikman (1963) bounds. 

A material containing unidirectional elliptical voids is con- 
sidered in Figs. 5(a)  and 5(b)  in order to examine the effect 
of damage on effective moduli. Contrary to what is observed 
for rigid inclusions, aspect ratio does affect the effective mod- 
uli at the full range. It is also seen that the effect of aspect 
ratio on composite moduli estimated by the inclusion/matrix/ 
composite model is larger than that predicted by the Mori- 
Tanaka method. 

Zhao and Weng (1990) established that the Hill (1963) and 
Hashin-Shtrikman (1963) bounds are identical to the prediction 
by the Mori-Tanaka method for the two limits of aspect ratios, 

= 0 and k = 1. It is observed that the present results do not 
violate the bounds. Based on the results presented above for 
material containing randomly distributed, unidirectional ellip- 
tical inclusions, we can conclude the following: 

1 For the case of reinforcements, or hard inclusions, the 
effect of inclusion aspect ratio on in-plane effective moduli is 
very limited for aspect ratios between 0.5 and 1.0. However, 

as the aspect ratio decreases to less than 0.3, the effect of aspect 
ratio increases rapidly. 

2 For the case of damage, or voids, the void aspect ratio 
has a significant effect on the effective moduli at the full range. 

3 The inclusion/matrix/composite model, all known as the 
generalized self-consistent method, predicts a stronger depen- 
dence of composite moduli on the inclusion aspect ratio than 
does the Mori-Tanaka method. The previous conclusion that 
the difference between the two methods is small was established 
for spherical or cylindrical inclusions only. Through variation of 
inclusion shapes, the current analysis shows that the differences 
between the two methods can become quite significant. The 
difference between the two methods for the shear modulus is 
larger than the difference for the in-plane bulk modulus. 

4 The shear modulus exhibits a stronger dependence on the 
inclusion shapes than does the in-plane bulk modulus. 

The current approach can be extended to study the behavior 
of materials containing extremely shaped inclusions, such as 
cracks and ribbon types of reinforcements. Such an extension 
will, however, require a redefinition of the physical model and 
a reformulation of some fundamental solutions. 
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A P P E N D I X  
For a solid containing voids or rigid inclusions, it is difficult 

to evaluate the average inclusion strain in the voids or rigid 
inclusions. Equation (4) needs to be reformulated to a form 
suitable for voids or rigid inclusions. 

For voids, Eq. (4) can be rearranged to 

- i  0 O 
CijklO' i j~ kl 

fs uin~ds 
l + u  o o v o o ~ r , ~  V E O~O~iJ --  E {~ii°'jJ -~- o 

voids 

- - ,  (38) 

where V is the total volume of the composite, so is the surface 
of a void, and ui and nj are the components of displacement 
(due to applied stress ~ )  and are unit normal (pointing into 
the matrix) at void surfaces. The corresponding equation for 
rigid inclusions is 

C-1 0 o (1  +U~ro u ) 0~,o'~o'k, = \ - - ~ - -  0 - ~ oL*0 

f. ) 
x ~ -  Z .  r V ~ , (39) 

rlglo 
inclusions 

where V is the total volume of the composite, Sr is the surface 
of a rigid inclusion, aiknk is the traction on the boundary of 
rigid inclusions (nk is the component of a unit normal pointing 
into the matrix), and xj is the Cartesian coordinate. The ratios 
of the surface integral over total volume in Eqs. (38) and (39) 
are related to the volume concentration of voids and rigid inclu- 
sions. The fundamental solutions in Section 3 need to be 
changed accordingly. For voids, the continuity at the inclusion/ 
matrix interface, Eq. (30), is changed to zero traction condi- 
tions. For rigid inclusions, Eq. (30) at the inclusion/matrix 
interface is changed to zero displacement requirements. 
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Green's Function for Elastic 
Medium With General Anisotropy 
It is difficult to obtain explicit expressions of Green's function for elastic medium 
with general anisotropy. The difficulty is associated with an integration of functions 
with high degrees of singularity. In this paper, we propose a method employing 
extend functions. This method avoids the difficulty of singularities and renders an 
explicit series expression of Green's function for general anisotropic conditions. 
Analytical expression of  the coefficients in the series are provided. Numerical exam- 
ples are given to evaluate the applicability of  this method. 

1 Introduction 

Green's function has been an important topic in both applied 
and theoretical studies of continuum mechanics. As a fundamen- 
tal solution, Green's function has been widely applied to general 
boundary value problems for both homogeneous media and 
inhomogeneous media (Brebbia et al., 1984). Green's function 
also plays an important role in homogenization methods in mi- 
cromechanics (Eshelby, 1959; Mura, 1987). 

For isotropic elastic solids, Green's function of a point load 
applied in an infinite medium was first obtained by Kelvin (Sir 
Thompson, 1848). For transversely isotropic materials, many 
attempts have been made to obtain the Green's function (Elliott, 
1948; Kroner, 1953; Woo and Shield, 1962; Willis, 1965; 
Sveklo, 1969; Lejcek, 1969). However, for some "degeneral" 
cases, these solutions do not exist due to problems of singularity. 
Pan and Chou (1976) provide solution for the degenerated con- 
ditions. 

For general anisotropic materials, an integral form of the 
Green's function can be expressed. However, as to date, explicit 
analytical expression of Green's function for general three-di- 
mensional anisotropic materials are not available. The difficulty 
arises mathematically from an integration of a singular function 
in the process of obtaining the Green's function. 

Considerable efforts have been made to derive approximate 
solutions of Green's function for general anisotropic materials. 
Walpole (1967) proposed an approximate solution based on the 
method of perturbation. As discussed by Mura and Kinoshita 
(1971 ), reliability of the approximation is questionable since a 
high degree of singularity appears in the kernel of his integral 
equation. Kroner (1953) took another approach to obtain the 
Green's function by expanding the Fourier's transformation of 
Green's function into a series. A similar approach was also 
employed by Mura and Kinoshita (1971) and by Kinoshita and 
Mura ( 1971 ). 

However, the method by Kinoshita and Mura ( 1971 ) is based 
on the premise that the transformed Green's function in a Fou- 
rier space can be expanded into a series of homogeneous poly- 
nomials of even order. This premise is not true for general 
anisotropic materials. 

Along the approach of series expansion, a method employing 
extend functions is proposed which makes it possible to derive 
an explicit series expression of Green's function for general 
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anisotropic conditions. Analytical expressions of the coeffi- 
cients in the series are provided. Numerical examples of the 
derived Green's function are given for transversely isotropic 
materials. The results are compared with the Green's function 
derived by Pan and Chou (1976) to evaluate the applicability 
of this method. 

2 Problem Definition 
Green's Function G, (x )  represents the displacement ui at 

point " x "  due to an unit force t, in an infinite homogeneous 
medium, such that 

CijktGlt.ki(x) + t~jtt~(x) = 0 (1) 

where 6(x)  is the Dirac-delta function; 6i, is the Kronecker 
delta; and Cijkt is the stiffness tensor, defined by 

aij = Cimut,k (2) 

in which cr U is the Cauchy stress and u~,k is the displacement 
gradient. The fourth-rank tensor Cij~k with 81 independent con- 
stants completely describes the material property of an aniso- 
tropic medium. 

3 Green's Function in Integral Form 
The most elegant method for obtaining Green's function is 

the technique of the Fourier transformation. The pair of Green's 
function in Fourier transformation, Gi,(~) and G , (x ) ,  are re- 
lated in the following manner: 

GI,(~) = G, (x )  e x p ( i x . ~ ) d ~  (3) 

G , (x )  = ~ G,($)  exp( i~ .x )d~ .  (4) 

From the Fourier transformation of Eq. ( 1 ) we obtain 

Kj,C,,(~) = ~j, (5 )  

where 

Kjt= Cqk,(~,. (6) 

Multiplying Eq. (5) by Kff I leads to 

d,,(~) = 6j,Kfi I = K•'. (7) 

The inversion of K, can be expressed in terms of the adjoint 
tensor S, and the determinant T, given by 

Gl,(g) = Kit ~ = S'---2 (8) 
T 
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Fig. 1 Transformation of coordinate systems 

where the adjoint tensor of K~, is a fourth-order polynomial; 

St, = etkm£tinCkjisC,nun;{j~s{u~v, (9) 

and the determinant of K~, is a sixth-order polynomial; 

T = 2epqrCpklmCqtasCrh3g{k~m~t~s{h~g , (10) 

with the permutation tensor etkm = 0.5(l -- k ) ( k  - m ) ( m  - l ) .  
Our objective is to evaluate the integral in Eq. (4) for ob- 

taining the Green's function G~,(x). It is straightforward that 
the volume integral in Eq. (4) can be reduced to a surface 
integral by performing a spherical coordinate transformation. A 
brief description of the spherical coordinate transformation is 
given here. Let 

=Ra?; x =  rw (11) 

R = (~i~i)ll2; r = ( x i x i )  ~/z (12) 

where r/ and w are unit vectors. R and r are the lengths of { 
and x, respectively. The infinitesimal volume element d~ is 
given by 

d~  = Ra d R d S (  r I) ( 13 ) 

where d S ( ~ )  is a surface element on the unit sphere S ~ in a E- 
space, centered at the origin of the coordinates ~ .  Substituting 
Eqs. (11) and (13) into Eq. (4) leads to 

Gl,(x) 

= (2~)3 fs~ f: exp(iRr~'w)R~gl,(R~)dRdSOq) (14) 

where S 2 = { a,/ln~n~ inl=l }. 
Note that the function ~ t ( ~ ) ,  referred to Eqs. (8) - (10) ,  

has homogeneous sixth-order terms on the denominator and 
homogeneous fourth-order terms on the numerator. Therefore, 
the following relationship holds: 

G, , (n  ) = n ~ d , , ( g n )  = e~G, , ( ! i ) .  (15) 

By the definition of Dirac delta (Friedman, 1956), 

1 floe e x p ( i R r a q . w ) d R .  (16) 6 ( r ~ i ' w )  = 

Using Eqs. (15) and (16), Eq. (14) becomes 

,£ 
a i r ( X )  = 871. --- '~ 2 6 ( r n ' w ) O t t ( ~ l ) d S ( n ) "  (17 )  

The surface integration in Eq. (17) can be further converted 
to a line integral. Note that r / i s  a unit vector in the {~ - {~ - 
{3 space and w is a unit vector in the xl - xz - x3 space. Select 
the coordinate system x~ - x= - x3 in such a way that ~ is on 
the plane of x= - x3 perpendicular to the xl-axis. Let 0 be the 
angle between aq and w (see Fig. 1 ), and 45 be the angle between 
the x=-axis and ~.  Then ~q. w = cos 0. 

Using the variables, 0 and 45, the surface element in Eq. 17) 
is expressed by 

dS(r l )  = sin OdOd45 = -d (~ .w)d45 .  18) 

Thus Eq. (17) becomes 

f/ = - -  tS(rr/, w) G,,(r/) d45d(~q, w). (19) Glt(x) 8rr2 i 

Integrating Eq. (19) with respect to (r / .  w) leads to 

Gl,(x) = 8rrr---- 5 Ot,(~q)d45. (20) 

We can now evaluate Green's function Gt,(x) using Eq. (20), 
provided that the function G~,(r/) has no singular point on the 
surface of the unit sphere S 2. According to Eqs. (8) and (6),  
the presence of singularities in the function Gtt(~) implies that 

det ICo~lrlkrl~ I = O. (21) 

It is interesting to note that Eq. (21) can be interpreted as 
the condition given by Hill and Hutchinson (1975) for strain 
localization. It also can be interpreted as the condition given 
by Hill (1962) that a shear wave is unable to transmit through 
the medium. 

4 Series Expression of Gu(a?) 
We now seek an explicit expression for the integration in Eq. 

(20). As defined in Eq. (8),  the function Gtt(~'l) is a ratio of 
two polynomials: the adjoint tensor So('q) and the determinant 
T(~) ,  given by 

G,,(aq) = S,,(r/) (22) 
T(n) 

For convenience, the sixth-order polynomial T(aq) and the 
fourth-order polynomial S0(a q) are expressed in alternative 
forms different from those in Eqs. (9) and (10), given by 

T ( ' q ) =  ~ aimnrl{Vl~'rll~ (23) 
i+m+n=6 

S,,(~) = Y. bi,,,,,r/{r/~"r/~ (24) 
i+m+n=4 

where i, m, and n are non-negative integers. Because the poly- 
nomials are homogeneous, they must be summed up to six for 
T(lq) and four for &,(a?). The constants aim, and bi,,,tt are depen- 
dent on the constitutive tensor Ciju as shown in Eqs. (9) and 
(10). The expanded form of Eqs. (23) and (24) are as follows: 

T(a?) = a600nl 6 + ao60Z126 + ao06~ + a510~7~72 

+ aso07~r/3 + alsorhrl~ + ams~Tt~7~ + . . .  (25) 
3 

S i t ( K )  = b400lt~ + bo40lt~ + boo4/t~ + b3,ottrJ~r?2 

+ b3mitr/~3r/3 + bm3lt~irT~ + b~3ott~]l~23 + . . . .  (26 )  

Since the function Gl,(~/) is rational of two even-order poly- 
nomials, Eq. (20) is most appropriate to be integrated em- 
ploying the method of residues. However, the method of resi- 
dues requires to find roots of the sixth-order polynomial T(zT). 
Unfortunately, no analytical solution exists for obtaining the 
roots of a general sixth-order polynomial. Therefore the integra- 
tion can only be carried out by numerical methods, accuracy of 
which is moot. 

To seek for an analytical expression of this integral (Eq. 
(20)),  other than the method of residues, one can take the 
approach of expanding the function G0(~) into a series. Kroner 
(1953) expanded the function Gij(aq) into a series in which each 
term involves an integral of a product of Legendre polynomials 
and Gij(~). These integrals are difficult to perform for obtaining 
an explicit solution. 
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C.I'(TI); 1" I in S2 

I 
Extend 

G*(0); 

Fig. 2 

- - - . .  ~ ( ~ )  = Z aijk~ rl~ 

Restrict 

I 

I p in 83 Expand O*(P) = Z auk p~ p~ P 

Schematic illustration of the proposed method 

Kinoshita and Mura ( 1971 ) suggested a method based on the 
assumption that the rational function G~(rl) can be expanded 
into a series containing only even-order terms of { ~Tt, ~72, r/3 }. 
With this method, the integration in Eq. (20) can be elegantly 
replaced by a series of derivatives of functions. These deriva- 
tives can then be carried out to obtain an explicit solution. 
Unfortunately, this interesting method cannot be used because, 
in contrary to the premise, there is always a presence of odd- 
order terms of ~7i when Go(r/) is expanded into a series. 

4.1 Proposed Approach. Following this approach, we 
now attempt to seek a series expression for the function G~j(~7), 
leading to an explicit solution. To this end, we propose the 
following method: 

We introduce an extend function G~(pk)  by extending the 
domain of Gu(rlk ) from the surface s 2 to the volume s 3 of a 
unit sphere. By definition, the extend function G~ (Pk) can take 
any form as long as the two functions, * G0 (Pk) and GU(rlk), are 
identical on the surface s 2. Conversely, the restrict function of 
Gij (Pk) by restricting the domain from s 3 to s 2 is equal to the 
function Gu(~k ), given by 

• Gu(~k). (27) Gu (PD I : ~ :  -- 

Thus, one can express the extend function G*(pk)  into a 
series. Then, by restricting the domain of this series from s 3 to 
s z, a series expression for the function Gij(rlk) is indirectly 
obtained. 

It is noted that the extend function * Go (Pk), defined in a 
domain larger than s z, does not necessarily take the same form 
as CuOTk). Therefore, the method allows freedom regarding not 
only the selection of an appropriate extend function but also 
the selection of an appropriate point at which the function can 
be conveniently expanded. The procedure is schematically show 
in Fig, 2.. 

4.2 Selection of the Extended Function G~ (p).  Among 
all points in the domain s 3, it is most desirable to expand the 
function G~ (PD into a series with respect to the point of origin, 
which gives the simplest form of the series. Therefore, the 
domain of the selected function G~ should include the point of 
origin. This excludes the possibility of selecting extend function 
G~(pk)  to take the same form as G(rlk) due to its singularity 
at the point of origin. Therefore, we must search for an altered 
form which is not singular at point of origin. 

For this purpose, we construct the extend function * G~/(pk) 
in the following procedure: First, replace rl in ~a(~)  by p to 
obtain a function F(p) .  Then replace p~ with 1 - p~ - p~, 
p4 with (1 - p~ - p~)Z and p6 with (1 - p~ - pEz) 3 in F (p )  
to obtain G*(p) .  It is obvious that this altered function satisfies 
the requirement in Eq. (27) and is nonsingular at point of origin. 
The function * G~j (Pk) is given by 

, S~ (p) 
Gq (Pk) = (28) 

T*(p) 

where 

T*(p)  y ,  * i = aim.pip'SpY (29) 
i+m+n~6  

n ~ l  

sT,(o) E "* , ~ ° = o, . . j tplp2 p~. (30) 
i+m+n~4  

n ~ l  

The values of i, m, and n are non-negative integers. The power 
(i + m + n) equals to 0, 2, 4 or 6 for T*(p)  and to 0, 2, or 4 
for S* (p). Note that after the substitution of p ~  with (1 - 

2 2 \ m  m P~ - Pz) , = 1, 2, 3, the two polynomials are no longer 
homogeneous; the order n of P3 is equal to either 0 or 1. The 
relationships of the constants * and * ' aim n bimnj I m Eqs. (29)- (30)  
and the constants aim, and bimnjt in Eqs. (23)- (24)  are given in 
the Appendix. 

The nonsingularity of * G O (p)  at the point of origin can be 
observed from the polynomial series T*(p) .  For example, the 
expanded form of Eq. (29) is given as follows: 

• 2 * 2 * T*(p)  = a~oo + a 2 0 0 p l  + a o 2 0 P 2  + a l l O P l P 2  

+ alolPlP3 + aollp2p3 + . . . .  (31) 

Note that aooo * 0, thus T*(0) is not equal to zero. 

4.3 Series Expression of G#(~/). Since P~P2P3 are the 
three independent variables in G ~ ( p ) ,  Taylor's expansion of 
G O (p) at the point of origin can now be expressed as 

c ~ ( p ) =  p , z - +  p ~ - +  p~ a.(o) (32) 
n=O 

Using the identity 

( a + b + c ) "  ~ n! = - -  aPbqc s, (33) 
p+q+s=n P [q !s [ 

Taylor's expansion in Eq. (32) can be expressed as follows: 

& 1 ~ * 0 G 0(0) p q s 

Go(P)* = 2.  ~. nTpVqTs v 0 I'O qO ~ PlP2P3 (34) 
n=Op+q+s=n  . . . .  D I  P 2  P'3 

where p, q, s, are non-negative integers. The order of n must 
be even; the odd-order derivatives vanish. The expansion in Eq. 
(34) will have one term for n = 0; 6 terms for n = 2; 15 terms 
for n = 4; and 28 terms for n = 6. For higher order of n, the 
number of terms increased rapidly (e.g., 45 terms for n = 8). 

Now we restrict function of * Gzj (p) from domain s 3 to s 2 
(i.e., from Pk to rlk) for obtaining the series expression of Gij(a~), 
given by 

6~j(~) =.~0 y n ' l  O"G~.(O) ~; '~o~.  (35) 
p+q+ . . . .  .p !q !S ! OpP~ Op q Op; 

5 Series Function for Green's Function 
Substituting Eq. (35) into Eq. (20), one can obtain the 

Green's function 

,,-•-•o Jpqs (36) G~(x) = ~ ~ lqlsV p a s 
1 O~G~(O) 

87tar p OplOpzOp3 p+q+s=n " " " 

where p, q, s are non-negative integers. 

:? j , , ~=  p q .,d ~. ~7 t r/2r/3 ,e (37) 

The expanded terms of Eq. (36) are illustrated in the following 
equation: 
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Table 1 Transverse isotropic elastic constants for materials A and B in 
(a) conventional notation and (b) contracted notation 

(a) 
A B 

2,933 6,333 E~ (kPa) 
E~ (kPa) 
I-txv (kPa) 
~zx (U'a) 

Vxy 
Vxy 

Transverse Isotropio on X-Y Plane) 

800 

4,000 
0.83 
0.11 

9,500 
2,000 

4,000 

0.58 
0.13 

(b) 

c u (kPa) 
C~ (k~a) 
Cl~ (kP~) 
C44 (kPa)  

c66 (kPa) 
(Cij is in Contracted Notation) 

A B 
10,000 10,000 
10,000 10,000 
2,000 2,000 
4,000 4,000 
800 2,000 

Table 1; 6/95 JAM; Chang and Chang~ Green's Function for Elastlc 
~edlum With General AnlsoSropy 

- -  0 0 Go(x ) = 1 (G~Jooo + Gij,,2Jllo "4- G/°j,13Jlol -4- Gij,23Jo11 
87r 2r 

1 0 | 0 1 0 1 0 
+ ~Go,llJ200 + ~Gq,22J020 .-4- ~Gij,33Jo02 + gGij,1222J130 

l 0 1 0 1 0 
q- ~Go,1333Jlo 3 "1- gG/j ,  lll3J301 Jr" gGq, lll2J31o 

l 0 1 0 1 0 
"Jr" gGo,~333Jol 3 "k gGij,2223J031 -4- ~aij,  l122J~o .-k . . .  (38) 

where we denote the derivatives, [O'G*(O)]l(Op~Op~Op~), by 

o o"a~(o) 
GO,,~j.. = (39) 

Opu Opv OpkGqpl • • • 

Note that the constants G °, 0 o Gq .... Go.,okt are functions of 
coefficients Cok ~ only. The integrals denoted by Jpq~ are functions 
of the position vector xi. For purpose of illustration, explicit 
expressions of these constants and integrals are given in the 
Appendix for the first few orders. 

6 E x a m p l e s  

The described method is intended for deriving the Green 's  
function of a general anisotropic material. Herein, an example 
is first given to show that the present formulation deduces the 
solution for an isotropic material. Examples are also given 
for the anisotropic material to evaluate applicability of the 
method. 

6.1 Isotropic Material .  For an isotropic material the stiff- 
ness tensor is given by 

Cok, = k606k, + I.Z( 6,k6j, + 6,,6ik). (40) 

Gk~(~/) in Eq. (20) is obtained from Eq. (8) ,  i.e., 

Gki(r/) = &,(~7) (41) 
T(r/) 

where &i(7?) and T07) are given in Eqs. (9) and (10),  

&i(r/) = 26ki(1 -- U)~Tmr/m -- r/~r/i (42) 

T(~)  = 2#( 1 - u)rl,,rh, rbr b. (43) 

Based on the proposed method, the selected extend function 
G*(p)  is given by 

G ~ ( p )  S ~ ( p )  (44) 
T*(p)  

where 

2(1 - U)6kj -- PkP~; (except for k = i = 3) (45) 

S~ = 2(1 - u ) -  (1 - p 2 _  p~); ( f o r k =  i =  3) 

T* = 2#(1 - u) .  (46) 

The second derivatives, * * Sghs~ and T,~k, are given by 

~2(a~6~k + 62,62k); (for g = h = 3) (47) 
S ~h,ik 

L --(6gk6~Z + 6gi6hk); (except for g = h = 3) 

T*h,ik = 0. (48) 

For an isotropic material, the expansion of G0(~'/) is up to 
the second-order terms; higher-order terms are zero. Therefore 
the series expression of the Green's function according to Eq. 
(36) is given by 

G0(x) = 1 o o o 
87r2 r (GqJooo + GoazJuo + Gij.13Jml + G~j,23Jon 

1 0 1 o 1 0 
+ ~Gq, llJzoo + ~Go,z2J020 + ~Giy,33Jooo). (49) 

The values of GO and GgOh,ik are obtained from the formula (A5) ,  
(A6) ,  (A1) ,  and (A2)  in the Appendix, given by 

2(1 - U)6gh; (except for g = h = 3 (50) 
Gg°h 

1 2 ( 1 - u ) -  1; ( f o r g = h = 3 )  

{ 6u61k + 62i62k. (for g = h = 3) 

GgOh = U(1 -- u)  ' (51) 

--6gk6hi- 6gi6hk. (except for g = h = 3) 
2 # ( 1  - u )  ' 

The expression of J0k are obtained from formulae (A13) and 
(A14) in the Appendix. 

0.10 
T 

0.08  
o 

0.06  

~ 0,04. 

E 

~ o.02 a 

~" 0.00 
0 

0.10 

E 0.08 
v 

o 0.06  

c 

0.04 

o 
'~  O . 0 2  

o 
0 .00  

0 

i i i i 

e ~ - -  Exact Solution 
(Pen & Chou. 1976) 

I I I I 

1 2 3 4. 
X-Axle & Y-Axle (m) 

i i i i 

- -  Exoct Solution 
(Pen & Chou, 1976) 

• ApproxlmQtlon 

1 2 3 4- 5 
Z-Axle (m) 

Fig.3 Approximate Green's function obtained from the present formula- 
tion for material A 
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0.10 

E 0.08 
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Exact Solut ion 
(Pan & Chou, 1976) 

• Approxlmotlon 

I I 

1 2 3 4 5 
X - A x i s  & Y-Ax la  (rn) 

i i i i 

Exact Solut ion 
(Pan & Chou, 1976) 

• Approxl rnot lon 

I 2 3 4 

Z-Axla (m) 

Fig.4 Approximate Green's function obtained from the present formula- 
tion for material B 

The Green's function is thus obtained by introducing Eqs. 
( 5 0 ) -  (51), (A13), (A14) into Eq. (49), given by 

xkx, l 
1 (3 - 4u)rki  + . (52) 

Gki(X) = 167r/zr r 2 J 

It is noted that, for an isotropic material, the present method 
leads to an analytical form identical to the exact solution. 

6.2 Anisotropic Material. The present method is appli- 
cable to materials with general anisotropy. The following is an 
illustration of the present formulation for the case of transverse 
isotropic. The computed Green's functions using the present 
method are truncated after the sixth-order terms of the series. 
The computed Green's functions are compared with solutions 
from Pan and Chou (1976) to evaluate the accuracy of the 
present sixth-order solution. 

Material properties for this case (same in the directions x 
and y) is given in Table 1 for material types A and B. Material 
A is more anisotropic than material B. In Figs. 3 and 4, G~ 
represents the displacements at various locations along the di- 
rection of the x-axis due to a unit force (1 kN) applied at the 
point of origin in the x direction. Gyy and G= carry similar 
meaning for direction y and direction z, respectively. For mate- 
rial B in Fig. 4, the present formulation with up to sixth-order 
terms yields results very close to the exact solution. However, 
for the more anisotropic material A in Fig. 3, there are small 
degree of discrepancies. To achieve a greater accuracy, higher- 
order terms need to be considered. 

7 Concluding Remarks 
A method of employing extend function has been used to avoid 

the difficulties of singularities, leading to an explicit analytical 
solution of Green's function for general anisotropic materials in 
the form of a series. Explicit expressions of the coefficients in the 
series are derived and tabulated in the Appendix up to fourth-order 
terms. The present method deduces exact solution for isotropic 
material. Numerical examples have shown that the present formu- 
lation with sixth-order terms yields results reasonably close to the 
exact solution. However, to achieve greater accuracy for materials 

with higher degree of anisotropy, higher-order terms in the series 
expansion need to be considered. 
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A P P E N D I X  

1 Evaluation of Constants auk and bukm. 
The following expressions given the relationships between 

the constants a ~  and * bukm, (in Eqs. (29) and (30)) and the 
constants ape r and bpqrst (in Eqs, (23) and (24)). 

, 
i + j + k = 0 :  a0oo=a0o4 

i + j + k = 2: aooo = a2o2 - 2a004 alOl = a103, etc. 

, 
i + j + k = 4: a4o0o = a 4 ~  - -  a202 -I- a004 

a310 = a310 -- a l l 2 ,  e tc .  

i + j + k = 0: bo*oo = boo6 

i + j + k = 2: b2~0 = b2o4 - 3b0o6 bl%o = bl14, etc. 

i + j + k = 4 :  b4~o = b4o2 - 2b2o4 + 3boo6  

b31o = b312 - 2b114, e tc .  

i + j + k = 6: b6%o = b600 - b402 + b2o4 - 

b0o6 b~lo = bslo -- b312 + bl14, e tc .  
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2 E v a l u a t i o n  o f  C o n s t a n t s  o o 0 g~h, Go',uv, G~,,uokt, and 
G~,uvklmn 

For convenience, abbreviations are defined for the adjoint 
matrix tensor, determinant, and their derivatives as follows: 

S = Sg*h(0); T = T*(0)  (A1) 

Sij = S*gh,ij(O); Tij = T~(O) ( A 2 )  

S,~t = Sgh.0'~(0); T/m = T.o~t(O) (A3) 

To... = T u...(0). (A4) 

o 0 The explicit expressions of constants ggOh, G o .... G~j.,om and 
o Go.,,o~z~, of Eq. (38) are given in the following for the order of 

n equals to 0, 2, 4: 

S 
n = 0: GgOh = -- (A5) 

T 

£~ fo" sin ~ qSdq5 = cos" d~b 

(n - 1)![ 
- - 2 r r  (n --> 0 even) 

= n!! ( A l l )  

0 (n--> 0 o d d ) .  

Further, using the property of orthogonality for a 0, given by 

r2 + o~i20gj2 + oli30gj3 = 6ij (A12) 

where r 2 = x~ + x 2 + x~, J~q, can thus be expressed as functions 
of xi as follows: 

Jooo = 27r (A13) 

XiX2 J2oo = 7r 1 - x__~ J,,o = -Tr  ( 1 1 4 )  
r 2 ] r 2 

n = 2: Ggh,ik TSa - STik 3rr ( _ x._.~ 2 3rr x~ xlx2 
= T2 ( A 6 )  J40o = - T  1 r2 j , J31o = 4 r 2 r 2 

where 

V2] V3l 
n = 4: Ggh.ajl = "~" + T-- 7 (A7) 

V2~ = T~&k + TS~kjl + &jTk~ + SiiTkj 

- (Sk,2ql + SktTij + SjtTik + STi~j,) 

V31 = 2( -TS ,kT  i, + ST, kTj, - TS,jT,, - TS,,Tkj 

+ SToTkt + ST~tTkj). (A8) 

3 E v a l u a t i o n  o f  I n t e g r a t i o n  Jm, 
The explicit expressions of Jpq, are given in the following for 

the orders of 0, 2, 4, and 6. Jpq, in Eq. (37) can be transformed in 
terms of a U by using the following equation: 

~i = Oli2 COS ~ + O~i3 sin ~b (A9) 

where m2 = cos 07~, x2), c~i3 = cos (~7i, x3) as shown in Fig. 1. 
The integrals Jpqs c a n  now be performed using the following 

two equations: 

~ cos m t h sin" ~bd~b 

( m -  1 ) ! ! ( n -  1)It 
= ( m + n ) ! !  "'27r ( m A n - > 0 e v e n )  (A10) 

0 (m v n - >  0 o d d )  

2 2 7r 2x22 x ~ x ~  
J=o=~ 1 - 7 + 3  r4 / ,  

( 3x, ~ '~ x~x3 
J211 = ~ \ rE - 1] r2 (A15) 

5~ ( x~'~ 2 x~._5~ 
J s , 0 = - - ~  - 1 - ~ f f ]  r2 , 

~ ( - 3  + 3 (x~ + x~______ D 
J33o = ~ \ r2 

x 2 x 2 \  
5 1__77~) xlX2r 2 

5~ ( x~  3 
J6o0= '~  - 1 -  r--~] , 

2 2 71" - 1  + (X~ + 3x~) x i x s )  X,X3 
J321 = ~  r2 5 r4 / r2 

 x2x3( ) 
J4,1 = ~ r2 - 1  + 7 2 -  5x~ , 

7r ( 2x~ + x________~ 6xl2x22 + x~ 5x14x~ ) (A16) 
J420 = ~ 1 r2 + r4 

The other components of Jijk can be easily obtained by rotat- 
ing xl -~ x2 ~ x3 -~ xl, i.e., jjik = Jijk(Xl ~ x2) ,  Jkji = Jok(xl 
x3), Jkij = &ji(x2 ~ x3), etc. 
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The Elastic Field Caused by a 
Circular Cylindrical Inclusion---- 
Part I: Inside the Region + 

< a 2, < xa < Where 
the Circular Cylindrical Inclusion 
is Expressed by + < a 2, 

h < x a < h  
The displacement and stress fields caused by uniform eigenstrains in a circular 
cylindrical inclusion are analyzed inside the region Xl 2 + x~ < a 2, -oo < x3 < oo 
and are given in terms of nonsingular surface integrals. Analytical solutions can be 
expressed as functions of the complete elliptic integrals of the first, second and third 
kind. The corresponding elastic fields in the region x~ 2 + x~ > a 2, -oo < x3 < oo are 
solved by using the same technique (by Green's functions) in the companion paper 
(Part II). 

1 Introduction 
Eshelby (1957, 1959, 1961) has outlined a general method 

of calculating the elastic strain field caused by an ellipsoidal 
inclusion in an infinite homogeneous isotropic elastic medium, 
when the inclusion undergoes a change of shape which in the 
absence of the surrounding material would be an arbitrary uni- 
form strain. Since then, the inclusion problem has greatly been 
developed, as pointed out by the extensive reviews of Mura 
(1987, 1988). A number of techniques have been used to deal 
with the class of problems. However, many results at present are 
not expressed in explicit form but are in the form of numerical 
solutions. 

Chiu (1977, 1978) has solved the stress field due to uniform 
eigenstrains in a cuboidal inclusion surrounded by an infinite 
elastic space and a half one, respectively, but most of the works 
have been done for ellipsoidal inclusions, for example, Seo and 
Mura (1979) have solved the elastic field in a half-space due 
to an ellipsoidal inclusion with uniform eigenstrains; Castles 
and Mura (1985) have shown the analysis of eigenstrains out- 
side of an ellipsoidal inclusion, etc. Takao et al. (1981) have 
investigated the problem of a cylindrical inclusion with uniform 
axial eigenstrain, hut they have only obtained the closed-form 
solution for the stress and strain fields along the cylindrical 
axis. Hasegawa et al. (1992) have also obtained the dosed-form 
solutions for a solid or hollow circular cylindrical inclusion with 
uniform eigenstrain prescribed in an isotropic infinite solid, but 
their elastic fields are limited to the axisymmetric case. 

The present paper derives expressions using the technique of 
Green's function to obtain the displacement and stress fields in 
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an infinite isotropic elastic medium having a circular cylindrical 
domain (of the same material) within which arbitrary uniform 
eigenstrains are given. Analytical solutions in the region Xl2'+ 
x~ < a 2, - ~  < x3 < ~ show that displacement and stress fields 
can be expressed as functions of the complete elliptic integrals 
of the first, second and third kind. In the subsequent paper, Part 
II, we following the same technique will give the corresponding 
results for the region x~ + x2 2 > a 2, - o o  < x3 < oo. 

In what follows, the summation convention over repeated 
Latin indices is adopted from 1-3. Furthermore, a comma indi- 
cates partial differentiation, thus f~ means OflOxi. In cases 
where differentiations are made with respect to x f, they are 
written in full notation. 

2 Statement of the Problem 
In the theory of micromechanics of materials (Mura, 1987), 

when an eigenstrain is prescribed in a finite region in a homoge- 
neous material, the finite region is called an inclusion. The 
elastic moduli of the inclusion are assumed to be the same as 
the matrix. If the finite region has elastic moduli different from 
those of the matrix, the region is called an inhomogeneity. 

We consider a circular cylindrical inclusion ~ with length 
2h and radius a in an infinite isotropic medium D as shown 
Fig. 1. From Mura (1987), the induced displacement field ui (x) 
due to eigenstrains e$(x)  is given by 

ui(x)=-f f. f (1) 

where Cj~m, are the elastic moduli of material and Gu(x - x ' )  
are the elastic Green's functions for the infinite medium. For 
the isotropic case, Green's functions G,~(x - x ' )  following 
Mura (1987) can be expressed in the form 

1 [ (3 - 4u)6 U 
G,y(x - x ' )  16 r#(1 - .) L bi= i 

+ (x, - x;)(xj x;)]  
i ~ C - ~ ;  ~ , (2) 
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D 

and 

xl / 

1 3  

/ 

fo 27r 133(Xl, X2, Z) = --Z 2 dq~ ~/r~(~o) + z= + 2~rlzl 

]- 112(X1, X2, Z) = sin qo cos qp~/r2(~p) + z2d~ 

+ z~ sin ~p cos ~dqo 

~/r2(qo)+ z ~ Ot Xe 

The geometry of a circular cylindrical inclusion 

where # and v are the shear modulus and Poisson's ratio of 
medium, respectively, and Ix - x ' l  = [(x~ - x~)(x~ - 
x~' )]1/2. When e ~. ( x ' )  are uniform in fL Eq. (1) by integration 
by parts can be written as 

h 
U~(X) = Cj3mnEm*n[fa, f Gij(x - xl)dx[dx~] x;=_h 

~10 "tt - h 
+ Gtm.e~n Gi~(x - x')n~adOdx; (3) 

where f~l is the area of the base of circular cylinder, ni is the 
outward unit normal to cylindrical surface, and (r ,  0, x3) 
are cylindrical coordinates, namely there are relations x[ = 
a cos 0, x~ = a sin 0 on the cylindrical surface. 

Taking into account the symmetry in directions xl,  x~, we 
only need to solve the following kinds of integrals: 

I(Xt'X2'Z)= , I x -  x'l 

( i =  1,3,  j =  1 , 2 , 3 ,  i_<j)  (4) 

(5) 

jc(xl,x2, x 3 ) = a f ~ n f  h cosOdOdx; 
-, I x -  x'[ 

C ~ r cos O(x, - x;)(x~ - x;)dOax; JTj(Xl, x2~ x3) ~ a 
30 I x -  x'l  ~ 

( i , j =  1 , 2 , 3 ,  i--<j) 
where z = x3 - x ; .  

Xa 

3 Solution of Eqs. (4) and (5) 
We first consider the integrals in (4) .  When point x = (&, 

x2, x3) satisfies the conditions x21 + x2 2 < a 2, -oo  < x3 < o% 
the integrals are explicitly performed. As shown in Fig. 2, the 
area element dx[dx~ in (4) can be written as 

dxIdx; = rdrd~ (6) 

where r = Ix - x ' l  and d~p is an arc element of a unit circle 
centered at point x. Upon integration with respect to r, we obtain 

Y: l (&,  x2, Z) = ~/r2(qo) + z2dqo - 2~-Izl 

l l l (Xl ,  X2, Z) = COS 2 qo~/r2(~o) + z2d~o 

f? + Z2 cos 2 ~odqo 27r[zl 
~/rZ(tp) + Z 2 

f ~  cos ~p r(qo)dqo 
I13(Xl, x2, z) = z ~/r2(~o) + z2 

f? - z cos go In Jr(to) + ~/r2(qo) + z2]d~o (7) 

where r(~o) is the positive root of 

(xj + r cos qo) 2 + (xa + r sin qo) 2 = a 2, (8) 

which is 

r(qo) = - x~ l  + x~ cos (tp - 6 )  

+ ~/(xl 2 + x 2  2) cos z ( ~ -  ~b) + a  2 - x ~ - x ~  (9) 

where cos ~b = &/ x~ + x~, sin ~b = x2/~xl 2 + x2 2. 
According to the properties of trigonometric function, we can 

obtain, after some manipulation, 

fo [(X1, X2, Z) = 2 ~/rl2(qo) + z2dqo - 27rtz I 

Ill(X1, X2, Z) = 2 sin 2 ~b r 12(qo) + z2dqo 

+ 2 cos 2~b cos 2 qo~/r~(qo) + z2dqo 

for + 2z 2 sin 2 ~b Vr~(qo) + z 2 

+ 2z 2 cos 2q~ f o  c°s2 ~od~o 27rlzl 
~/r~(~o) + z ~ 

for d~o ha(x1, x2, z) = 27rlz[ - 2z 2 ~/r t2(~o ) + z 2 

{io I12(xl, x2, z) = - s i n  2q5 ~r~(~o) + z2dqo 

fo - 2 cos2qo~/r~Z(~o) + z2d~p 

+ z 2 f  ~ dqo 
Jo ~r~(~)  + z ~ 

2z2f~ c°s2q°d~° ~ 
~r~(~o) + z2J 

Fig. 1 

x l  

Fig. 2 The projection of Fig. 1 in oxlx= 

580 / Vol, 62, SEPTEMBER 1995 Transactions of the ASME 

Downloaded 04 May 2010 to 171.66.16.28. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



{ f ~  co...~ qor,.____(qo)d__~ 
II3(Xt,  X2, Z) = 2z cos  ~b ~r2(~o)  + z 2 

- cos  ~o in [r~(~o) + ~/r~(~o) + z2]d~,o , ( 1 0 )  

whe re  

r t (qo)  = - x ~ t  + x~ cos qo 

+ ~ / ( x } + x ~ ) c o s  2~o + a  2 - x ~ - x ~ .  ( 1 1 )  

Le t t ing  r~(~o) = "~, we  h a v e  

a 2 -- Xl ~ - -  X2 ~ - -  t 
cos  tp = 2 ~ / 7 ~ - ~  (12) 

a 2 - x{ - x~ + t 
dip = 2t~/(t - h ) ( t 2  - t) dt ,  ( 1 3 )  

w h e r e  

t, = r~(O) = (a  - ~x~  + x~)  2, 

t2 r~(yr) (a  + ~ + 2, • = = x 2 ~  ( 1 4 )  

Thus ,  Eq. ( 1 0 ) ,  in  t e rms  of  A p p e n d i x  A,  can  fur ther  be  ex- 
p ressed  in the  fo rm 

l(x~, x2, z) 

= I~(X~, X2, Z) + ( a  2 -- x~ -- x~ + Z 2 ) I 2 ( x t ,  x~, Z) 

+ (a 2 - x~ - x~)z213(x,, x2, z,  0 )  - 2 r r l z l  

133(X1) X2, Z) = 2~rlzl - z212(x t ,  x~, z )  

-- ( a  2 -- x }  -- x2~)ZZI3(x,, x2, Z, O) 

X~ { l ' ( X l ,  X2, Z) I l l ( & ,  X2, Z) X~ + x] 

+ (a  ~ - x~ - x~ + 2 z 2 ) l ~ ( & ,  x~, z )  

+ 2 ( a  2 - x~ - x ~ ) z 2 1 3 ( & ,  x2, z ,  0 )}  - 27rlzl 

+ - x~Z - x~2 { [ a  2 + 4z 2 + 7 (Xl  z + x2~)l l ' (x~,  x2, z)  
12(x~ + xz2) ~ 

+ 4 [ ( 2 x {  + 2x~ - a 2 ) z  2 - (a  2 - x~ - x~)Z]12(x , ,  x2, z )  

+ 3 ( a  2 - x~ - x ~ ) 2 ( a  2 - x{  - x~ - 2z2)13(x t ,  xz,  z ,  O) 

+ 6 ( a  2 - x }  - x22)3Z214(Xl, X2, Z) } 

I12(Xl, X2, Z) - x lx2 { P ( & ,  x2, Z) 
x~ + x~ 

+ (a  2 - x~ - x~ + 2z2)12(x l ,  x2, z )  

+ 2 ( a  2 - x~ - x22)z213(x,, x2, z ,  0 ) }  

+ x,x2 { [ a  2 + 4z 2 + 7(x~  + x22)] l ' (&,  x2, z )  
6 ( x  2 + x22) 2 

+ 4 [ ( 2 x ~  + 2x~ - aZ)z  2 - ( a  2 - x~ - x~)2]12(x l ,  x2, z )  

+ 3 ( a  2 - x~ - x22)Z(a 2 - Xl  2 -- x22 -- 2 z i ) 1 3 ( X l ,  x2, z ,  O) 

+ 6 ( a  2 x l  2 X2~3Z214( x - - 2: ~ ~,x2, z )}  

II3(Xl,  X2, Z) -- Xl------~--'- [ ( a  2 + x~ + X22)I2(x1, x2, Z) 
x ~' + x~ 

- l l ( x l , x 2 ,  z ) ] .  ( 1 5 )  

It shou ld  be  po in ted  out  that  in tegra t ion  by  parts  for  the  der iva-  
t ion  of  113(xl, x2, z )  in ( 1 0 )  is used.  Eviden t ly ,  the  r ema in ing  
c o m p o n e n t s  are ob ta ined  by  the  fo l lowing  formulae :  

lo.(x, ,  & ,  z )  = ~ , ( x l ,  X2, Z) 

I22(Xl, X2, Z) = I l l (X2,  Xl, Z) 

I23(Xl, X2, Z) = II3(X2, Xl, Z). ( 1 6 )  

Subsequen t ly ,  let  us  cons ide r  the  in tegra ls  in ( 5 ) .  In tegra t ing  
( 5 )  wi th  respec t  to x~ and  tak ing  into accoun t  proper t ies  of  
t r i gonomet r i c  funct ion,  we can  ob ta in  

j C ( x l ,  x2, x3) 

= 2 a c o s q 5  c o s O l n [ - z + f ( x ~ , x z ,  z , O ) ] d O  h'lx:__h 

J~l~ (x~, xz ,  x3) = - 2 a z  

× f-2 Xl sin2 4, + + 3:s in2  4,) cos 4, cos 0 

- 2 a x l  cos  2q~ cos 2 0 + a 2 cos  3~b cos 3 0 t d O  h 

+ iTq2,:;SZ  : z q : ( x , ,  x . .  z, o) . ,+_,, 

J~2(Xl, X2, X3) = - 2 a z  ax2 sin 2qb + [x~ + a2 (1  - 3 s in 2 q~)] cos  ~ cos  0 
[ f 2 ( X l ,  X2, Z, O) -- z Z ] f ( & ,  x2, Z, O) 

- 2 a x 2  sin 2~b cos  = O - a 2 cos  3~b COS 3 O~dO[ h 

+ iggxT.7 )  aT--TqT(77Z 7a3 j 

f0 c°sOdO i;=_,, Jg3(Xl ,  x2, x3) = 2az  c o s  ~b f ( x l ,  X2, Z, O) + JC(Xl,  x2, x3) 

fo{ J{2(Xl, X2, X3) = - 2 a z  a ( x l  cos  ~b - x2 sin qS) sin ~b - a ( x l  sin 24, + xz cos  2~b) cos 2 0 

[ f 2 ( x l ,  x2, z ,  O) - z 2 ] f ( x , ,  x2, z ,  O) 

_ _  t d  0 h 
+ [XlXa COS ~b + a2 (1  - 3 cos  2 ~b) s in ~ ]  cos  0 + a 2 sin 3~b cos  3 0 

= z, 0) , ,+_,, 

f ]  o dOI J~3(Xl, X2, X3) = 2a  - a  s in 2 ~b + xl cos  ~b cos  0 - a cos  24, cos 2 h,= h 

f ( & ,  x2, Z, O) 

J~3(xl ,  x2, x3) = 2a  f ]  a s in ~b cos ~b + x2 cos  ~b cos  0 - a sin 245 cos  2 0 dO]~;=-h (17) 

f ( & ,  & ,  Z, O) 
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where 

f (x~,  xz, Z, O) 

= [a 2 + Xl 2 + x~ 2 -- 2a~x~ + x2 ~ cos 0 + Z 2]'/2 

Letting ~/a z + x ~  + x ~ -  2a~x~ ~ + x ~ c o s O  + z  2 = t, we, 
after some manipulation, can obtain 

a 2 + x ~  + x ~  + z  2 -  t 2 
cos 0 = 2a~x2 + x2 ~ (18) 

2t 
dO = ~(t~ _ t~)(t~ - t 2) dt (19)  

where 

h : ~ / ( a - ~ + x z Z )  2 + z  ~, 

t z = ( ( a  +~x~ +x2Z) z + z  2. 

Thus, Eq. (17)  following Appendix B can be written as 

x~ [ 2 ( a 2  + x2 + x2) jC(x~, x~,x~) = x~ + x~ 

(20) 

-- z J l ( x l ,  x2, z) + z(2a  2 + 2x~ + 2x~ 2 + z2)j2(xl, x2, z) 

- ( a 2 - x ~ - x 2 ' z J 3 r x  ] i'3=-h 21 I 1, X2~ Z, Z) 

J~3(Xl, X2, X3) X2 + X2 (a 2 + x~ + x 2) 

+ ZJl(xl, x2, Z) - z3 j2 ( x l ,  x2, Z) 

-- ( a 2 - x 1 2 - x 2 2 ) 2 j 3 ( x l , x 2 ,  z , z ) ]  1,3=_ h 

4axlz [ 2axzZj4(x~, x2, z) J~l'l(Xl, x2, x3) = x2 + x-----~ 

2 2 x 4 + XlXz + 3aEx22 
- ~x~ + xZ2 JS(x,, Xz, z) + 2a(x 2 

aZ(xZl-3x2) j7(xl ,xz ,  z)]  i,3=_h -- X2) j6(Xl ,  X2, Z) ~X~'~  X 2 

4axlz [-2ax~J"(xl,  x2, z) J~2(Xl' x2' x3) = Xl 2 "Jr 222 

2 I xz  4 + a2(x l  2 2x~) j s (x l ,  x2, z) x l x2  + 
+ 

a2(3x~-x~ )  ] i;=-h + 4ax~ j6 (x l ' x2 ' z ) -  -~-=~c~ jT(x l 'x2 'z )  

--4axzz [ a(x~ - x~)J'(xl,  x2, z) J~z(x,, x2, x3) = x~ + x~ 

+ x4~ + x~xz ~ + a2(x~ - 2x~) j s ( x l ,  x2, z) + a(x~ 

a 2 ( 3 x ! ~ f ~ )  ] i;=-h -- 3xl~)J6(Xl, x2, Z) + ~ "  + x2 2 j7(xl ,  x2, z) 

4a [ ax~ 
Jh(x , - - z )  

a(xlZ-X~) ] i'3=-h "l- Xi2j8(x1, X2, Z) -- ~ Jg(xl,  x2, Z) 

4axl X2 I J~3(xl, x2, x3) = ~ - j2(x l ,  x2, z) 

2a j9(X|,X2, Z)]i,3=_h" + J~(x,, x~, z) (21) 

It should be noted that the relations cos ~b = x~/'[~ + x~, 
sin ~b = x2/'fx-~ + x~ in the derivation of (21)  are used. Obvi- 
ously, if  variable cos 0 in (5)  is replaced by sin 0 and the 
corresponding integrals are expressed by J}(x,, Xz, x3), all the 
other components related to displacemen t field are given by the 
following relafions: 

J}(Xl ,X2 ,  x3) = 

j S ( x i ,  x2, x3) = 

J~,(Xi,  X2, X3) = 

J~z(Xl, X2, X3) = 

J~E(Xl, x2, x3) = 

J~3(Xl, x2, x3) = 

J~3(Xl, X2, X3) = 

J~3(Xl, x2, x3) = 

J~i(x~, x2, x3) = 

Jy,(xl, x2, x3) 

JC(x2, Xl, x3) 

J~2(x2, Xl, x3) 

J~l(X2, Xl, X3) 

J~2(x2, xl,  x3) 

J~3(x2, XI, X3) 

J~3(x2, Xl, x3) 

J~3(x2, Xl, x3) 

Jji(Xl,  x2, x3). (22) 

and Stress 4 The Corresponding Displacement 
Fields 

Following ( 2 ) - ( 5 ) ,  the induced displacement field within 
the region x~ + x~ < a 2, - ~  < x3 < ~ can be expressed as 

u i (x )  = 1 [(~k6i3e~m + 2/ze~) 
167r/z(1 - u) 

Z h, × (3 - 41/)l(Xl,X2, )Ix3=_ h 

-{- (~¢~j3~m "l- 2#ej3)Iij( X,, X2, Z)l~h;=-h 

+ (h6ile~m + 2/ze~)(3 -- 4v)JC(Xl, x2, x3) 

"1" (~kf~jl~m~m --1- 2~l)J~j (Xl ,  x2, x3) 

+ (k6i2e,,*,m + 2#ei*z)(3 - 4u)J'(xl,  x2, x3) 

* s + (k6j2C~m + 2t.zejz)Jij(Xl, X2, X3)]. (23)  

From Appendixes A and B, the displacement field can be ex- 
pressed as functions of the complete elliptic integrals of the 
first, second, and third kind. To determine the stress field, we 
only need to solve the first partial derivative of the three com- 
plete elliptic integrals with respect to variable x~ in terms of 
Hooke ' s  law. 

After some manipulation, we have 

OF(k) = E(k) - (1 - k2)F(k) k~ 
Oxi k( 1 - k 2) 

OE(k) = E(k) - V(k) k~ 
Ox~ k 

OH(h, k) _ kk~ [ E(k) ] 
Ox~ k z + h L 1-~ kZ In(h, k) 

h.i [hE(k) - (k 2 + h)F(k) 

+ (k 2 - h2)Fl(h ,  k)] (24)  

2(1 + h)h(k 2 + h) 
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where F(k) ,  E(k) ,  and H(h,  k) are the complete elliptic inte- 
grals of the first, second, and third kind, respectively. 

Following (23) and (24), the stress field within the corre- 
sponding region can be obtained in terms of Hooke's law. Evi- 
dently, it still is functions of the complete elliptic integrals of 
the first, second, and third kind. Because of the complexity of 
stress field, we here do not give the concrete expressions. 

5 Conclusions 

Analytical expressions for the displacement and stress fields 
caused by arbitrary uniform eigenstrains in a circular cylindrical 
inclusion are derived and given by using the technique of 
Green's function. It should be pointed out that the present solu- 
tions only correspond to the region x~ + x2 2 < a 2, -oo < x3 < 
~.  In Part II of this paper, we shall derive and give the expres- 
sions for displacement and stress fields inside the region x~ + 
x2 2 > a z, - ~  < x3 < ~.  There we will investigate the limit 
case of infinite cylindrical inclusion. From Section 4, the dis- 
placement and stress fields within the region x~ 2 + x~ < a 2, 
- ~  < Xa < oo can be expressed as functions of the complete 
elliptic integrals of the first, second, and third kind, so numerical 
solutions of the elastic field due to arbitrary uniform eigenstrains 
in a circular cylindrical inclusion can easily and numerically be 
obtained. 
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A P P E N D I X  A 

1 Evaluation of the Integrals I~(xa ,  

1 2 ( X l ,  X 2 ,  Z )  

Letting ~ = x/(t - tl)/(t2 - fi) ,  we have 

f t2 tdt 
I I (x l ,x2 ,  z) = , ~/(t + z 2 ) ( t -  tl)(tz - t) 

x2, z) and 

\ Vt: + Z']  

- - t ~ - ~  ~ t z ~ z 2  ] (A1) 

f ' :  d_t 
l~(x~,  x: ,  z )  = ~ ~/(t + z : ) ( t  t~)(t2 - t )  

where F ( k )  and E ( k )  are the complete elliptic integrals of the 
first and second kind, respectively. 

Evaluation of the Integral 13(Xl, x2, z ,  s ) 

Letting ~ = ~/(t2 - t)/(t2 - t l ) ,  we can obtain 

13(XI ,  X2, Z, S)  

= ft  t2 dt 
(t - s)x[(t + z2)(t  - tl)(t2 - t) 

2 ( t l - t 2  ~ 
= it2 s) t2x~-~Z 2 1-I - t 2 -  s ~ t z  + Z  2] 

(A3) 

where H(h,  k) is the complete elliptic integral of the third kind. 

3 Evaluation of the Integral 14(xl, x2, z) 
Following the formula 

f f ( x ) d x  
x2~/ax 2 .4- bx + c 

x[ax2 + bx + c f ( x )  b f f ( x ) d x  = -- . 
CX x~ax 2 + bx + c 

x[ax 2 + bx + c d f ( x )  
+ dx, (A4) 

J cx dx 

we can obtain 

I 4 ( X l ,  X2, Z)  

= ft  t2 dt 
t2~/(t + Z2)(t - tl)(t2 - t) 

: ( t l+ t2  _12' 13(x,,x2, z,o)_ 1 
\ 3~1t2 2Z ] 2/1t2 

where 

2t i t2  12(X1 '  X2, Z) 

+ ( t l .+z2)( t2  + z 2) 1 3 ( x t , x z , z , _ z  2) (A5) 
2tlt2Z 2 

tt = (a - ~x~ + x~) z, t2 = (a + f ~ - +  x~) 2. (A6) 

A P P E N D I X  B 

1 Evaluation of the Integrals J l ( x l ,  x2, z )  and 
J 2 ( x l ,  x2, z )  

Letting ~ = t - t ,  we have 

f t~ t2 dt 
Jl(Xl,X2, Z) = ~ 4(t22 - t2)(t 2 -  t~) 

\ t2 / 
(B1) 
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ft= dt 
j2(&,x2,  z) = 1 x/(t~- t2)(t ~ -  t~) 

t2 \ t2 ] 
(B2) 

2 Evaluation of the Integral J°(x~, x2, z) 
According to the formula 

f f ( x ) x  dx 
~ax 2 + b x +  c 

qax 2 + bx + C f ( x ) _  b f f ( x )  
a ~a q a x 2 + b x + c  

dx 

1 [ q a x 2 + b x + c d f ( x ) ~ ,  
a ,  dx 

(B3) 

we can get 

f t~ t 4 dt 
J°(x l ,  z) x2~ 

~(t~ - t2)(t  2 - t~) 

1 
= (t~ + t~)Jl(x1,  x2, Z) -- ~ J°(Xl, X2, Z) 

Then, 

jo(&, x2, z) - 

2 2  

-- tlt---'~J2(xt, x2, Z). 
2 

2(t} + t~) J ' (x , ,  X2, Z) 
3 

(B4) 

2 2 
tit2 j2 (x l ,  x2, Z). (B5) 

3 

3 Evaluation of the Integrals J a ( X l ,  x2, z, s) and 
J i ( x l ,  x2, z )  ( i  = 4, 5, . . . ,  9 )  

Letting 

= Ltl + t2 t - h 2tl 

one can obtain 

J~(x~, x2, z, s) 

= f'~ _dr 
, ( t  - s)~/(t~ - tz)( t  2 - tl z) 

4h H ( ( t z -  q ) (h  + s )  t 2 -  tj] 
= (tx + t2)(t~ - s 2) \ ( q  7 t2)(h - s) ' tl / 

_ 2 F{  \ (B6) 
(h + t2)(h + s) \ h  + t2/ 

j4(x1, x2, z) 

= f'2 dt 
,, (t 2 _ z2)~/(t22 S tz) ( t :  _ t{) 

1 [j3(xl  ' x2, z, z) - J3(Xl, X2, Z, --Z)] (B7) 
2z 

j s (&,  x2, z) 

_ 1 r '2 !_~ : a L : . d :  x~: z~_ dt 
e a ~ / ~ - ~  J,, ( t  ~ - z~)¢(d  - t~)(t  ~ - t~) 

_ a 2 + x~ + x~ J2(xa, x2, z) (B8) 
2 a f ~ - ~  J4(Xl' x2, z) -- 2a~xxZ + x22 

J6(Xl, X2, Z) 

1 if2 (t  2 - a  2 - x l  2 - x ~ - z 2 )  2 
- 4a2(x~ + x22) .,~ (7 7- -  ~-~x/~-t2 ~ -  727t  ~ - ~-) dt 

= (a2 + x21 + x22)2 j4 (x l ,  x2, Z) 
4a2(xl 2 + x22) 

2a 2 + 2x~ + 2x~ + z 2 
- j2(xl,  x2, z) 

4a2(x~ + x~) 

1 
+ Jl (x l ,xz ,  z) (B9) 

4a2(xl 2 + x22) 

J7(Xl, X2, Z) 

1 .I'2 (t z -  a e - x l  2 - x 2 2 " z 2 )  3 

: - 8a3(x~ + x22) 3/z -,, (t -7"-" z2)--~(--ti ~- t-2)Tt 7 -- t~---) dt 

1 
= 8a3(xl 2 + x22)3/2 {(a 2 + x~ + x~)3j4(xl ,  x2, Z) 

-- [Z 4 + 3 ( a  2 + x ~ + x ~ )  2 + 3 ( a  2 + x } + x ~ ) z  2] 

X j2(&, x2, z) + [3 (a  2 + x~ + x22) + 2z2]Jl(&, x2, z) 

_ j o ( & ,  x2, z)} (B10) 
j8(xl,  x2, z) 

1 p ' 2 t  z - a  2 - x ~ - x ~ - z  2 

= - 2m/7~-7~  3,, ~-t2~77=7(~ ---t127 dt 

-1  
= 2a x ~ x 2 2  Jl(x, ,  x2, z) 

a ~ + x~ + x~ + z 2 
+ J2(xl,x2, z) ( B l l )  

2m/xl 2 + x~ 

J9(Xl, X2, Z) 

1 f t h ( t Z - - a 2 - - X l 2 - -  2 ~ ) z Z ) 2 d t  7 , S  77- f-~ 
4a:(x~ + x2 2) , v t . - - - - t  ) t T - -  

1 
[J°(Xl, X2, Z) 

4a2(x~ + x22) 

- 2 ( a  2 + x ~  2 + x ~ + z  2) J ~ ( & , x 2 , z )  

+ (a 2 + Xl 2 + X2 2 + Z2)2j2(Xx, X2, Z)] (B12) 

where 

t, = ~/(a - ~ + x~) 2 + z 2, 

t2 = ~/(a + ¢ 7  + x~) 2 + z 2 (B13) 
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The Elastic Field Caused by a 
Circular Cylindrical Inclusion-- 
Part I1: Inside,the Region 

+ > a 2 < x3 < 
Where the Circular Cylindrical 
Inclusion is Expressed by< 

2 2 <  h <  h X 1 + X 2 a 2, X 3 

Analytical solutions are presented for  the displacement and stress fields caused by a 
circular cylindrical inclusion with arbitrary uniform eigenstrains in an infinite elastic 
medium. The expressions obtained and those presented in Part I constitute the solu- 
tions of  the whole elastic field, -oo < Xl, x2, x3 < 0o. In the present paper, it is found 
that the analytical solutions within the region x~ + x2 2 > a 2, -oo < x3 < oo can also 
be expressed as functions of  the complete elliptic integrals of  the first, second, and 
third kind. When the length of  inclusion tends towards the limit (infinity), the present 
solutions agree with Eshelby's results. Finally, numerical results are shown for  the 
stress fieM. 

1 Introduction 
The theory of inclusions has been successfully applied to 

composite materials including fiber, precipitate, and martensite 
problems. An extensive review of inclusion problems has been 
given by Mura (1987, 1988). However, many results cannot be 
expressed in analytical form, but are in the form of numerical 
solutions. 

Eshelby (1957, 1959) developed a method of solution for the 
problem of an isotropic ellipsoidal inclusion which undergoes 
a uniform eigenstrain in the absence of a surrounding isotropic 
matrix. Since then, the inclusion problem has greatly been de- 
veloped. A number of techniques have been used to deal with 
this class of problems. Sankaran and Laird (1976) applied Eshel- 
by's  method to deformation field of a misfitting inclusion and 
calculated radial stress component when the length of cylindri- 
cal inclusion tends to the limit case. Using a method which 
employs the Galerkin vector Chiu (1977) has obtained the ex- 
plicit form of stress field due to initial strains in a cuboid sur- 
rounded by an infinite elastic space. Other applications in this 
respect have been performed by See and Mura (1979) for nu- 
merical calculations of elastic field when an ellipsoidal inclusion 
with a uniform dilatational eigenstrain is located near the sur- 
face of a half-space, and by Karihaloo and Viswanathan (1988) 
for the elastic field of a partially debonded ellipsoidal inclusion 
and by Lee et al. (1992) for the stress field of a sliding circular 
inclusion. 

Takao et al. (1981) and Hasegawa et al. (1992) have also 
investigated the problem of cylindrical inclusion due to uniform 

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY 
OF MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED 
MECHANICS. 

Discussion on this paper should be addressed to the Technical Editor, Prof. 
Lewis T. Wheeler, Department of Mechanical Engineering, University of Houston, 
Houston, TX 77204-4792, and will be accepted until four months after final 
publication of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS. 

Manuscript received by the ASME Applied Mechanics Division, Sept. 13, 
1993; final revision, Mar. 17, 1994. Associate  Technical  Editor: D. M. Barnett. 

axial eigenstrain, but they have obtained the closed-form solu- 
tion only for the axisymmetric case. Using the technique of 
Green's function, this paper obtains analytical solutions for the 
displacement and stress fields caused by arbitrary uniform eige- 
nstrains in a circular cylindrical inclusion. These solutions can 
be expressed as functions of the complete elliptic integrals of 
the first, second, and third kind. The present results are com- 
pared with previous studies. Finally, numerical results are 
shown for the stress field. 

In what follows, the summation convention over repeated 
Latin indices is adopted from 1-3. And a comma indicates partial 
differentiation, thusfa means Of/Oxi. In cases where differentia- 
tions are made with respect to x[, they are written in full nota- 
tion. 

2 Solution of Eq. (4) in Part I 
As shown in Fig. 1, when point x = (Xl, x2, x3) is located 

within the region x~ + x~ > a 2, -oo < x3 < ~, the area element 
dx~dx~ in (4) of Part I can still be expressed as 

dx~dx~ = rdrd~o (1) 

where r = [x - x ' l  and &p is an arc element of a unit circle 
centered at point x. To differentiate from the symbols of Part 
I, we herein use the symbols /-(x~, x2, z) and r~i(Xl, x2, z) to 
replace I(Xl, x2, z) and l•(Xl, x2, z) of Eq. (4) in Part I. Upon 
integration with respect to r, we have 

fro 2 2 r2(T) 
1 

~l(Xl, x2, z) 

f~ °21 .... r~(~l d" z~ f~ ~ c°s~ ~; ~ .... = cos 2 ~ o ' ~ ~ 1  (~) ~ + (~)dto 

f~o 2 l r2(~°) 133(Xi, X2, Z) = --Z 2 1 - - ~  (~)d~o 
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X2 

a 

d~ 

X1 

Fig. 1 The projection of Fig. 1 in Part I on plane OXlX 2 when point x is 
located within x~ + x= = > a ~, -o~ < xa < ~o 

f ~  °2 . ~  r2(~) . /~2(xl, x2, z) = sin ~0 cos ~p~r ~ + z 2 ~=~,~)a~o 
i 

+ Z 2 ~ i  2 sin '~° c°S q° r2(~°) d~o 
r=rl(~O) 

/h(Xl, X2, Z) = Z .I *~ /5--751r cos ~ol ~2~*~ d 

f l  2 ./~"""7"'"~-, r2(~P) -- - z cos qo In (r + Vr  + z~)l .... (~)aqo (2) 
1 

where z = x3 - x~ and rl(qO) and r2(qo) are two roots of equation 

(& + r cos qo) 2 + (x2 + r sin ~0) 2 = a 2 (3) 

which are 

rl,2(~o) = --~x~ + ~2 COS (~0 -- 05) 

Vx/(x~ + x~) cos 2 (~o - 05) + a 2 - x~ 2 - x2 2 (4) 

where cos 05 = x,/~x~ + x~, sin $ = x2/~x~ + x~. It should be 
noted that the lower and upper limits ~o~ and ~o2 of integrals in 
(2) are the angles between the axis xl and two tangents of 
coordinates (Xl, xz) relative to the circle, respectively (as shown 
in Fig. 1), and the incremental direction of variable ~o is defined 
as the counterclockwise one. 

Next, let us determine the lower and upper limits ~o~ and ~p2 
of  integrals in (2). According to the knowledge of  analytic 
geometry, we have 

4X~ + X2 2 -- a2x2 -- axl  
tan qO 1 ffXl 2 + X2 2 -- a2xl + ax2 

~/x~ + x~ - a2x2 + axl 
= (5)  tan tp2 ~/x~ + x~ - a2xl - ax~ 

where qOz - ~o~ satisfies the relation 0 < ~02 - ~o~ < 7r. 
To solve the integrals of (2), we introduce the variable trans- 

formation ~ - q5 = 0. Hence, Eq. (2) can further be expressed 
in the form 

1(21, X2, Z) = V' T ~ r2(0)r=vl(0)cA,tt 

[o~-, ,/Y-7-~ l ;~(°,l(o dO ll~(X], x2, z) = sin 2 05 " ~ - *  =, 

r % - 4  + cos 205 cos2 0 ~-~--~Z2l r~(o) .m r=rl(0)t~ 

rp2 
_4~ 

- sin 205 sin 0 cos Of~-~ -~[  r~(°) .~,9 r= Yl ( 0)t~v 

.ffYT-5 dO • Jr Z 2 sin 2 4) o~,-~ ~/r z + Z 2 r=gl(0 ) 

+ z 2 cos 205 r ~-'~ c°s2 0 r~(o) dO 
tl ~o I -q~ ~ Z  2 r=~-l(0) 

- z 2 sin 205 f ~ - ' ~  sin 0 cos 0 ~(0) dO 
~ol-4~ ~ r=rl(O) 

L~(x,, x~, z) = - z  ~ ff~-~ 1 ,~(o~ 
o ~-~  t ~ Z  2 ~=r~¢o) dO 

_ _~/['~-7-~--~, _21 r2(0) 
[ r%-4 '  ~/r2 + Z2 r=vt(o,dO ~2(xl, x2, z) = - s i n  05 cos 05t_o~,-~ 

+ z2 r ~,2-,~ 1 5 (0) -] _ ~  dOI 
I/~ot-~b ~/r 2 -~ Z 2 r=Fl(0 ) J 

+ sin 205 cos 2 dO 
0 ~ol-4 r=rl(O ) 

Jr  Z 2 sin 205 r *z-* c°s20  ]1 r2(°) 

r% 
_¢ 

+ cos 2 5 sin 0 cos 0 , fT+-~ l  r~°) -'o r=Yl(O)t.~ 

[~'~-~ sin_O cos O, ,~,o, 
+ z z cos 2~ ~, -4 ,  ~ ~=v,{off 0 

[r~=-* r c o s O  "(°, 
/h(x .  x~, z) = z cos 05L,'~1-~ ~ - ~  ~=.,(o) d°  

r ~°2-da 2 F2(o) ] - cos 0 In (r + ~ - ~ z Z )  lr=~,(e)dO 
t, ~o I _4) 

[ f~2-~  r s i n O  5(°) dO 
- z sin 05L"~,-,~ ~ ~=~,~e~ 

r ~ - ,  ,2(0) dO] - a~o,-6 sin 0 in (r + ~ Z 2 )  lr=r,(O) j (6) 

where 

v,,2(0) = - ~ x ~  ~ + x~ cos  0 

¥ ~ / ( x ~ + x ~ ) c o s  20 + a  2 - x ~ - x ~  z. (7) 

To guarantee the one-to-one correspondence between coordi- 
nates (xl, Xz) and angles 05, ~p~, and qoz, we define the ranges of  
angles 05 and qOl as 

7r 
- - <  qol < 7r when - r r  ~ 0 5  < 0 ,  

2 

7r 
- <  ~ol < 27r when 0 < 4 ) < r r .  (8) 
2 

Following the knowledge of analytic geometry, we easily prove 

7r 37r 
- < ~ o ~ - 0 5  < z r  < q o 2 -  05 < - - .  ( 9 )  
2 2 
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w h e r e  

Le t t i ng  ~,2(0) = ~ ,  respect ively ,  we have  

a z - x ~  - x ~  - t 
cos 0 = 2 ~ / ~ 1 - 7 ~  (10) 

a 2 -  x ~ -  ~ + t 
dO = ± 2t~(t - h)(h - t) dt, (11) 

h = ( a -  ~ + ~ ) 2 ,  t2 = (a + ~ - + x ~ )  ~. (12) 

Clear ly ,  (11)  takes  a pos i t ive  s ign w h e n  (7r/2) < 0 < 7r, bu t  it 
is nega t ive  w h e n  rr < 0 < (37r/2). Thus ,  (6) can  be  rewr i t ten  
a s  

I ( X l ,  X2, Z) 

= f s  t~ + ( a 2 - d - x ~ + z ~ ) t +  (a : - ~ - x ~ ) z  2 

1 2 d ( t  + zZ)(t - h)(h - t) 

G~(x,, x~, z )  = - Z  ~ f z  t + a ~ - x~ - x~ dt 

l-n(xb xz, Z) = sin 2 49[Rxl, x> z) - / ;3~(xl ,  &,  z)] 

s in 249 f z  g(t)dt 
+ 8(x~ -F X~) ~ t~it + Z 2 

COS 249 f~  f(t)dt 
+ 8(x~ + ~----------) , t~((t + Z2)(t - h)(tz - t) 

ilz(Xl, Xz, Z) = sin 49 cos  49[~3(x1, x> Z) - T(x~, &,  z)] 

cos  249 f z  g(t)dt 
8(x~ + ~ )  ~ ~ ¢ i . - ;  z: 

sin 249 f~  f(t)dt 
+ 8 ( ~  -F ~ )  ~ t ~ ( t  + z~)~  7 h ) ( h  - t) 

dt 

z 
~3(xl, x~, z) 2x/x~ + x~ 

[ X cos  49 , ~ / ( t + z ~ ) ( t - t , ) ( t a - t )  dt 

- - z l n ( r + ~ + z  2) 
2 

x cos (49 - 0 ) 1 7 ~ ° & o ~ 1 ~ , %  ( 1 3 )  

w h e r e  

.rio = P +  (~  + ~ -  a 2 + 2z2)? 

- (a  2 - x~ - x~)(a 2 - x~ - x~ + 2z2)t 2 

+ (a 2 - x~ - ~)Z(a2 - .~ - x~ - 2z2)t 

+ 2(a  2 - x~ - x~)3z 2 

g(t)  = t 3 + 2z2t 2 - (x~ + x~ - a~)~t - 2(x~ + x~ - aZ)ZzZ (14) 

F(t)dt = F(t)dt + F(t)dt + F(t)dt + F(t)dt 
1 i 1 I 

fr.~ G( t )d t=  £ i  ~ G ( t ) d t -  ; ~  G( t )d t+ f l  ~ G ( t ) d t -  f l  3 G(t)dt 

(15) 

and  

71,~ = [ - ' J ~  + x~ cos (~ l . :  - 49) 

-'1'- "~/(X'~ -1- X~) COS z (~112 - -  lib) -1- a 2 - x~ - ~12 

~ = [ - ~ X l  ~ + x2 ~ cos (~o~,, - 49) 

- ~ / ( ~ + ~ ) c o s  2 ( ~ o 2 a -  &) + a  2 - ~ - ~ ] z .  (16) 

Fol lowing_(5)  and  the  re la t ions  cos  49 = Xl/'/-~l + ~ ,  sin 49 = 
XJ~l l  + ~ ,  we can  p rove  that  71 = t: = t3 = t4 = ~ + ~ - a 2. 
Thus ,  one  easi ly f inds t h a t / ( & ,  &,  z) and  ~j(xb x2, z) in  Eq. 
(13) can  be  expressed  by  l(xb xz, z) and l~j(xb x2, z) in  Par t  I. 
The i r  concre te  re la t ions  are as fo l lows:  

l(xl, x> Z) = l(xb x2, Z) + 2~lzl = l l ( x l ,  X2, Z) "k- (a  z -- X~ 

-- X~ "1- Z2)I2(Xl, X2, Z) + ( a  2 - -  ~ l  - -  x22)Z213(Xl, x2, z ,  O) 

133(X1, X2, Z) = 133(Xl,  X2, Z) - -  27r I zl 

= -z212(x,, x> z) - (a 2 - x~ - ~2)z213(Xl, x2, z, O) 

~11(Xl,  X2, Z)  = I l l ( X 1 ,  X2, Z) "l- 27rlzl 
x~ +x~ 

X [ I ( x 1 ,  X2, Z)  - -  133(Xl,  22 ,  

d - ~  
+ { [a 2 + 4z 2 

12(x~ + ~ ) z  

z)] 

+ 7(x~ + x~)]II(xl, Xz, z) 

+ 4[(2x~ + 2x~ - a2)z 2 - (a 2 - x~ = x~)2]12(xb x2, z) 

+ 3(a  2 - ~1 - x~)2(a 2 - x~ - x~ - 2z2)13(xl, x2, z, O) 

+ 6(a  2 - x~ - x~)3z214(xb x2, Z)} 

~2(Xi, X2, Z) = ll2(Xb X2, Z) = xlx-"---'--L--" 

× [ /~ (Xl ,  x : ,  z )  - / ~ x l ,  x2, z)]  

+ xlx2 {[a 2 + 4z 2 + 7(xl z + x~)]ll(xl, x2, z) 
6(x~ + x~) 2 

+ 4[(2x~ + 2x~ - a2)z 2 - (a  2 - x~ - x~)2]la(&, x2, z) 

+ 3(a  2 - x~ - x~)2(a 2 - x~ - x~ - 2z2)13(Xl, x2, z, O) 

+ 6(a  2 - x~ - .X~)3Z214(Xi, X2, Z)} 

113(Xl,  X2, Z) = /13 (Xl ,  X2, Z) -- XlZ 
d +x~ 

× [(a 2 + x~ + x~)12(x, &, z) - l l (&, &, z)] ( 1 7 )  

whe re  II(&, x2, z), 12(&, x2, z), 13(Xl,  X2, Z, S) and  14(xl, x2, Z) 
have  a l ready been  g iven  in A p p e n d i x  A o f  Par t  i. T h e  r e m a i n i n g  
c o m p o n e n t s  can  be  ob ta ined  by  the  fo l lowing  formulae :  

/~(xl, x~, z) =/~,(xl, x2, z) 

~:(xl, x:, z) =/h(x~, xl, z) 

/~3(xl, x2, z) =/~3(x~, x,, z). (18) 

Thus ,  Eqs.  (4) in  Par t  I are ent i re ly  de te rmined .  A c c o r d i n g  to 
Par t  I we f ind that  the  in tegra ls  o f  Eq. (5) are no t  re la ted  to the  
pos i t ion  of  po in t  x. Hence ,  w h e n  po in t  x is loca ted  wi th in  the  
reg ion  x~ + x~ > a 2, - ~  < x~ < % the  co r r e spond ing  in tegra ls  
of  (5) can  still be  expres sed  as (20) and  (21) in  Par t  I. 

3 The Displacement  and Stress Fields 
Fo l lowing  Eqs.  (2) and  (3) in Par t  I, the  i nduced  d i sp l acemen t  

field wi th in  the  reg ion  x~ + x~ > a 2, - ~  < x3 < oo can  be  
expressed  in the  fo l lowing  form:  
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Fig. 2 Var ia t ion  of  normal  s t ress  ~r~ a long the  x~-axis u n d e r  the  condi -  

t ion e ~  = e0, e~t = e ~  = e~= = e;'z = e ~  = 0 

3.5 
3.0 

~1~ 2.5 1] =0r3 

~~t~'"-,k ~o h/~= 

0. I 
-0'50 1 2 ' ' 

Fig. 4 Var ia t ion  of  normal  s t ress  ~ a long the  x~-axis u n d e r  the  condi -  

t ion ~'~ = e ~  = e ~  = e0, e~'= = e~'a = era = 0 

1 
u , ( x )  = - 

167r#(1 - v) 

X [(k~i3~m$/ + 2/ze~) (3  - 4v)[(xi, X2, Z) [xh'3=-h 

h, @ (X~j3em$m + 2]£ej~)~/j(XI, X2, z)l,,°-,, 

+ (k~aem*m + 2/Ze~)(3 -- 4v)J~(x], x2, x3) 

+ (X~jl~m + 2~j~)J~(x1, X2, X3) 

+ (k3ne~,. + 2/.ze]~)(3 - 4v)J*(&, x=, x3) 

+ (k6pe~= + 21zg.~)J~(x,, x=, x3) ]. (19) 

Since the first partial derivative of the complete elliptic inte- 
grals of the first, second, and third kind are obtained (see Eq. 
(24) in Part I), the corresponding stress field is in reality ex- 
pressed by explicit formulae. Due to the complexity of the stress 
field, we here do not give its concrete expressions. 

4 A n  Inf in i t e  C y l i n d r i c a l  I n c l u s i o n  

To obtain the solution of the displacement and stress fields 
for an infinite cylindrical inclusion (h --* oo), we first give the 
series expansions of the complete elliptic integrals of the first, 
second, and third kind as 

F(k)  -~ 1 "+ ( 1  ~ 3"~2k4 . . .  

4 ] 
E ( k ) = ~  l -  \ 2 . 4 ]  3 "' 

H(h~,k) = ~  + ~  1 - 

+ 8h-~ - 1 + + . . .  

r[ 3k2 + ] (20) 1H(-k2, k ) = ~  1 + ~  . . .  

where hi is a constant. From the results in Part I and Eqs. (17) 
and (20), we can determine the displacement and stress fields 
for an infinite cylindrical inclusion. When h ~ % we, after some 
manipulation, have the following formulae: 

(i) For the interior points, 

l(Xl, X2, Z) I7,=--= = O, I,~(X,, X2, Z) I;~=--= = 0 

J~(&, x2, x3) = J~3(Xl, X2, X3) = 271"Xl 

J~l(Xl, x2, x3) = -J~2(Xl, x2, x3) = -TrXl 

Jh(x , ,  x=, x 9  = - ~ x ~  

J{3(&, x2, x3) : J~3(xl, x2, x3) = 0 (21) 

u , ( x )  

= 2(1 - 2v)he~m + (5 - 8v)~e~ - #¢~ xl + (3 - 4V)E~ X2 
8#(1 -- V) 4(1 -- V) 

u3(x) = q*~] + ef3x2 (22) 

3# # #v 
~ . ( x ) =  - - < * l  - - E ~ = - - - e ~ 3  

4(1 - v) 4(1 - v) 1 - v 

/ ~ 2  #v  
O'33(X ) -- (El$1 -I- E~2 ) -- - - r - ~ 3  

1 - v  1 - v  

1o[ 
o 0,5 

I 
0,0 

-0.5 

y =0.3 

1 h/a= 

I I I x a / h l  
I 2 3 4 

Fig. 3 Var ia t ion  of  normal  s t ress  or1, a long the  xa-axls  u n d e r  the  cond i -  

t ion e ~  = So, el l  = e ~  = e~= = e~'3 = e ~  = 0 

4[h/a= 

3[___..-0 5 
I / ~ v=o.3 

. ~ 2  10 

/ 5 2  10 .5  

Fig. 5 Var ia t ion  of  normal  s t ress  ¢11 a long the xa-axis u n d e r  the  condi -  

t ion e;l = e~. = e ~  = so, e~= = ~ a  = e ~  = 0 
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0"i2(x) - ~ G?2 
2(1 - u) 

0"13(x) = --#Gl*a, (23) 

and other components u2(x), 0-22(x), and 0"23(x) are obtained by 
the corresponding exchanges of (Xl, x2), (G~i, e~2), and (el*3, 

~5). 
(ii) For the exterior points, 

r(x,, x2, z ) l ~ : - ~  = 0 , /b(Xl ,  x2, z ) l~= ~ = 0 

2a2x l Tr 
J~(Xl, x2, x3) = J~3(Xl, x2, x3) = - -  

x, ~ + x~ 

J~l(Xi ,  x2, x3) = -J~2(xl ,  x2, x3) = 7rA(xI, x2) 

J~2(Xl, x2, x3) = 7rB(Xl, x2) 

J~3(Xl, 22, x3) = J~3(Xl, x2, x3) = 0 (24) 

1 ['2(1 - v)(3 - 4v)a2xl 
Ul(X) = 8(1 - u)(1 - 2u) [ x--~-~22 

+ (1 - v)A(Xl, x2) + vB(x2, Xl)JGi*I 

1 [2U(3 -- 4u)a2xt 
+ 8(1 - u)(1 - 2u) L ~c{+-x-~ + uA(xi, x2) 

-- (1 - u)B(x2, Xl) G.!,'2 + 8(1 - u)(1 - 2u) 

[2 (3:  _4 ,)a xl 1 
× 1_ x~ + x~ + A (x .  x2) + B(x2, Xl)]G3*3 + 8(1 - u - - - - - )  

× [B(xi, x2) + 2(3-4u)a2x2~ + ~ A(X2, Xi)]E~'2 

aZxl a2x2 (25) 
u~(x) - x~ + x-----~ d ;  + x ~, +------~ G~ 

where 

--4a2u [ ,4a2u 2 --  a2u 2 _ u2u 2 _ u 4 

A(u, v) a2 _ u2 _ v2 [ (u 2 + v2)2 

+ a2( u2 - 3v2)(a 2 + 3u 2 + 3v2)] 

4(u z + v2) 3 J 

-4a2v [3a2v a _ 7a2u ~ - 1) 4 ..1- u 4 

B(u, v) aZ _ u~ _ vz [ ~('~7"~ ~)~ 

a2(v ~ - 3uZ)(a ~ + 3u ~ + 3 v ) ]  
4(U 2 + V2) 3 J 

The component u2(x) can as well be obtained by the exchanges 
of (Xl, x2) and (e~*l, G~'z). Because the expressions of  the stress 
field are very complex, we do not give its concrete form. From 
(22) and (23) we find that the present results coincide with 
Eshelby's  solutions. 

5 Discussions and Conclusions 
(i) In comparison with the solutions of Takao et al. (1981) 

and Hasegawa et al. (1992), the analytical expressions of the 
present paper have generality, since the problem which is con- 

sidered by the present work can be nonsymmetric and eigens- 
trains in the circular cylindrical inclusion can be arbitrary con- 
stants. 

(ii) From the solutions shown above and Part I, we can find 
that the whole elastic field is expressed by the complete elliptic 
integrals of the first, second, and third kind. When h ~ o% the 
stress field within the circular cylindrical inclusion is uniform 
and the stress components outside one only are some elementary 
functions. 

(iii) From Appendixes A and B in Part I and the correspond- 
ing formulae ((15) and (21) in Part I a n d S ) ) ,  we can conclude 
the following: (a) when x3 ~ ±h,  VXl 2 + x2 z :x a or ~ -  T x~ 
a, x3 q: ±h,  there is not singularity for the elastic field; (b) when 
x3 ~ ±h,  x/~ + x22 ~ a, we, after some manipulation, can find 
that the elastic field has logarithmic singularities. 

(iv) As an interesting particular example, we calculate the 
stress fields in two kinds of cases of which eigenstrains e~ are 
G~3 = e0, Gi~i = e~2 = el~2 : G~3 : G~3 : 0 and el*t = G~2 = G~ = 

e0, e~*2 = q*3 = e~3 = O, respectively. Figures 2-5 show the 
distributions of  stresses 0"33 and al l  caused by the circular cylin- 
drical inclusion. The figures are sketched in nondimensional 
form for Poisson's ratio v = 0.3. From Figs. 2 and 4, one can 
see the variations of stress 0-33 due to the relative positions x3/ 
h under the condition of h/a = 0.5, 1, 2, 5, and 10. It can be 
observed that the stress component 0"33 have the largest values 
at x3/h = 0 and decrease as x3/h becomes larger. In addition, 
we can also find that the larger h/a, the faster the decreasing of  
s t r e s s  0"33. 

(v) Figure 3 shows the variations of stress 0"11 due to eigens- 
trains e~3 = Go, e~*l = e~2 = e~*2 = e~*3 = e~3 = 0 under the condition 
of h/a = 0.5, 1, 2, 5 and 10. It can be found that the stress 0-11 
is still continuous at xJh = 1 and when h/a = 5 and 10, the 
variations of 0-11 are not the monotone decreasing. From Fig. 
5, it can be observed that when eigenstrains eft and e~z are not 
zero, the normal stress 0-1~ at xJh = 1 are not continuous. 
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Development of Generalized 
Plane-Strain Tensors for the 
Concentric Cylinder 
A pair of  two new tensors called GPS tensors S and D is proposed for  the concentric 
cylindrical inclusion problem. GPS tensor S relates the strain in the inclusion con- 
strained by the matrix of  finite radius to the uniform transformation strain ( eigen- 
strain), whereas tensor D relates the strain in the matrix to the same eigenstrain. 
When the cylindrical matrix is of  infinite radius, tensor S reduces to the appropriate 
Eshelby's tensor. Explicit expressions to evaluate thermal residual stresses err, ao 
and az in the matrix and the fiber using tensor D and tensor S, respectively, are 
developed. Since the geometry of  the present problem is of  finite radius, the effect of  
fiber volume fraction on the stress distribution can be easily studied. Results for  the 
thermal residual stress distributions are compared with Eshelby's infinite domain 
solution and finite element results for  a specified fiber volume fraction. 

1 Introduction 
Eshelby (1957) proposed a tensor in his celebrated paper 

which relates the strain in an ellipsoidal inclusion constrained 
within an infinite domain to the strain when the same inclusion 
is placed outside of the matrix without any constraint (eigen- 
strain). For the case of elastic isotropie inclusion of ellipsoidal 
shape with uniform eigenstrain, Eshelby tensor can be expressed 
in terms of geometry and elastic properties of the fiber. In this 
case, the inclusion is embedded in an infinite domain. In this 
paper, we consider an infinitely long circular cylindrical inclu- 
sion embedded in a coaxial cylindrical matrix of finite dimen- 
sion. For this problem, we propose a pair of new tensors called 
Generalized Plane Strain (GPS) tensors, S and D. The tensor 
S, relates the strain in the inclusion constrained by the matrix 
to the eigenstrain, and the tensor D relates the same eigenstrain 
to the strain in the matrix. When the cylindrical matrix is of 
infinite radius, the S tensor reduces to the appropriate Eshelby 
tensor. Since GPS tensors are derived for the cylindrical inclu- 
sion problem they can be easily applied to inhomogeneous in- 
clusion problems for finite elastic body using the equivalent 
inclusion method. One such application to inhomogeneous in- 
clusion problem is the evaluation of spatial distribution of ther- 
mal residual stress/strain in the fiber and the matrix in unidirec- 
tional fiber-reinforced composites. Such an analysis is needed 
in the study of damage in the interracial regions of composites. 

Eshelby tensor has been used to evaluate the effective elastic 
properties using self-consistent methods (Hershey, 1954; Kro- 
ner, 1958; Kerner, 1956; Hill, 1965; Budiansky, 1965). The 
method was extended to a three-phase generalized self-consis- 
tent scheme by Chfistensen and Lo (1979). Nemat-Nasser 
(1981) and Weng (1987) used the Moil-Tanaka approach to 
evaluate the elastic properties of nondilute composite systems. 
Lug and Weng (1989) later proposed a new tensor by consider- 
ing the three-phase model of  fiber, matrix, and effective com- 
posite. In all the above research works (except the latter) the 
Eshelby tensor was used. They evaluated the effective properties 
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of composites with finite fiber volume fraction, hence finite 
matrix radius, which is not consistent with the assumption of 
infinite matrix in the Eshelby's approach. The proposed GPS 
tensor can be used in the determination of effective stiffness 
properties of the composites using self-consistent methods. 
Since the GPS tensor has been developed for finite radius, it 
can replace the Eshelby tensor in the evaluation of bounds and 
effective properties of composites. 

2 Formulation of the Problem 

Let us consider two concentric circular cylinders of radius r0 
and R as shown in Fig. 1. The inner cylinder represents the 
inclusion and the outer cylinder represents the matrix. We con- 
sider a cylindrical coordinate system (r ,  0, z) with origin at O 
as shown in the Fig. 1. The inclusion f~ is subjected to axisym- 
metric eigenstrain * e U ( r ) ,  given by 

e~(r)  = ¢5o{er*(r ) + (eL*(r) - er*(r))~,.} 

where the subscript T refers to the transverse direction and L the 
longitudinal direction. Both inclusion and matrix are assumed to 
be elastic isotropic materials. Since the composite is infinitely 
long, the problem is generalized plane strain in nature. Let the 
radial, tangential, and longitudinal displacement components be 
u, v, and, w respectively. Due to the axisymmetric nature of the 
problem, u is a function of r only, v is zero, and w is a function 
of z only, that is, 

u = u ( r ) ,  v = O, w = w ( z ) .  

Since this is a generalized plane strain (GPS) problem, we may 
set 

w = w ( z )  = e o z ,  

where eo is an unknown constant. The strain components in the 
cylindrical coordinate system in terms of displacements are 

du(r) u(r)  dw 
e.r = - -  , e g o = - - ,  ez~ = - -  = eo. (1) 

dr r dz 

Since all the shear components are zero, the stress and strain 
components ~Zrr, ago, azz, and err, ego, e~z are denoted by a ,  e0, 
az, and er, e0, e~, respectively, for the sake of simplicity. 
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Fig. 1 Schematic illustration of the composite 

T 

L_L 

The stress-strain relations are 

a, = 2#(e, - e l )  + k(er + eo + e~ - 2er* - e~*) (2) 

for i = r, 8, z, where k and # are Lain6 constants. 
The stress equilibrium equation in a cylindrical coordinate 

system is 

d~rr crr  - -  O'O 
+ - -  = o, (3) 

dr r 

subject to the boundary condition 

a ~ = 0 ,  for r = R, (4) 

and longitudinal equilibrium condition 

f f  crzrdr = ( ) O. 5 

Substituting (2) and (1) into equilibrium Eq. (3) yields 

d2u 1 du u 
- -  + = F ( r ) ,  (6) 
dr 2 r dr r 2 

where 

1 d [er*(r) + veL*(r)l (7) 
F(r)  - 1 ~  dr 

Thus, Eqs. (6) and (7) are the governing field equations for 
the generalized plane-strain inclusion problem in terms of radial 
displacements u with e r* ( r )  and eL* ( r )  as the specified eigen- 
strains in the transverse and longitudinal directions. The solution 
to the above ODE can be obtained using the Green function 
solution method as follows: 

1j,]  {~* + v~*} (r  0 . . . .  O + d ~ ,  ( 8 )  u(r) br + 1 u r 

where b is an unknown constant and will be determined by the 
boundary condition (4) ,  and ( r  - ~)~. is the Heaviside step 

" function 

1, i f ( <  r, 

( r - ~ ) ~ _  = 0, i f~  > r. 

The strain components er and ee can be obtained from (1) 
and (8) 

er=b+er*+veL * f]{e +veZ}¢(r o - -  - -  - { )+d{ ,  (9)  
1 - u  i - 7  r 2 

ee . . . .  b + ~) +d,~. (10) 
r 2 

From the stress-strain relation (2) ,  the boundary condition (4) 
and the longitudinal equilibrium condition (5) ,  b and eo can be 
determined as 

1 1j-] 
b = 1 - v R  2 {(1 - 2v)er*(,~) - VeL*(~)l~d~, 

Substituting the constants into (9) ,  (10) ,  and (1) ,  a general 
expression for the strain e~, i = r, 0 can be written as 

ei(r) = Gir(r, {)er*({) + G,L(r, { ) e ~ ( { ) d {  ( l l )  

with 

( l  - 2v'~ ~ ~ ( r -  ~)°+ ~ 6 ( r -  ~) 
G~r(r, ~) = \ 1 - v ] R 2 (1 - u)r  2 + (1 - v ) r  ' 

( - v  ) ~ rE(r -E)°+ v ~ 6 ( r - ~ )  
GrL(r,~) = ~ R2 (1 - v ) r  z + (1 - v ) r  ' 

( 1 - 2 v ~  : + :(r-:)°+ 
Got(r, : )  = \ 1 - v / R'-: (1 - v)r  2 ' 

( - v  ) ~ v ~ ( r - ~ )  ° 
Go~(r,~)= ~ - u  ~ + ( 1 - u ) r  z '  

2 
GzT(r, ~) = O, G~L(r, ~) = ~ i  ~, (12) 

where 6 ( . )  is the Dirac delta function. Equation ( 11 ) describes 
the solution to the generalized plane-strain inclusion problem. 
At this stage the eigenstrain in the inclusion can be a function 
of the radius. For this case, the stress components are found to 
be 

2# f f  ( 1  (r-z.~)°+~ {er*({)+veL*({)}{d{,  ar(r) = ~ 1~ 2 r2 ] 

as(r) = 2#l_vj0fR( 1 ~ +  (r-:)°+r ~ 6(r-{))~. 

x {~*(~) + ve,~(~)}~d~, 

az(r) = 1 - v 

x { . ~ * ( ~ )  + ~ ( ~ ) } ~ d ~ .  ( ]3 )  

3 D e v e l o p m e n t  of  GPS Tensor  

If the eigenstrains er* and eL* are assumed to be uniform 
(constant) in the inclusion f~ and zero in the matrix D - ~,  
then ( 11 ) reduces to 

f: f: ei(r) = Gir(r, ~)er*d~ + GiL(r, {)eL*d{ 

£ :o 
The above equations can be rewritten by defining a pair of new 
tensors, called Generalized Plane Strain (GPS) tensors, D and 
S. D is defined in the matrix (R > r ~ ro) 

D U = Go(r, ~)d(.  

In the inclusion, r ~ ro, we define the tensor S as 

:o o S U = Gu(r, ( ) d ( .  

We note that in the domain of the definition of D, Gi:(r, ~) is 
in the matrix and in the definition of S, Gu(r, ~) is restricted 
to the inclusion. We calculate each component of GPS tensor 
in detail, 

Journal of Applied Mechanics SEPTEMBER 1995, Vol. 62 / 591 

Downloaded 04 May 2010 to 171.66.16.28. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



1_2  
D.r - 2-( { --- v )  + - -  2(1 - v)  

ro'°+}, 

Dr L - -  2 . ~ -  u) + 2(1 - u - - - - - - - )  

Dot = 2(1 - ~ : )  + 2(1 - u - ' - ' - - - - )  

x {, + [( ->)=- , l . - ,o ,O}.  

- -  m l )  

Doz. 2 - " 7 ~  + 2(1 - u - - - " ' ~  

Dzr=O,  D~L= • (14)  

S,.r = m 
2(1 - v)  2(1 - v)  ' 

S~L - - -  
V II  

2(1 - v)  2(1 - v)  ' 

SeT a m +  
2(1 - v)  2(1 - v)  

5 o  L - _ _  
LI l /  

2(1 - v)  2(1 - v)  ' 

Szr(ro)=O, SzL(ro) = ( ~ )  2. (15) 

It should be noted that the D tensor defined in the matrix 
varies with r, i.e., D o = Do.(r), however the S tensor is constant. 
In summary, for the inclusion problem with uniform (constant) 
eigenstrains er* and eL* in the inclusion fL the corresponding 
total strains are given by 

e~ = &r(ro)er* + SiL(ro)eL*, in the inclusion f2, (16) 

e~ = Direr* + D~LeL* in the matrix D - FL (17) 

Using GPS tensors we can obtain explicit expressions for the 
displacement and the stress components in both the inclusion 
and matrix: 

In the inclusion f2 = {(r ,  O, z) : r ~- ro} : 

u(r)  = 2(1 u---------~ + 2(1 - u) 

+ 2 ( 1 - v )  2 ( 1 -  v )  reL*, (18) 

( ! : : 2 .  e~* 
u(r )  = \ 2 ( 1  - v)  

c r ~ = a o =  - 1 (e~ + v e t ) ,  

az = 1 - v - 1 (ve~ + e~).  (19) 

In the m a t r i x D -  ~ = {(r ,  0, z ) :  ro< r - < R }  : 

" eL*) 
2(1 - v) 

(20) 

O'r-- 1 ~ U [ ( ~ ) 2 - -  ( ~ ) = ] ( e r *  +UeL*), 

. 
,~o = i - 2 7  + (e~ + ,,eL*), 

= (vet* + eL*). (21) 
az 1 - v 

4 A p p l i c a t i o n  o f  GPS Tensors to Thermal 
Residual Stress 

GPS tensors S and D have been devel0ped for an infinite long 
circular cylindrical inclusion problem. S relates the prescribed 
eigenstrain eft to the total strain e~ in the inclusion (fiber) 
whereas D relates the same eigenstrain with the total strain in 
the surrounding matrix. Consider the composite material D with 
fiber f~ and matrix D - ~2 as shown in Fig. 1. We assume 
both fiber and matrix are elastically isotropic and transversely 
isotropic in thermal property. Let the Young's  modulus and 
Poisson's ratio of fiber and matrix be E:, w: and E m, v ~, respec- 
tively. The transverse and longitudinal coefficients of thermal 
expansion of  fiber and matrix are denoted by aYr, a~  and a~ ,  
a mr, respectively. High residual stresses can develop when the 
composite material is cooled from a processing temperature ,  
say To, to room temperature due to the coefficient of  thermal 
expansion mismatch between the fiber and the matrix. The ther- 
mal eigenstrains in the fiber at any temperature T are 

e )  = e~ h = e~ = A a r ( T -  To) = ACerAT, (22) 

and 

,h d h = A a L ( T -  To) = AaLAT,  (23) e z  = L 

where Aeer = aYr - a~,  AaL = a~ - a~,  A T  = T - To. Then 
the stress-strain relations are 

or, = 2#Y(e, - e~ h) 

+ ~kf(er + eo + ez - 2eP - e~) in the fiber fL (24) 

for i = r, 0, z. By introducing fictitious uniform eigenstrains 
e ]  and eL* in the fiber f~ (er* = e~ = er*, e l  = eL*), Eq. (24)  
can be rewritten as 

ai = 2#m(ei - el* - e~ h) 

+ X'(ej e [ -  ,h - ej )6is in the fiber f~ (25) 

for i = r,  0, z. Here the index J takes on the same number as 
j but is not summed. 

Now the total eigenstrains in the inclusion f~ are 

e~*=d+e; ,  eL**=eL*+e~. 
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The total strains in the fiber f~ are given by 

S e * *  = S ~ r e r * *  + er  = eO S r T e  T ~ g< "q- rL L , ez zL L , 

where Sv( i = r, O, z ; j = T, L )  is the GPS tensor. The elastic 
constants of the matrix are used to calculate each components 
of the GPS tensor S. 8 

Substituting the above equalities into (24) ,  (25) ,  and equat- x 
ing the expressions for ~r. and ~r z, respectively, we get d~ 

[ 2 ( A #  + AX)Srr  + 2 ( #  m + k i n ) l e t  * *  + [ 2 ( A #  + AX)S~L 

+ AkS~ + k~)]eL ** = 2 ( # :  + k : ) e~  + k/e~', (26) 

[2AhS.r + 2kin) le t  ** + [ (2 A#  + A h ) S ~  + 2 A k S . L  

+ ( 2 #  m + xm)]EL **  = 2~.fe~ + (2/Z f + h f ) e ~ ,  (27) 

where A #  = ~r  _ #m, AX = h I - h".  The determinant of the 
coefficient matrix of the above system of equations is 

Det  = 2A/.t(2A~ + 3Ak)S,TS~ 

+ 2£X/Z[2#m(SrT + SzL) + kin(Set  + 2SzL -- 2SrL)] 

+ 2~xk/.g'(2S.r + 2S~L + Szz) + 2#m(2/z '~ + 3kin). (28) 

Solving (26) and (27) for e~** and e~**, we get 
t7 z 

2 
er** = ~et [A#(S~z - S,L) + /Zm][2(# / + h/)Aar 

+ k : A a L ] A T -  2/z: [2A#SrL  + Ah(2S.L + S~) 
Det  

+ h ~ ] ( A a L -  A a r ) A T ,  (29) 

2 
eL** = ~ e t  [A#S~r  + #m][2 (# :  + h / ) A c t r  + ~ . :AaL]AT 

4 # :  + [ ( A #  + AX)S,r + (~z m + X~)] ~r0 - 
D et  

× (AaL - A a ~ ) A T .  (30) 

Then the stress components, from (19) (21),  are found to be 
the following. ~r~ = 

In f~: 

" ] = - -  /,}m E * * cr.--o 'o 1 - u "  - 1  ( e * * +  ~ ), 

o'~ = 1 - u ~ - 1 (vine ** + e**) .  

I n D  - f~: 

O'r 1 - -  l /m  - -  ( ~ T ~ *  + l J m ~ * ) '  

: 
O'o = 1 - Um + (er** + "'%L**), 

O" z = 1 - v m ( v % * *  + L :. 

If we consider the special case where the thermal property 
is isotropic, i.e., aL = a r  = a ,  then the stresses in the fiber 
f~ are 

Fiber Matrix 

-1 : v o l u m e  f ract ion V f  

I ~ 0.49 - -  0.0o6 
x 

"23 1 -.- 0.12a ..- 
O,OIg 

I . . . .  I . . . .  
o o.s i ;.5 . . . .  ~ . . . .  2'.s . . . .  

radius r (I.tm) 

Fig. 2 Tangential stress distribution with different volume fraction of 
fiber 

E r o t _ 1 A l z  + /z m 
~r. = cro - (1 - u " ) "  De t  

× (21z: + 3hY)(a: - a')~T, 

] _E r____~ 1 1 ro 2 i.zm 
(1 - u ' ) "  B e t  - ~  - A #  -~ + + #: 

× (2# / + 3k:)(a / - otto)AT. 

In the matrix D - f~ 

E r o 1 1 ~ l  ~ + #m 
cr. (1 - urn) • De t  

.E r_.__~ I 

(1 - ~ m ) ' D e t  

× (2~: + 3hS)(a: - otto)AT, 

× (2#: + 3hs)(cef - am)AT, 

E = 

where Det  is given by (28).  

× (2/z: + 3 h : ) ( a : -  o : )~xT,  

(31)  5 S o m e  R e s u l t s  

We can demonstrate the application of GPS tensor concept 
to the evaluation of residual stress in unidirectional fiber-rein- 
forced composites. The process-induced residual stress distribu- 
tion in the case of intermetallic matrix composite Ti-24A1- 
l lNb/SCS-6  system has been computed using the S and D 
tensors. Figure 2 shows the spatial distribution of tangential 
residual stress cr0 as a function of various fiber volume fraction 
V / =  (ro /R)  2. The results are also compared with FEM solutions 
(Chandra et al., 1994) for the case of V: = 0.11 which show 
good agreement. We should note that Vf = 0 (R = ~ )  corre- 
sponds to the infinite domain Eshelby solution, which has a 
lower peak stress at the interface compared to higher fiber vol- 

(32) ume fractions. Also the magnitude of the residual compressive 
stress in the fiber decreases when the volume fraction is in- 
creased. Thus there is an upward shift in the tangential stress 
profile when the fiber volume fraction is increased, i.e., R is 
reduced. Also we can observe that t~0 does not vanish at the 
outer surface of the composite. Similar results for the radial 
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stress distribution are shown in Fig. 3. Here also we observe 
an upward shift in the profile, and the rate of change of ar with 
radius (dar/dr) increases with the volume fraction. It is found 
that within the fiber the tangential stress and radial stress coin- 
cide and remain constant. This can be easily explained from 
the fact the S tensor is a constant within the fiber and the thermal 
eigenstrain is uniform in the transverse plane. 

6 Summary 
In this paper we have proposed a pair of two new tensors, 

GPS tensors S and D, for the concentric cylindrical inclusion 
problem. Explicit expressions to evaluate ar, ~r0, and a~ in the 
matrix and the fiber using tensor D and tensor S, respectively, 
have been developed. Since the geometry of the present problem 
is finite, the effect of volume fraction on the stress distribution 
can be easily studied using V l = (ro/R) 2. Results for the stress 

distributions have been compared with Eshelby's infinite do- 
main solution and finite element results for a specified fiber 
volume fraction. Since a finite domain cylindrical inclusion 
problem has been solved using GPS tensors, the tensors can be 
used to replace the Eshelby tensor in the evaluation of bounds 
and effective properties of composites in self-consistent 
methods. 
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Buckling and Post-buckling 
Behavior of a Pipe Subjected 
to Internal Pressure 
It is well known that a thin elastic shell under external pressure may undergo buckling 
and collapse. Less well known is that a hollow beam under internal pressure may 
buckle as an Euler column. This is the subject of the present study. The buckled 
deflection and natural frequency about the buckled configuration of a vertical pipe 
with clamped (y-axis) and hinged (z-axis) boundary conditions at the lower support 
location, considering the influence of internal pressure and initial (manufactured) 
curvature, has been studied analytically and experimentally. The buckling and post- 
buckling behavior of the pipe beam with an initial static deflection depends upon the 
nonlinear coupling due to deflection in the two directions including the anisotropic 
boundary condition at the one support location. The coupling effects increase as the 
internal pressure and "the initial static deflection increase. When the initial static 
deflection is zero, the coupling effect disappears. The theoretical results agree reason- 
ably well with the experiments. 

1 Introduction 
It is well known that a thin elastic shell under external pres- 

sure may undergo buckling and collapse. Less well known is 
that a hollow beam under internal pressure may buckle as an 
Euler column. This is the subject of the present study. 

The linear and nonlinear dynamical behaviour of pipes con- 
veying fluid has been studied theoretically and experimentally 
by many authors in the last several years. Recently, increasing 
attention has been devoted to the nonlinear aspects of the dy- 
namical behaviour of this system. Substantial contributions 
were made by Holmes (1977), Lundgren et al. (1979), Rous- 
selet and Herrmann (1981), Bajaj et al. (1980), and Paidoussis 
( 1991 ). From these studies, it is found that this system is capa- 
ble of displaying chaotic motion and other interesting dynamical 
behaviour. 

Two particularly interesting experiments by Tang and Dowetl 
(1988) and by Paidoussis and Moon (1988) present the first 
closely correlated theoretical-experimental results for the cha-  
otic dynamics of this system. Tang and Dowell (1988) consid- 
ered a cantilevered pipe with an inset steel strip and equispaced 
magnets on either side which permitted buckling of the pipe. 
Once the flow velocity is sufficiently above the threshold for 
flutter about the buckled state, chaotic motions were possible. 
Both forced response and self-excited response were consid- 
ered. Paidoussis and Moon (1988) considered motion-limiting 
restraints on which the cantilevered pipe would impact, once 
the flutter motion becomes sufficiently large as the flow velocity 
is increased. It was shown that chaotic oscillations occur at 
sufficiently high flow velocity. However, neither of these inves- 
tigations considered the influence of internal fluid pressure and 
nozzle discharge. 

A more general model of the lateral internal forces in a verti- 
cal cantilevered pipe conveying incompressible fluid has been 
developed by Ilgamov et al. (1994) including the influence of 
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internal pressure and nozzle discharge. Based upon this im- 
proved model, theoretical results are in better agreement with 
the experimental data by Tang and Dowell (1988) for the mini- 
mum excitation force required for generating chaotic response. 
This suggests the desirability of considering a more basic and 
elementary physical configuration to further understand these 
interesting results as described below. 

In this paper, following Ilgamov et al. (1994), we discuss 
buckling and post-buckling behavior of a closed pipe due to an 
internal fluid pressure. The pipe is clamped at the upper end in 
both the y- and z-directions, and hinged and clamped at the 
lower end in the z and y directions, respectively. The axial 
displacement (x-axis) of these supports is zero. A distinct 
difference from earlier studies in the literature is that the 
boundary conditions in the y and z directions are not identical 
(see Fig. 1). 

Here the two-dimensional static instability problem for the 
buckled pipe beam has been studied analytically and experimen- 
tally as well as natural oscillations about the buckled configura- 
tion. The experimental results including correlation with theory 
give a clearer understanding of the influence of the intemal 
pressure and initial static deflection of the pipe on buckling and 
post-buckling behavior. 

Earlier related work has considered the nonlinear vibration 
of an unbuckled beam by Watzky (1992) and the onset of 
buckling in a linear, elastic beam by Faupel (1964, 1981 ) and 
Clodfelter (1975). 

2 Equations of Motion 

The system under consideration consists of a pipe beam of 
length, L, inside radius, r, wall thickness, h, mass per unit 
length, m, flexural rigidity, El, and coefficient of K elvin-Voigt 
damping, a,  containing a fluid of density, p. The pipe beam is 
clamped in both the y and z directions at its upper end, connected 
to vessel A with pressure P0, and hinged (z-axis) and clamped 
(y-axis) at its lower immovable end (in the x direction). The 
pipe is assumed to have an initial (manufactured) curvature in 
a three-dimensional oriented Euclidean space, defined by a vec- 
tor of Wo(X, y, z), and a buckled deflection, w(x,  y, z, t),  of 
the pipe along the x-axis. 

The compression force in the pipe is 
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Fig. 1 

Po•eVeSsel 
A 

lamped 

clamped 

| X 

Physical representation of a vertical pipe-fluid system 

y 

w = u j  + v k  

Wo = u0j +v0k 

where j ,  k are unit base vectors associated with the y and z- 
axes in the reference Cartesian coordinate system. 

Substituting this representation into ( 1 ), we obtain two cou- 
pled nonlinear equations in the xoy and xoz-planes, respectively. 
They are 

(m + 7rr2p)a + El(u"" + aa"") 

f - C(u" + u~) (u '2 + v '2 + 2u'u; + 2v'v~)dx 

+ (m + 7rr2p)g[u ' + u~ - (L - x)(u" + ug)] 

+ P(u" + u~) = 0 (2) 

(m + 7rr2p)i3 + E l ( v "  + a~")  

fo' - C(v" + v~) (u '2 ÷ v '2 + 2u'u; + 2v'v~)dx 

+ (m + 7rrZp)g[v ' + v~ - (L - x)(v" + vg)] 

+ P(v" + vg) = 0 (3) 

w h e r e ( ' )  = BlOt and(  ) '  = O/Ox. 
Boundary conditions are, at x = 0, 

u ( 0 ) = u ' ( 0 ) = 0 ,  v ( 0 ) = v ' ( 0 ) = 0 ,  

Ni = 27rrhpo. 

The distributed lateral force along the x-axis due to bending 
of the pipe is (see Ilgamov, 1994), 

N2 = -TrrEpo 02(w + Wo) 
Ox 2 

The distributed force vector in the rectangular Cartesian coor- 
dinate system, taking into account the liquid static pressure, is 
represented as 

02w _ Np = -TrrZp ~ (TrrZpo + 27rrhpo) 02(w ÷ Wo) 
Ox z 

The nonlinear equation of bending motion in the three-dimen- 
sional oriented Euclidean space can be given by 

Ei(O4w 05w ) ~ 2 ( W  " ~ - W 0 ) : O  " [ ( 0 ( W  -]- W0)) 2 
\ OX 4 q- Ol O X 4 O t ,  ] - -  C O x  2 O x  

_ ( O w o ?  
\ Ox / + (m + rcr2p) Ot 2 

+ ( m +  7rrZp)g[ O!w+w°)cOx ( L - x )  OZ(w+w°)]Ox 2 

+ p02(w + Wo)_ 0 (1) 
Ox 2 

where C = 7rrhE/L and P = 7rr2( 1 + 2h)p0. For a detailed 
derivation of this equation, see Watzky (1992). Here we have 
generalized the equation to include an initial (manufactured) 
curvature and the effect of an internal pressure after Ilgamov 
(1994). 

The transverse displacement vectors, w and wo may be repre- 
sented as 

and at x = L, 

u(L)  = u ' (L )  = O, 

Let 

U 0 = 

"1.30 = 

s=O 

N 

i=1 

N 

i=l 

v(L) = v"(L) = O. 

M 

du,~ 
s=O 

M 

(4) 

pi(~i  

qi~O, (5) 

where ~b,. and ~bi are the ith normal mode of the associated 
linear problem without internal pressure. Note that the ~Oi, ~bi, 
i = 1, 2 . . . .  N, satisfy the boundary conditions and the orthonor- 
mal conditions of the clamped-clamped and clamped-hinged 
pipe-beam, respectively. 

In (4), Uo and Vo are determined by measurement, and dus, 
dvs are obtained using a curve fitting method. 

Substituting (4), (5) into (2), (3), and using Galerkin's 
method, one obtains a finite set of second-order ordinary differ- 
ential equations for the modal ampfitudes, p,( t )  and q,(t) ,  (n 
= 1, 2 . . . .  N), as follows: 

N N 
2 P. + 2G.w..p. + w,,.p. + Z C~.pk + Z cq.qk 

k=l k=l 
N 

+Z 
i,j=l 

P Pq (Bu.p~py + Bo.piq: + B~.qiq:) 

N N 
P pq 

(A#k.pipjpk + Aq~npkqiqj) + ~ r]k = 0 (6) + 
id,k=l k=l 
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detailed lower 
support 

Fig. 2 Experimental apparatus 

N N 
2 ci. + 2~.w~.4. + w~.q,, + Z cq.qk + Z C~.pk 

k=l k=l 

N 

-~" l ~ . p i p j )  + ~ ( ~ . q ,  qj + B u.q, PJ + 
i d = l  

N N 
+ ~ -q + = Auk.P~Pjqk) + ~ rlk 0 (7) ( A Oknqiqjqk -qP 

i ,j ,k=l k - I  

where the generalized static force is due to the initial curvature 
of the pipe. The system is always asymmetrical even if ~7~ = 0, 

A u~,, Auk . . . . .  see Appendix A. ~ = 0. For the coefficients P -q 
Now, consider the buckling deflection and natural frequency 

of this coupled pipe-beam with the prescribed boundary condi- 
tions and an initial static deflection in the y and z directions. 
The static buckling deflection, u, v, can be obtained from (6),  
(7) when the time derivatives are set to zero. By taking N 
modes, Eqs. (6) and (7) serve to reduce the system to a set of 
2N third-order nonlinear algebraic equation. The solution of 
the equations can be obtained by iteration using the Newton- 
Raphson method, for example. 

Assume Pb,, qb, are the generalized coordinates of the buckled 
equilibrium position calculated from (6) and (7).  Then let 

p~ = Pb~ + t3, (8) 

and 

q. = qbn + ~],, 

where p.  and ~. are the small dynamic perturbations of the 
post-buckled pipe beam. Substituting (8) into (6) and (7).  and 
neglecting higher order perturbation values, we can obtain a 
set of 2N second-order perturbation differential equations. The 
coupled buckling natural frequencies may be determined by a 
numerical eigenvalue extraction procedure. 

3 N u m e r i c a l  R e s u l t s  a n d  C o r r e l a t i o n  W i t h  E x p e r i -  

m e n t  

Results obtained from numerical simulation and experiment 
are based on the following parameters. The dimensions of the 
steel pipe beam are a length of 177.2 (cm), 0.95 (cm) in outside 
diameter and 0.0254 (cm) wall thickness. The flexural rigidity 
E1 is found by measuring the frequency of the pipe beam in its 

fundamental mode. The pipe mass per unit length is 7.662 × 
10 -7 (kg.  sec2/cmZ). 

The experimental system with the pipe beam containing air 
is shown in Fig. 2. The air pressure is provided by a high 
pressure tank with a regulator (the measurement range is 0 -  
28.12 kg/cm2). The displacements at 89 (cm) from the clamped 
end for u and 106.7 (cm) for v are measured by two RVDT 
transducers, respectively. The signals from these transducers 
were amplified and recorded on a signal analyzer, SD 380. 

The initial static deflection is measured and then the coeffi- 
cients, du., and dr, are determined using a curve fitting method. 
It is determined that 

duo = -.0051328, dul = .504378, 

du2 = -.489224, du3 = -.00176842 

dvo = -.001026, dr1 = .10087, 

dr2 = -.097834, dr3 = -.00354385. 

The theoretical results were obtained initially by taking two 
modes each for u and v. The first mode is dominant however, 
with the second mode amplitude less than five percent of the 
first mode amplitude. Therefore taking N = 1 or one mode each 
for u and v and neglecting the damping, the coupled buckling 
frequencies can be determined from (6),  (7),  and (8) by 

w 4 - (sH + s22)w 2 + s,,s22 - s~zs2, = 0 (9) 

where 
P pq 

sl1 = w]l + Ctml + 2BlllPbl + Bltlqbl 
P 2 Pq 2 

+ 3AllHPpl + A u l l q b l  
q Pq Pq 

sl2 = C~l + 2BHlqbl + Bulqbl  + 2A'ullPblqhl 
--p --qP .r-qP 

$21 = C l l  @ 2 ~ u  + BHlqbl + 2 A l l l l P b l q b l  

--q --qP ~ 2 ":-qP 2 
$22 = 0,)21 "Jr C l l  q- 2B-~m + BHlpbl + 3 A l l l l q b l  + A I l l l P b l  

and Phi and qb~ are the buckled equilibrium positions. 
The buckled natural frequencies in the y- and z-directions 

may be given even more simply and analytically using a one 
mode, uncoupled approximation and the linear stiffness terms 
of these perturbation equations, such that ~Vb,~ = ~ and Wb~ 
= S~22. However, this uncoupled approximation may have a 
large error as compared to the coupled buckling frequency from 
(9) when the internal pressure increases. Results shown in Fig. 
3 are for a comparison of the buckled frequencies with and 
without coupling versus internal pressure for a pipe beam with 

i i i i i 12.50 • ~ 

10.00 I- coupled ~ ,C~'" 

t i p s y  ' ~ 7.50 
\\ ,~-~- .............. 

,M' X c o u p l e d  
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0.00 i i i i 
0.00 3.50 7.00 10.50 14.00 
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Fig. 3 Comparison of the buckled frequencies with and without coupling 
versus internal pressure for a sine-initial curvature pipe-beam (uo(L/2) 
= 0.1 (cm), vo(L/2) = 0.05 (cm), ( ), oo.H, (- -), ~O,b= for without cou- 
pling; ( - -  - - ) ,  oJ~l, ( -  - ) ,  ¢ob~, for with coupling 
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Fig. 4 Effects of the initial static deflection on the buckling behavior for 
uo = 0.254 (cm) and several re: ( ), for u, o = 0.025 (era); ( -  - ) ,  for 
u, vo = 0.05 (cm) ; ( -  -), for u, vo = 0.1 (cm); (- - -), for v, vo = 0.025 (cm); 
( -  - ) ,  for v, vo = 0.05 (cm); ( -  -), for v, vo = 0.1 (cm); (- - ) ,  for u, vo = 
Uo = 0 ;  ( -  - ) ,  f o r  v ,  vo = uo = 0 ;  ( a )  for buckled  deflection, (b)  for buckled  
frequency  

sine-initial curvature ( u o ( L / 2 )  = 0.1 ( cm) ,  vo(L/2 )  = 0.05 
( c m ) ) .  Notepo = 4.85 ( k g / c m  2) is the critical buckling pressure 
for the isolated z-direction deflection. The results obtained by 
the uncoupled approximation agree reasonably wel l  with the 
coupled solution except  when the two frequencies are near each 
other. As  Po increases from the nominal critical pressure to 9.56 
( k g / c m 2 ) ,  (Po = 9.56 ( k g / c m  2) is the critical buckling pressure 
for the isolated y-direction deflection),  the error o f  the approxi- 
mate method increases, but in the higher pressure range, the 
error decreases again. This error pattern appears to be related 
to a coupled mode or veering phenomenon. 

When the pipe beam is a straight beam (u0 = v0 = 0 ) ,  and 
one mode is considered, w e  obtain a set o f  static buckled equi- 
librium Eqs. from ( 6 ) ,  ( 7 ) ,  and ( 8 )  as 

P q 2  f 2 P l  FAT,,, A , , , , ] f p b , ]  oou, + C,, 
~ "  = - 2 , , ( 1 0 )  

L a l l l l  ~ . , J ) . q , ~ l f  Cdul + e l l  

P Pq ~,,, and ~,, are greater than In Eq. ( 1 0 ) ,  A m ] ,  A m 1 ,  
zero, and 

P 
IA,,,, A~ii 

IAI = iA~,i ~,,, = O. 

Thus there is no physical ly  meaningful  solution for q ~  and 

p ~  both nonzero. Therefore, for a straight pipe beam with 
anisotropic boundary condition at one support, there is no cou- 
pling influence. That is, only Pb~ ~ 0 and qb~ -= 0 or Pbt ~ 0 
and qb~ m 0 are possible solutions. This is true when higher 
modes are included as well .  

Figure 4 shows the effects o f  the initial static deflection on 
the buckled deflection and first buckled natural frequency versus 
Po. The initial static deflection is assumed to have the first mode 
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Fig. 5 Theoretical and experimental results of coupled and uncoupled 
buckling deflection and frequency versus Pc, ( -  - ) ,  for u and uncoupling, 
( - - ) ,  for u and coupling, (-  -), for v and uncoupling, ( . .  -), for v and 
coupling,  ( e )  for  u test, ( © )  for v test,  ( a )  for  buckled deflection, (b )  and 
( c )  for buckled frequency  
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shape of the clamped-clamped beam. The middle displacements 
are 0.254 (cm) for the y-direction and 0.025, 0.05 and .1 (cm), 
respectively, for the z-direction. It is found that u decreases and 
v increases as Vo increases when Po increases as shown in Fig. 
4(a) .  The coupled first buckled frequencies LVb~ (called oJ~b~) 
increases and the second one Orb2 (called W,b~) decreases as Vo 
increases as shown in Fig. 4(b).  The pressure corresponding 
to the minimum frequency for ~b~ decreases as Vo increases. 
The results for a straight pipe beam are also plotted in Fig. 4(a)  
and Fig. 4(b).  The influence of the initial curvature is quite 
evident. It is well known from the perturbation equations that 
the buckled frequency significantly depends upon the initial 
static deflection shape. When the initial static deflection shape 
coincides with the first natural mode shape, the second mode 
components for both the y- and z-directions are almost zero. 
The higher order mode buckled frequencies are nearly equal to 
the unbuckled higher order natural frequencies, and the first 
two modal buckled frequencies have the largest change. 

Figure 5 shows the theoretical results for coupled and uncou- 
pled buckling deflections and buckled frequencies versus P0 for 
the measured initial static deflection. For the buckling deflec- 
tions, the buckled deflections u, v, increase and the uncoupled 
response is larger than the coupled one as Po increases as shown 
in Fig. 5(a).  For the buckled frequencies, the first four calcu- 
lated coupled buckling frequencies ~Vb~, O)b2, O)b3, and Orb4 are 
shown in Fig. 5(b).  Figure 5(c) shows the first two coupled 
buckling frequencies and the uncoupled frequencies versus P0. 
It is found that the coupled Wb~, Wb2 have smaller changes 
compared to the uncoupled frequencies as P0 increases, and the 
coupled frequencies are lower than the uncoupled ones in the 
higher pressure range. In the lower pressure range, the buckled 
frequencies decrease as P0 increases and the difference between 
the coupled and uncoupled frequencies is small. 

For comparison with the theoretical results, the measured 
data are also plotted in Fig. 5(a)  and Fig. 5 (c) as indicated by 
the symbol ( e )  for u and wb2 and the symbol (©) for v and OJbl. 
The agreement between theory and experiment is substantially 
improved by using the nonlinear coupled buckling theory as 
compared to the uncoupled buckling theory, especially for the 
z-direction deflection and the buckled frequency. The poorer 
agreement in the y-direction is due to the larger initial static 
curvature in the same direction. The measured static curvature 
looks like a half sine-wave with the maximum deflection 0.317 
(cm) in the y-direction and 0.1 (cm) in the z-direction. 

4 Concluding Remarks 

The buckling and post-buckling behavior of a vertical pipe 
with different boundary conditions at the lower end in the y- 
and z-directions, and considering the influence of internal pres- 
sure and initial static deflection, has been studied. It was shown 
that the buckling deflection and buckled frequency of the verti- 
cal pipe beam with an initial static deflection depend upon the 
nonlinear coupling due to deflection in two directions including 
the different boundary conditions in the two different directions 
at the same support location. The coupling effects increase as 
the internal pressure and the initial static deflection increase. 
When the initial static deflection is zero, the coupling effect 
disappears. The theoretical results agree reasonably well with 
the experiments. 
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Crack Propagation in 
Homogeneous and Bimaterial 
Sheets Under General In-Plane 
Loading: Nonlinear Analysis 
The problem of non-coplanar crack propagation in homogeneous and bimaterial sheets 
is investigated within the framework of the nonlinear theory of plane stress and for the 
Generalized Neo-Hookean class of hyperelastic solids. The analysis is performed 
numerically using a boundary layer approach and the maximum energy release rate 
criterion. The influence of the large deformation effect on the limiting process 
associated with the concept of "infinitesimal virtual crack extension"is examined, 
together with the possible relation between the size of the nonlinear zone and the 
additional length parameter appearing in the linearized analysis of the interfacial crack 
propagation problem. As the virtual crack extension is gradually shortened to a size 
comparable to that of the nonlinear zone, a transition is observed between the 
nonunique value of the kink angle predicted by the linearized theory and a single 
"nonlinear" value, which is independent of the crack extension length but also 
independent of the far-field loading conditions. In the limit of homogeneous properties 
this angle is zero and is corroborated by experiments on natural rubber undergoing large 
deformations. 

I Introduction 
The propagation path taken by a crack subjected to load- 

ing that is not symmetric with respect to the crack plane has 
been investigated extensively since the early work by Erdogan 
and Sih (1963) in two-dimensional geometries. Various crite- 
ria have been proposed to determine the kink angle of the 
crack: some, such as the maximum (opening) stress criterion, 
suggest that the fracture process be dictated by the condi- 
tions existing at the crack-tip prior to its propagation; others, 
such as the criterion of local symmetry and the maximum 
energy release rate criterion (Palaniswamy and Knauss, 1978; 
Wu, 1978; Lo, 1978; Hayashi and Nemat-Nasser, 1981a; Kari- 
haloo, 1982), require the knowledge of the near-tip condi- 
tions during crack propagation. The latter criterion is a 
generalization of the Griffith energy-balance argument to the 
non-coplanar situation and consists in comparing the energy 
stored in the solid before and after the kinking process, for a 
vanishingly small "virtual" extension of the crack. The pre- 
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dicted propagation angle corresponds thus to that which 
maximizes the reduction in potential energy between the two 
states. Due to its attractive relationship to the fundamental 
minimum potential energy principle, the maximum energy 
release rate criterion is today the most commonly used prin- 
ciple. Various investigation methods have been proposed in 
combination with this criterion such as the use of Musk- 
helishvili's complex potentials and conformai mapping 
(Palaniswamy and Knauss, 1978; Wu, 1978) or dislocation 
(Green's) method (Lo, 1978; Hayashi and Nemat-Nasser, 
1981a). More recently, Maiti (1990) examined the crack kink- 
ing problem numerically using the finite element method. 

As pointed out by Shih (1991), mode mixity is one of the 
main characteristics of the near-tip stress and deformation 
fields for an interracial crack. It is therefore natural that the 
issue of crack kinking away from an interface has received 
special attention in the past few years as substantial progress 
was made in the mechanics of bimaterial interface fracture. 
Almost all investigations (Hayashi and Nemat-Nasser, 1981b; 
He and Hutchinson, 1989; Mukai et al., 1990; Wang et al., 
1992) involve the dislocation method employed successfully 
in the homogeneous case under the precepts of linear elastic- 
ity theory. However, as was underlined in Geubelle and 
Knauss (1993), the bimaterial situation presents a major 
difficulty absent in the homogeneous situation: While, in the 
monolithic case, it is possible to compute the energetically 
most favorable kink angle as the length of the extension 
tends to zero, such a limiting process is not possible in 
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general within the linearized theory for bimaterial cases, and 
a unique kink angle cannot be computed. In order to resolve 
the nonuniqueness issue, an additional length parameter 
corresponding to the length of the extension has to be 
introduced. Note once again that such a length scale does not 
appear in the homogeneous case. It has been suggested that 
the additional length scale is associated with physical size 
scales present in the components of the bimaterial specimen 
such as the size of the microstructure or of the fracture 
process domain. This approach does not seem, however, 
compatible with the experimentally deduced additional length 
parameter I obtained for the particular material combination 
used in Geubelle and Knauss (1993). 

In the present paper, we examine whether the length 
parameter can be somehow associated with the size of the 
nonlinear large deformation zone present around the crack 
tip. We thus investigate how the limiting process mentioned 
above is affected by relinquishing the assumption of infinites- 
imal strains and allowing for large deformations and rota- 
tions along with nonlinear constitutive behavior. The motiva- 
tion behind the present analysis comes from the fact that the 
length parameter appearing in the linearized bimaterial situ- 
ation has been shown to be associated with the inconsisten- 
cies inherent in the linear analysis of the interface crack 
problem (contact and overlapping of the crack faces, osciUa- 
tory near-tip fields . . . .  ). However, as was first shown by 
Knowles and Sternberg (1983), these difficulties disappear if 

finite strain effects are taken into account. We show here 
that, even in the homogeneous situation, the size of the large 
deformation zone introduces a length scale which restricts 
the limiting process associated with the maximum energy 
release rate criterion. 

The analysis is conducted within the framework of the 
nonlinearly elastic theory of plane stress. Material and geo- 
metrical nonlinearities are combined through the use of the 
Generalized Neo-Hookean model. Due to the complexity of 
the field equations and of the problem geometry, the analysis 
is performed numerically with the aid of the finite element 
method. The details of the computational analysis are de- 
scribed in the next section. Then, the results corresponding 
to the homogeneous case are discussed in Section 3 while 
Section 4 is dedicated to a survey of the bimaterial situation. 

2 Numerical  Investigation 
We present next the details of the numerical analysis, 

within the nonlinear theory of elasticity, of the maximum 
energy release rate criterion, and, in particular, of the spatial 
discretization and the computation of the energy release rate. 

Finite Element Mesh. Throughout the present numerical 
investigation, we are concerned with the boundary value 
problem symbolically represented in Fig. 1. It consists of a 
circular domain of radius l, along the outer boundary of 
which displacement boundary conditions corresponding to a 
"linear K-field" are applied. The crack, initially of length l, is 
extended by an amount A1 in a direction to relative to the 

2 crack axis . The ratio of the crack extension length to the 
original length is varied between 10 -6 and 10 -2.  The lower 
limit is justified by the numerical imprecision associated with 
very high gradients close to the crack-tip while a ratio of 
10 -2  is the maximum allowable value to keep the "boundary 
layer" approach meaningful. The latter approach has been 
chosen instead of the more conventional "global problem," 
such as, for example, the centered crack problem, for the 
following three reasons: first, it has been shown to provide 

1See discussion in Section 4 of (Geubelle and Knauss, 1993). 
2Note that, throughout the present analysis, dimensions and angles are 

defined with respect to the undeformed coordinates. 
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Fig. 1 Geometry of the boundary layer analysis of the crack prop- 
agation problem 
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Fig. 2 Details of the deformed finite element mesh after crack 
extension in the case 41 / I = 10 -2 

similar results as long as the length of the crack extension AI 
is small compared to the original length l; second, because it 
allows a direct control through the applied K-field boundary 
conditions over the loading conditions prevailing at the 
crack-tip before its extension; and finally, because the more 
compact geometry associated with such a boundary layer 
approach allows for a better spatial discretization than the 
global approach for an equivalent computational cost. 

As pointed out by Maiti (1990), the design of the finite 
element mesh is of prime importance, especially in the 
crack-comer and branch-tip region, to ensure precision of 
the predicted energetically most favorable kink angle. It was 
suggested there to use a doubly focused mesh (i.e., focused at 
the kink corner and at the branch tip) in order to capture the 
interaction between the two singularities arising in the post- 
extension problem. Since the analysis of the bimaterial situa- 
tion, for which such a discretization is not possible for most 
kink angles, constitutes one of the main objectives of the 
present investigation, we have opted for a simpler mesh 
focused at the original crack tip only, as described in Fig. 2. 
Numerical precision has, however, been achieved by increas- 
ing the mesh refinement: the crack extension is represented 
by ten equally spaced elements and the inner annuli are 
divided into 72 5-degree-sectors. Outside of the inner circle 
of radius Al, 25 to 35 elements are distributed geometrically 
along a radial line, with the progression factor chosen such 
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that the first "outside" element has a size similar to that of 
the ten "inner" ones. The total number of four-node bilinear 
elements was thus 3240 for Al/l = 10 -6  and 2520 for &Ill = 
10 -2" 

The precision of the numerical scheme was assessed by 
performing a preliminary linearly elastic analysis of the ho- 
mogeneous situation for which generally accepted results 
exist. The results are shown in Fig. 3 which presents the 
variation of the kink angle to* as predicted by the maximum 
energy release rate criterion with respect to the phase angle 
3' characterizing the local mode mixity at the unextended 
crack tip, defined by 

7 = tan-1 (K2/Kt). (2.1) 

The numerical values, denoted by symbols and corresponding 
to five values of Al/l, are compared with the analytical 
solution (dashed curve). Also shown is the prediction corre- 
sponding to the maximum opening stress criterion which, in 
the homogeneous case, gives results very similar to those of 
the energy-based criterion, especially for small values of y. 
The agreement between the numerical and analytical results 
is quite satisfactory, differing in all cases by at most 1.0 deg. 

Computation of the Energy Release Rate. As mentioned 
before, the nonlinear analysis of the crack propagation prob- 
lem is performed within the framework of the finite strain 
theory of plane stress, the main relations of which have been 
summarized by Knowles and Sternberg (1983). The material 
model used throughout the present investigation is the so- 
called Generalized Neo-Hookean (GNH) model described in 
detail by Geubelle and Knauss (1994a). It is characterized by 
three parameters /x, b, and n which determine, respectively, 
the linearly elastic, "yielding" and "hardening" behaviors of 
the incompressible hyperelastic material through the plane 
stress elastic potential 

v ( / , J ) = ~  l + ~ ( , r + J - 2 - 3 )  - 1  , (2.2) 

with I and J being the two scalar invariants associated with 
the two-dimensional deformation. 3 The GNH model has 
been implemented, together with a fully Lagrangian scheme, 
in a modified version of the finite element program FEAP 
(Taylor, 1977). The initial crack problem is first solved by 

applying nodal tractions along the crack extension to keep it 
closed. Then, these tractions are progressively relaxed until 
the stress-free kink is fully open and the associated unloading 
work is computed. This process is repeated for various crack 
extensions to obtain the variation of the energy release rate 
with respect to the kink angle, and, thereby, to compute the 
energetically most favorable crack path. 

As mentioned by Geubelle and Knauss (1993), two meth- 
ods are used to calculate the energy release rate G: the first 
one is based on the potential energy definition 

AII 
G w = -  lim - -  (2.3) 

at-n0 AI ' 

where 17I is the potential energy contained in the body and, 
in the present case, is the integral over the domain of the 
strain energy density U(I, J) defined in (2.2). For hyperelas- 
tic solids, the energy release rate can be equivalently deter- 
mined by computing the closure work of the extended crack 

1 , a t  -an 
Gee= l i m - - 1  Jr T . d a u d s ,  (2.4) 

a t - ,0 ,~lJ0 0 

where T and Au denote the traction and displacement jump 
vectors along the crack extension, respectively. By monitoring 
the modal tractions and displacements of the M nodes dis- 
tributed along the kink during the N unloading steps of the 
extension process, and using a simple trapezoidal integration 
rule, (2.4) is approximated by 

] M N 2 
l , J  I J = - -  Au~ ), acc 2•1 E E E (Ta l'J-1 + Ta j )(aua' - "/ ,J-l \  

i=1J= l  a=l 
(2.5) 

with T J  and Auk J representing the a-component at node I 
and unloading step J of the t ract ions and displacements, 
respectively. The two approaches yield very similar results 
(within 0.1 percent) if a sufficient number of unloading steps 
are used (5 to 50, depending on the load level). 

3 Homogeneous Case 
Confident of the precision of the numerical scheme, we 

first investigate the homogeneous Neo-Hookean situation for 
which the hardening parameter of the hyperelastic sheet is 
unity. Seven values of the local mixitty parameter have been 
considered (7 = 0, 10, 20, 30, 40, ~0, and 60). The amplitude 
of the far-field loading has also been varied as K = 
I K I / / z ~ =  10 -4, 10 -3,  10 -2,  10 -1 and 1, where Ig[ 

= ~ + K~, /.L is the shear modulus, and l is the radius of 
the circular domain on which the boundary layer analysis is 
performed. For each far-field loading condition five values of 
the crack extension length Al have been investigated, as 
mentioned earlier (Al/l = 10 -6, 10 -5, 10 -4 ,  10 -3  and 10- 2). 
The results of the 175 cases thus defined are summarized in 
Fig. 4 which presents the variation, with respect to Al/l, of 
the ratio to*/to~, where to* and tot. are the kink angles 
predicted by the nonlinear and linear theory respectively. 4 It 
is observed that, except in the particular case y = 0 deg 
(mode I) for which, by symmetry, the maximum energy re- 
lease rate criterion always predicts a coplanar crack growth, 
the nonlinear analysis suggests a dependence of the energeti- 
cally most favorable kink angle to* on the length of the 
extension Al. As the size of the nonlinear zone increases with 
K, a transition is observed between the y-dependent linear 
value to* and a unique 3,-independent value to*= 0 deg. 

3See Section 2 of (GeubeUe and Knauss, 1994a) for more details. 
4Recall that, as shown in Fig. 3, oo~ is independent of the crack 

extension length AI. 
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Fig. 5 Radial variation of the norm of the true (Cauchy) stress 
tensor and determination of the size of the zone of dominance of 
the nonlinear effects by comparison with the linear and nonlinear 
asymptotic predictions 

One can better visualize the transition process by comparing 
the length of the extension AI with a "measure"of the size of 
nonlinear zone. The length scale characterizing the zone of 
dominance of the nonlinear effects that is adopted here is 
derived from the results of an asymptotic analysis of the 
near-tip stress and deformation fields for a crack in a homo- 
geneous sheet of GNH material under general (mixed-mode) 
loading conditions (Geubelle and Knauss, 1994a). It was 
shown there that, in the large deformation region, the stress 
singularity is stronger than that predicted by the linearized 
theory (the norm of the Cauchy stress tensor varies as the 
inverse of the distance to the crack-tip instead of the inverse 
square root singularity suggested by the linearized theory), 
and that, under "small-scale nonlinear yielding" conditions 
such as those considered in the present boundary-layer type 
analysis, a fairly sharp transition is observed between the two 
asymptotic behaviors, as symbolically represented in Fig. 5. 
The size rNL of the nonlinear zone has been shown (Geubelle 
and Knauss, 1994a) to be 

r N L  1 I 

T 31rn 2 /M' (3.1) 

where v is the value of the conservation integral. It is 
interesting to note that if the individual curves in Fig. 4 are 

shifted by normalizing the crack extension length AI with 
respect to the nonlinear zone size rNL, one obtains the single 
set of transition curves presented in Fig. 6. It seems therefore 
that the load-dependent measure (3.1) of the nonlinear zone 
size, which is, in the present analysis, the only length scale 
characterizing the large deformation effects on the near-tip 
fields, unifies all the transition curves surprisingly well de- 
spite its relative simplicity. 

Although the transition curves are slightly different for 
each value of the local mixity parameter 77, the six "mixed- 
mode" curves (77-4= 0 deg) show a fairly sharp transition 
between the two limiting values (to* = 0 deg and to* = tot)• 
This somewhat surprising result can be explained by the 
structure of the large deformation strain and stress fields 
existing near the crack-tip under nonsymmetric loading con- 
ditions. It has been shown, through the asymptotic analysis 
summarized by Geubelle and Knauss (1994a), that, within the 
nonlinear theory of plane stress and for the GNH class of 
hyperelastic materials, the near-tip fields corresponding to 
mixed-mode cases consist of mere rotations of the symmetric 
(mode I) approximations, the rotation depending on the 
"linear mixity parameter" 77 through a one-to-one relation 
which is itself a function of the "hardening" exponent 5 n. It 
is therefore natural that, when the length of the crack exten- 
sion is chosen well within the zone of dominance of the 
nonlinear effects, the predicted kink angle w*, which is 
"measured" in terms of the undeformed coordinates, tends to 
zero for all mixity ratios• 

Within the framework of the linearized theory, the size of 
the nonlinear zone may thus become a "geometrical lower 
bound" to the concept of virtual crack extension inherent in 
the maximum energy release rate criterion: the limit AI ~ 0 
appearing in the definitions (2.3) and (2.4) of G exists even if 
the nonlinear effects are taken into account but the value of 
the predicted path angle corresponding to such a limiting 
process seems at variance with experimental observations 
(see, e.g., Palaniswamy and Knauss, 1978)• But most test 
results available to date have been obtained in situations in 
which finite strain effects are not dominant. Recent experi- 
ments on natural rubber (Hodowany and Montilla, 1993) 
have shown that when large deformations are allowed to 
develop prior to crack propagation, the results summarized 
in the present analysis are corroborated• 

The case n = 0.7 has also been investigated for YY = 40 

5See Fig. 19 in (Geubel le  and  Knauss ,  1994a). 
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deg, showing a very similar transition curve (Fig. 6). Although 
the analysis has been performed within the framework of the 
nonlinearity elastic theory of plane stress for the particular 
class of GNH materials, we believe that such a behavior 
should also occur for other classes of materials, as well as 
under plane strain conditions where the rotation property of 
the near-tip fields has been shown to be valid, too (Le, 1992). 

4 Interface Crack Problem 
We turn next to the large deformation investigation of the 

interface crack propagation problem. Let (~0), b(t), gl))  and 
(~<2), b(2), n<2)) be the material parameters characterizing the 
upper and lower Generalized Neo-Hookean sheets, respec- 
tively. Detailed asymptotic analyses of various bimaterial 
problems (Geubelle and Knauss, 1994b, 1994c) have shown 
that, as was the case in the homogeneous situation, the 
deformation fields existing near the tip of an interface crack 
between two sheets of GNH materials consist in the rotation 
of a "canonical bimaterial field," the rotation being a func- 
tion of the far-field conditions and the geometrical and 
mechanical characteristics of the bimaterial specimen. For 
example, in the particular case where both components have 
similar "hardening'behaviors (i.e., n (1) = n (2) = n), the near- 
tip field is given by (Geubelle and Knauss, 1994b) 

y = Qy*, (4.1) 

where y is the deformed coordinate vector field, Q is an 
orthonormal tensor and y* is the "canonical" deformation 
field 

{ y~ ~ crPg( O; n), 

y~ armj(o)f(O; n) + k/l(O, n) + drqj(O)h(O; n), 

(4.2) 

in which the asymptotic exponents m, p, t, and 0 are a 
function of n and have been given in Fig. 2 of (Geubelle and 
Knauss, 1994b); the angular functions f(O; n), g(O; n), h(O, 
n), and 1(0; n) are continuous on [ -  7r, 7r]; a, c, d, and k are 
scalars and j(O) is the step function characterizing the con- 
centration of the deformations in the weaker component as 

'1  [ ~IZ(') b(I) t n - 1 ] l / ( 2 n - 1 ) ( 0  0~ '11" ) ,  

j (o) :  l (-=_<o_<o). 

(4.3) 

It is therefore expected that, due to the structure (4.1)-(4.3) 
of the near-tip fields, the nonlinear analysis of the maximum 
energy release rate criterion yields results similar to the 
homogeneous situation: when the crack extension length Al 
is chosen within the zone where the near-tip approximation 
is valid, one obtains an energetically most favorable kink 
angle which does not depend on Al but also not on the 
far-field loading conditions. In the "boundary layer" analysis 
adopted here, the latter are characterized by the complex 
stress intensity factor K = K 1 + iK z associated with the lin- 
earized bimaterial asymptotic solution. 6 

The numerical investigation described in Section 3 for the 
homogeneous case has been repeated for exemplary pur- 

l (1) (2) (1) b(2) poses in the bimaterial situation w'th /z ~//z = 2, b ~/ 

6The definition of the bimaterial  stress intensity factor used here is 
similar to that described in Section 1 of (Geubelle  and Knauss, 1993): the 
length scale that needs to be introduced in order to determine the phase 
angle 1, has been chosen as the radius l of the circular domain repre- 
sented in Fig. 1. 
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Fig. 7 Kink angle aJ* v e r s u s  AI/tNL for 7 = 4 0  deg and for two 
values of the "hardening" exponent n = 0.7 and 1.0 

= 1 and n (1) = n (2) = n = 0.8. The corresponding values of 
the "linear" moduli mismatch parameters 7 are c~ = 0.333, 
/3 = 0.083, and E = -0.027. The nonlinear mismatch param- 
eter ~ introduced in (4.3) is equal to 3.175. Ten loading 
conditions have been considered (g7 = IKI//gz]~ = 10 -4, 
10 -3, 10 -2, 10 -1 and 1, and 3' = 0 deg and - 3 0  deg)with, 
for each case, the same values of Al/l as in Section 3. The 
results are summarized in Figs. 8(a) (for y = - 3 0  deg) and 
8(b) (for 7 = 0 deg), showing, as was the case in the mono- 
lithic situation, a transition between the linear values of to* 
(obtained for small K) and the unique nonlinear value 8 
which is found to be to* = - 3 0  deg. Note that since the 
value predicted by the linear theory depends on A1, a transi- 
tion curve similar to that presented in Figs. 6 and 7 does not 
exist. Although the "unique kink angle" associated with the 
large deformation zone depends on the material combina- 
tion, the trend observed in the present problem is applicable 
to other bimaterial situations because of the aforementioned 
"rotation property" of the near-tip fields. 

The nonlinear analysis of the crack extension problem thus 
seems to restrict the limiting process (Al ~ 0) which, in the 
linearized analysis, did not provide a unique value of the 
energetically most favorable kink angle. But the indepen- 
dence of the (large deformation) kink angle on the far-field 
loading conditions seems to indicate also that conditions 
prevailing outside of the nonlinear zone determine the prop- 
agation behavior of the interface crack. It is therefore possi- 
ble that the size of the nonlinear zone might provide an 
indication for the additional length scale necessary to obtain 
an agreement between analytical and experimental results, 
for situations where the large deformation effects are not 
negligible. The values deduced from the experimental obser- 
vations described in Section 4 of (Geubetle and Knauss, 
1993) do not contradict this possibility. 
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Strip Element Method to Analyze 
Wave Scattering by Cracks in 
Anisotropic Laminated Plates 
The strip element method ( SEM ) has been extended to investigate wave scattering 
by cracks in anisotropic laminated plates. The cracked plates are divided into domains 
in which the extended SEM is applied. For each domain a set of  SEM equations is 
obtained which gives a relationship between the traction and displacement vectors 
on the vertical boundaries. These equations are solved by using the conditions at the 
junctures of  the domains. To obtain the time domain response a Fourier transform 
technique is used, and an exponential window method is introduced to avoid singulari- 
ties in the Fourier integration. For composite plates with horizontal and vertical 
cracks, scattered wave fields in both the time and frequency domains are computed, 
and discussed in comparison with results for uncracked plates. A technique for 
determining the length of a crack in a plate is also presented. It is shown that the 
SEM is an efficient technique for the calculation of elastodynamic fields in cracked 
anisotropic laminated plates. 

1 Introduction 

Ultrasonic waves can be used to characterize mechanical 
properties and to detect cracks and delaminations in laminates. 
To use the ultrasonic method, it is necessary to clearly under- 
stand wave propagation in anisotropic laminated plates with 
and without cracks. 

An exact solution for waves in anisotropic laminated plates 
has been given by Liu et al. (1990). These authors discussed 
effects of fiber orientation and stacking sequence of layers on 
the phase velocities and strain energy distributions in the thick- 
ness direction of laminated plates. Finite element methods have 
been used by Dong et al. (1972, 1985), Nelson et al. (1973), 
Kausel (1986), and Datta et al. (1988) to investigate the disper- 
sion of waves in laminated media. Liu et al. (1991a) presented 
an assembly of six characteristic wave surfaces to explain the 
anisotropic and dispersion properties of Lamb waves in aniso- 
tropic laminated plates. The characteristic wave surfaces were 
obtained by using the finite element method (FEM).  

A matrix formulation for anisotropic laminates under spa- 
tially periodic time-harmonic surface loads was presented by 
Mal (1988). Liu et al. (1991b) proposed a hybrid numerical 
method which combines the FEM and FFT techniques to obtain 
the transient response of anisotropic laminated plates. However, 
this method cannot be used for calculating the response in the 
frequency domain due to the presence of singularities in the 
integral for the inverse Fourier transform. To deal with these 
kinds of integrations Xu and Mal (1985, 1987) have presented 
a technique in which the kernel is represented by a series of 
Chebyshev polynomials to calculate two-dimensional Green's 
functions for a layered isotropic viscoelastic solid. Kundu and 
Mal (1985) modified the work of Xu and Mal (1987) by remov- 
ing poles from the real wave number axis. Waas (1972) and 
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Kausel (1981) proposed a semi-numerical method (SNM) for 
the solution of two-dimensional Green's functions for a layered 
isotropic stratum. In this method, the stratum is divided into 
elements, the displacement field is linearized in the elements, 
and the expression for the Green' s function in the wave number 
domain becomes a simple function containing poles only. The 
Green's functions can subsequently be obtained by using Cau- 
chy's theorem. The advantage of the SNM is that numerical 
integration of a Fourier integral has been avoided. Its disadvan- 
tage is that the higher the frequency the more elements are 
needed to obtain good results. Hence the SNM is not efficient 
at high frequencies. The SNM was extended to transversely 
isotropic layers by Seale et al. (1989). For cases in which the 
locations of poles are difficult to obtain for a given frequency, 
such as for wave propagation in piezoelectric plates where the 
elastic and electric fields are coupled, Liu et al. (1994) have 
presented an alternative method for calculating responses in the 
frequency domain by introducing a complex integral path to 
avoid singularities and rapid changes of the integrals in the 
inverse Fourier integration. Recently, Liu and Achenbach 
(1994) presented a strip element method (SEM) for stress 
analysis of anisotropic linearly elastic solids. The SEM can 
easily be used to calculate responses of anisotropic media in 
the frequency domain. A major advantage of the SEM is that 
it requires much smaller storage than the FEM. However, in 
the original version of the SEM the external loads are acting 
only on boundaries perpendicular to the elongated direction of 
the strip elements. 

Recently, scattering of waves in an elastic layer has been 
investigated by A1-Nassar et al. (1991) and Karunasena et al. 
(1991), who used a combined finite element and Lamb wave 
modal expansion method. Dispersion equations for Lamb waves 
were obtained by an exact method. The Lamb modes were 
analyzed by using Mtiller's method, a numerically complex 
roots search procedure which calculates the wave number for 
a given frequency. Karim et al. (1992) presented a similar 
technique whichcombines the finite element method and guided 
wave mode expansions to calculate scattering of Lamb waves 
by cracks or inclusions. In this method the finite element bound- 
ary has to be far enough from the loads and inclusions, because 
only Lamb waves with real wave numbers have been used in 
the exterior regions. The use of these Lamb waves is equivalent 
to an absorbing boundary attached to the finite element regions. 
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Fig. 1 An anisotropic laminated plate and its coordinate system 

The boundary element method (BEM) has been used to investi- 
gate scattered waves in a half-space and in finite depth strata 
(Von Estorff et al. 1990), where the SNM was used to calculate 
Green's fnnctions. Another efficient way to investigate scatter- 
ing of Lamb waves, presented by S. W. Liu et al. (1991) and 
Datta et al. (1992), combines the BEM and FEM, where the 
FEM is used in the interior region and the BEM is used for the 
exterior region. Green's functions for the BEM were obtained 
by using an integration technique given by Xu and Mal (1987). 

In this paper, the SEM is extended to investigate scattering 
of waves by cracks in anisotropic laminated plates. First the 
SNM is extended to obtain the solution in the frequency domain 
for uncracked anisotropic laminated plates subjected to an exter- 
nal loading. Then, a general SEM solution for a loaded lami- 
nated plate with boundaries perpendicular to the plane of the 
plate (vertical boundaries) is given by combining the SNM 
solution (a particular solution of the governing differential 
equations) and the fundamental SEM solution (the complemen- 
tary solution of the associated homogeneous form of the govern- 
ing differential equations). A set of general SEM equations 
which gives the relationship between the traction and displace- 
ment vectors at node points on the vertical boundaries is ob- 
tained from the general SEM solution. For a plate with a crack, 
the plate is divided into several domains. A general SEM equa- 
tion is obtained for each domain. By assembling all the equa- 
tions, a set of algebraic equations is obtained, which is solved 
by using the conditions on the vertical boundaries between the 
domains. To obtain the response of a plate in the time domain, 
a Fourier transformation technique is used and an exponential 
window method (EWM) is introduced to avoid singularities of 
the integrand in the Fourier integration. For composite plates 
with horizontal and vertical cracks, scattered wave fields in the 
frequency and time domains have been computed. The results 
are discussed in comparison with results for uncracked plates. A 
technique for determining the length of a crack is also presented. 

2 Approximate Governing Differential Equations 

Consider a laminated plate with any number of anisotropic 
layers. The thickness of the plate is denoted by H, as shown in 
Fig. 1. The plate is divided into N strip elements. The thickness, 
the elastic coefficient matrix, the fiber orientation, and the den- 
sity of the n th element are defined by h,, c,, ~b,, and p,. Two- 
dimensional problems are considered in this paper. The excita- 
tion and the resulting wave fields are independent of y. Bound- 
ary conditions are separated into two categories. There are 
boundary conditions on horizontal planes (HBCs) for bound- 
aries that are parallel to the plane of the plate, and on vertical 
planes (VBCs) for boundaries that are perpendicular to that 
plane. 

In each element, the displacement vector UP(x, z) = { u(x, 
z) v(x, z) w(x,  z) } is assumed to he of the form. 

U.(x, z) = N(z)Ve(x) exp(iwt), (1) 

where i = ~ - 1 .  The variables t and w are time and angular 
frequency, respectively. The matrix N and the vector Ve are 
given by 

[ (  z2) (~ z ; ) ( _ _ z + 2 z ~ 2 ] I  l N =  1 - 3 - Z + 2 h ~  I 4 - I (2) 
h \ h h 2] J 

veT= {v~ v~, v~}. (3) 

In Eq. (2), h is the thickness of the element, and I is a 3 by 3 
identity matrix. In Eq. (3), VL, VM, and Vv, which denote the 
displacement amplitude vectors on the lower, middle, and upper 
node lines of the element, are functions of x. By applying the 
principle of virtual work to each element, a set of approximate 
differential equations can be obtained for each element. Assem- 
bling all the elements and using the HBCs, a system of approxi- 
mate governing differential equations for the total plate can 
finally be obtained (details can be found in Liu and Achenbach, 
1994): 

[ 02V 0V ] 
q = -A2t Ox--- ~'+ A i , - ~  + A0 ,V-  w2M,V , (4) 

where the matrices Ai, (i = 0, 1, 2), M, and the vector V can 
be obtained by assembling the corresponding matrices Ai, M 
and vector V, of adjacent elements just as is done in the FEM. 
The matrices Ai and M for an element can be found in the 
Appendix of Liu and Achenbach (1994) for monoclinic materi- 
als, and Liu et al. (1991b) for general anisotropic materials and 
two-dimensional and three-dimensional problems. The vector q 
is related to the traction vector q applied to the horizontal nodal 
lines of the plate by 

q = q exp(iwt). (5) 

For a plate with vertical boundaries, the general solution of 
Eq. (4) consists of two parts, namely, a particular solution 
which satisfies Eq. (4), and the complementary solution which 
satisfies the associated homogeneous equation of Eq. (4). The 
complementary solution has been given by Liu and Achenbach 
(1994). A particular solution for a transversely isotropic half- 
space has been given by Seale and Kausel (1989). The latter 
is an extension of the solution for isotropic layered media given 
by Waas (1972) and Kausel (1981). In the sequel we give a 
compact formulation for a particular solution for general aniso- 
tropic laminated plates. 

3 A Particular Solution for Infinite Anisotropic 
Laminated Plates 

We introduce the Fourier transformation with respect to the 
horizontal coordinates x as follows: 

fL ¢¢p(k) = Vp(x)e'kXdx, (6) 

where k is the wave number, and the subscript p indicates the 
particular solution. Application of the Fourier transform to Eq. 
(4) leads to the following equation in the transform domain: 

= [k2A2t- ikA,, + A0, - w2Mt]'Vp. (7) 

This equation can be rewritten in the form 

where 

p = [A - kB]d, (8) 

A;[ 0 0] '  
wZM, - Ao, iAl, A2t (9) 
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and 

p~=  {0 - ~ } ,  d~=  { ~  k~Cf}. (10) 

Applying the modal analysis technique (see, e.g., Liu et al., 
1991b) to Eq. (8), we find 

2M L R ~OmpqOm 
d = Z (/~---k,,~,,, ' (11) 

m=l 
where M = 3(2N + 1) is the number of rows of the square 
matrices Air (or i .  ) and 

Bm= qaLmBW~. (12) 

In Eqs. (11) and (12), kin, ~o, L, and, qo~ are, respectively, the 
eigenvalues and the left and right eigenvectors obtained from 
the following eigenvalue equations: 

0 = [A - kmB]cp~,, 0 = qo~[A - kmB]. (13) 

The eigenvectors ~p~ and ~p~ can be written as 

~P~'~ (14) ~o~ = {~o.~, ~o.~,~}, ~o~ = t ~ , ~ J  ' 

where ~o~,, ~p,L~, qo~?, and ~p~2 have the same dimension. From 
Eqs. (10), (11), and (14) we obtain 

R 
2M ~o~2 q~o,,, (15) 

Vp = Z (k '~-km)ntn"  m=l 
If we specialize the spatial variation of the load to that of a 

line load acting at x = x0, we may write 

q = qor(X - x0) (16) 

where 6 is the Dirac delta function and qo is a constant vector 
representing the amplitude of the external force. In this case, 
the Fourier transform of the external force, ~, becomes 
qoe ~k~o. Hence, Eq. (15) reduces to 

2M L R 
~m2qo~m' e ikxo. (17) % = X (- ; -k-SL 

m= 1 

Applying the inverse Fourier transformation to Eq. (17), the 
displacement in the spatial domain can be expressed by 

1 qOm2qo~Om, 
v .  = 2~ m=~ (~ -- k,~m e-'~'-'°>dk' (18) 

It is noted that in Eq. (18), ~Om2,L ~O~, q0, and Bm are independent 
of k. Considering k complex, as shown in Fig. 2, the integral 
in Eq. (18) is an analytic function of k, except at 2M poles (k 
= kin) in the complex k-plane. Hence, the integration in Eq. 
(18) can be carried out by using Cauchy's theorem. 

f +L +R 
~ ~P..~ qo~P~ . 

- i  e ,k~<X-Xo), for X>Xo 
m=~ B+ 

Vp= -L -~ , (19) 
~ ~m2q0q0mt e-ik~(x-Xo), i - -  for X < X o  
~=~ B,~ 

where " + "  denotes variables evaluated at the poles correspond- 
ing to waves propagating in the positive x direction (leftward) 
included by the lower semicircular loop (dashed line in Fig. 
2), while " - "  denotes variables evaluated at poles correspond- 
ing to waves propagating in the negative x direction (rightward) 
included by the upper semicircular loop (solid line in Fig. 2). 

It may be noted that Eq. (19) gives a two-dimensional 
Green's function for the displacement for anisotropic laminated 
plates. The Green's function for stresses can be obtained by 
using Eq. (19). If the external force is distributed in the x 
direction, the solution can be obtained in the form of a supe~po- 
sition integral over Vp. 

S 
Im(kl 

Re(k) 

Fig. 2 Contours for evaluating Eq. (18) 

4 The General Solution for an Anisotropic Lami- 
nated Plate 

The complementary solution of the associated homogeneous 
equation of Eq. (4) can be expressed by superposition of the 
right eigenvectors obtained from the first equation in Eq. (13) 
(see Liu and Achenbach, 1994): 

2M 
Vc = ~ CAo ~ exp(ikjx) = G(x)C,  (20) 

y=] 

where the subscript c denotes the complementary solution. The 
constant vector C can be determined by using VBCs. The gen- 
eral solution of Eq. (4) is 

V~ = Vc + Vp = G(x)C + Vp, (21) 

where the subscript g denotes the general solution. Using VBCs 
of the plate, and following the process given by Liu and Achen- 
bach (1994), a relationship between the tractions and the dis- 
placements on the vertical boundaries is obtained as 

Rb = KVb + S,, (22) 

where 

Rb= {R~ R~} T, Vb= {V~ V~} ~, (23) 

are the external traction and displacement vectors on the vertical 
boundaries. The matrix K in Eq. (22) is the stiffness matrix 
given by 

0 / 2,--L d 
' + , (24) 

K = Rt, L R2tG,~Gd 1 

and the vector Sp is the equivalent external force acting on the 
vertical boundaries: 

JR0" 0 ] ~ V ~ L ~ - [ R 2 ' G [ G d l ] Y V ~ ]  (25) 
Sp= Rlt LV,',RJ LR~,G~G~'JLV~J' 

In Eqs. (24) and (25) the prime indicates differentiation with 
respect to x, and the matrix Gd is given by 

Ge = GR " 

The matrices Rl, and R2, are obtained by combining Rt and RE 
for all elements. The matrices R~ and RE for an element can 
be found in the Appendix of Liu and Achenbach (1994) for 
monoclinic materials, and in the Appendix of this paper for 
general anisotropic materials. The superscripts or subscripts L 
and R in Eqs. (23) - ( 2 6 )  indicate that the matrix or vector has 
been evaluated on the left and fight vertical boundaries. For 
cases that the plate has only one boundary on the left or right, 
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Fig, 3 Division of plates into domains in which the SEM can be applied. 
( a )  a uncracked plate is divided into left and dght domains; ( b )  a plate 
with a horizontal crack is divided into four domains; ( e l  a plate with a 
vertical crack Is divided into two domains. 

the condition at infinity on the x-axis has to be used, and the 
size of the system given by Eq. (22) will be reduced by half 
(see Liu and Achenbach, 1994). 

5 Application of the SEM to an Anisotropic Lami- 
nated Plate 

To apply the SEM to a plate which contains cracks, the plate 
has to be divided into domains in which the SEM is applicable. 
To illustrate the procedure we consider first an infinite un- 
cracked plate, which is divided into left and right domains. The 
SEM is applied to the two domains. For each domain, Eq. (22), 
which gives a relationship between the tractions and displace- 
ments on the juncture, can be obtained. By assembling the 
equations for the two domains, a relationship between the dis- 
placement and the traction acting on the juncture can be ob- 
tained. The boundary conditions on the juncture subsequently 
yield the displacement. The constant vector C in Eq. (21) fol- 
lows as 

C = G~l(Vg - Vp), (27) 

and the complete displacement field can be obtained by using 
Eqs. (21) and (27). It is noted that for an uncracked plate, it 
is not necessary to use the SEM. However, this is a good test 
of the SEM program, because the results obtained by the SEM 
can be compared with the particular solution given in Section 
3. For an infinite plate with a horizontal or a vertical crack, the 
regions of applicability of the SEM are shown in Fig. 3(b)  and 
Fig. 3(c) .  

6 Solution in the Time Domain 
To obtain the solution in the time domain, Fourier superposi- 

tion will be applied: 

1 F ut( t )  = ~ -~ u(co)F(~o)ei~'d~o, (28) 

where u(~o) is a solution in the frequency domain obtained in 
Sections 3 and 5, while F(co) is the Fourier transform of the 
time dependence of the external force, f ( t ) ,  acting on the plate. 
The subscript t in Eq. (28) indicates that the variable is in the 
time domain. The integration of Eq. (28) usually has to be 
carried out numerically. For an infinite plate difficulties with 
the integration result from singularities of u(~o) at ~o = 0 and 

at the cut-off frequencies (k = 0), as discussed by Vasudevan 
and Mal (1985). To overcome these difficulties, an exponential 
window method (EWM) is employed here. The EWM has been 
used by Vasudevan and Mal (1985) to calculate the transient 
response of an elastic plate and by Kausel et al. (1992) to obtain 
the transient response for damped and undamped vibrating 
structures. By using the EWM, the integration path in Eq. (28) 
can be shifted downward in the complex w-plane by an arbitrary 
amount ~7 without changing the results. Hence, Eq. (28) can 
equivalently be written as 

cot f= 
ut ( t )  = ~ u ( •  - i~7)F(w - ir/)e'~tdLv, (29) 

where 

F ( w  - i~) = e - ~ ' f ( t ) e - ' ~ ' d t ,  (30) 

in which ta is the duration of the external force. By using Eq. 
(29) instead of Eq. (28), the singularity of u ( w )  at ~v = 0 is 
avoided, since u ( w  - i~)  is well behaved for -oo < ~v < 
oo. The displacement in the time domain can, therefore, be 
obtained. 

7 Numerical Examples 
An SNM and an SEM program written in FORTRAN 77 

have been run on an HP workstation. The SNM program is 
used for uncracked plates, and the SEM program is used for 
plates with cracks. Computations have been carried out for three 
plates denoted by [C90/G0]s, [C0/G90], and [C90/G45/G- 
45 ]~. In this notation, the letters C and G stand, respectively, 
for carbon/epoxy and glass/epoxy layers, while the numbers 
following the letters indicate the angle ~b of the fiber orientation 
with respect to the x-axis (see, Fig. 1 ). The subscript s indicates 
that the plate is symmetrically stacked. Material constants of 
carbon/epoxy and glass/epoxy can be found in Liu et al. 
(1991b). To use dimensionless variables, c44 has been chosen 
as a reference elastic constant and cs = c ~ / p  as the reference 
velocity, where p is the density of the material. For hybrid 
composite plates, c44 for ~b = 0 and p of the carbon/epoxy 
material have been chosen as the reference constants. 

7.1 Response in the Frequency Domain. To check the 
programs, displacement responses of an isotropic plate with a 
Poisson's ratio of 1/3 subjected to a time-harmonic line load 
have been computed by the SNM and SEM programs. The 
results are shown in Fig. 4. Sixteen elements were used in both 
programs. The juncture (see Fig. 3 (a )  for the SEM is at x = 
4H. Excellent agreement is observed. The convergence of the 
results has also been checked. For both programs there is no 
significant difference between the results obtained by using 8 
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Fig. 4 Displacements on the upper surface of an isotropic plate s u b -  
j e t t e d  t o  a time-harmonic line load. Comparison of the results according 
to the semi-numerical method (SNM) and the strip element method 
(SEM). 
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Fig. 5 Displacements on the upper surface of a laminated plate sub- 
jected to a time-harmonic line load, Comparison of the results obtained 
by the SEM for an uncracked plate and for a plate with a vert ical surface- 
breaking crack. 

elements and 16 elements. This example has also been solved 
by using the original SEM (Liu and Achenbach, 1994), in 
which the plate is divided into elements in the vertical direction 
and a viscoelastic nonreflecting boundary is used at the end of 
the regular elements. Without showing a figure, we state that 
very good agreement was observed. 

Displacement responses of a cracked isotropic plate have also 
been calculated. For a plate with a horizontal crack over 4H ~- 
x -< 5H in the midplane of the plate, additional peaks in the 
spectrum are observed as compared with the uncracked plate. 
These peaks have been observed and discussed by Datta et al. 
(1992) and Karim et al. (1992). We consider the absolute value 
of the displacement on the plate surfaces. Oscillations appear 
between the load and the crack, because reflections of waves 
from the crack interact with the incident field. 

For plate [ C90/GO ]~, the effect of a vertical surface-breaking 
crack in the upper C90 layer has been calculated. For a time- 
harmonic load which acts at a distance of 4H from the crack, 
the displacement w on the upper surface of plate [C90/G0]~ is 
shown in Fig. 5, together with the results for the uncracked 
plate. The displacement is discontinuous at x = 4H, even though 
this is not visible in the figure. The presence of the crack only 
slightly affects the solution in the far field. As expected, an 
oscillation of the absolute value of the displacement between 
the load point and the crack is observed. From Fig. 5, the 
position of the crack is obvious. It is also found that the ampli- 
tude of the additional oscillation is related to the depth of the 
crack. 

For plate [C0/G90]~, the effect of an interior vertical crack 
assumed in the G90 layers has been investigated. Figure 6 shows 
the displacement responses for plate [C0/G90]~ without and 
with a crack. A oscillation of the absolute value of the displace- 
ment between the load point and the crack is observed. The 
effects of the crack are smaller than for a surface breaking crack 
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Fig. 6 Displacements on the upper surface of a laminated plate sub- 
jected to  a time-harmonic line load, Comparison of the results obtained 
by the SEM for an uncracked plate and for a plate with a vertical interior 
crack. 
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Fig. 7 Displacements on the upper surface of a laminated plate sub- 
jected to  a time-harmonic line load, Comparison of the results obtained 
by the SEM for an uncracked plate and for a plate with a horizontal crack. 

in plate [C90/G0]s. For the subsurface crack the displacement 
is continuous, but the position of crack is still distinguishable. 

For plate [C90/G'45/-45 ]s, the effect of a delamination be- 
tween the G45 and G - 4 5  layers has been studied. Figure 7 
shows the scattered displacement field in comparison with the 
uncracked plate. Again a superimposed oscillation is observed 
between the load and the crack. It is noted that the superimposed 
oscillation ends at the fight crack tip. A crack tip functions as 
a wave source which emits waves in all directions. Hence, at 
any observation point left of the right crack tip, there are waves 
moving to the right generated by the load and waves moving 
to the right generated by the right crack tip. The interference 
of these waves generates phase changes of the displacement 
responses, which appear as the additional oscillations in the 
absolute values of the displacement. On the other hand, at any 
observation point right of the right crack tip, there are only 
waves moving to the right, because all sources in the plate (the 
load, the left and right crack tips) are located to the left of the 
observation points. In principle, this difference in the nature of 
the displacement responses makes it possible to distinguish a 
horizontal crack from a vertical crack and to determine the 
length of the crack, by following two steps. First, by obtaining 
Fig. 7, we can determine the approximate position of the right 
crack tip. Then, applying the load on the other side of the crack, 
we can also determine the position of the left crack tip. The 
depth of the horizontal crack is related to the peaks of the 
response spectrum, as has been discussed by Datta et al., 
(1992). 

7.2 Response in the Time Domain. A Gaussian modu- 
lated sinusoid is used as the time history of the applied load: 

f ( t )  = ! e-(,-~o)2/(2~2) sin (~Jct), 0 ~ t < td, (31) 

where t is time, ~ is a parameter which controls the duration 
of the pulse, to determines the time delay of the pulse, and wc 
is the center angular frequency of the pulse. The time history 
of the applied load used in this paper is shown in Fig. 8. The 
Fourier transform of the applied load is 
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0.0 

-0.5 

-1.0 

0=0.8 
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to=3.0 Wc, 

0 2 4 6 S 10 
t c/H 

Fig. 8 Time history of the applied load 
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F(w) = f~af(t)e-i~tdt. (32) 

A numerical evaluation of F(oJ) shows that the absolute value 
of F(w) has peak amplitudes at two values of w and approaches 
zero rapidly as I~,1 increases. Hence high frequency responses 
are not generated. 

Responses of a plate excited by a pulsed line load given by 
Eq. (31) can be obtained from Eq. (29), which is obtained by 
introducing the exponential window method (EWM).  To check 
the validity of the EWM, displacement responses of an isotropic 
plate with a Poisson's ratio of 1/3 have been computed by the 
SEM and a hybrid numerical methods (Liu etal . ,  1991b), and 
the results are shown in Fig. 9. Sixteen elements were used in 
both methods. Excellent agreement is observed. 

It should be noted that the shifting constant r / in Eqs. (29) 
and (30) has to be chosen appropriately (see Kausel et al., 
1992). Various 77 were tested and it was found that a larger 77 
will introduce severe numerical precision loss in the long time 
responses. A small r? (say, r / =  O.1H/c~) is enough to avoid the 
singularity of u(w) at w = 0 and the rapid changes at the cut- 
off frequencies. 

Figure 10 shows the scattered displacement field on the sur- 
face of the plate [ C90 /G45 / -45  ]~ with and without a horizontal 
crack. The observation point is at x = 10H. It is seen that 
significant differences are observed when tcs/H > 12. 

8 Comments on the SEM 

The major advantage of the SEM is that much less computer 
memory is needed as compared to the FEM. The dimension of 
matrix K in Eq. (24) depends only on the number of nodal 
points on the junctures. F o r  a specific example the memory 
requirements of the FEM, BEM, and SEM have been compared 
by Liu and Achenbach (1994). The SEM is very efficient for 
calculating the response in the frequency domain. The computa- 
tion time is mainly spent on solving Eq. (13) to obtain the 
eigenvalues and eigenvectors. It is noted that these eigenvalues 

• and eigenvectors are independent of the crack length, and the 
position and distribution of the external loads. Hence in many 
cases, Eq. (13) only needs to be solved once. Liu and Achen- 
bach (1994) have discussed in some detail various ways of 
maintaining accuracy and making the computation efficient. 

In this study no singular crack-tip elements were used. How- 
ever, to deal with the singularities of the fields at the crack tips, 
the thicknesses of elements near the tips have been taken very 
small (about one eighth of the thickness of the regular ele- 
ments). It has been found that the results computed on the 
surface of the plates (sufficiently far from the crack tips) are 
not significantly affected by a further reduction of the size of 
the elements near the crack tips. 
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Fig, 9 Time-domain displacement response on the upper surface of an 
isotroplc plate. Comparison of the hybrid numerical method (HNM} and 
the strip element method (SEM). 
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Fig. 10 Time-domain displacement response on the upper surface of a 
laminated plate, Comparison of the Pesults obtained by the SEM for an 
uncracked plate and for a plate with a horizontal crack, 

9 Conclusions 
In this paper, the SEM has been extended to investigate the 

scattering of waves generated by a line load applied to an anise- 
tropic laminated plate containing a crack. From the computed 
results, it is possible to detect the presence and determine the 
position of the crack, and to estimate its size, by examining the 
absolute value of the displacement responses. More quantitative 
characterizations of the crack will require more detailed investi- 
gations. It has been shown that the SEM is a powerful tool for 
such investigations. 
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Matrices used in Eqs. (24) and (25) : 

1 -3Dxz 4Dx~ 
Ri = ~  -Dx~ 0 D~ , Ra = 0 D~x 0 

D~ -4D~  3D~ _] 0 0 D~. 

where 

J ell Cl6 C15 1 [ cl5 C14 el3 1 
D ~ =  c61 C66 C65 / , Dxz = C65 C64 C63 / - 

C51 C56 C55 ._~ C55 C54 C53 ._~ 
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A Crack Very Close to a 
Bimaterial Interface 
This paper presents the plane elastostatics analysis of a semi-infnite crack perpendic- 
ular to a perfectly bonded bimaterial interface. Both cases of  the crack approaching 
the interface and penetrating the interface are addressed. The distance from the tip 
of the crack to the interface is 6. A singular integral equation approach is used to 
calculate the stress intensity factor, Ki, and the crack-opening displacement at the 
interface, ~, as functions of 6, the Dundurs parameters a and/3, and the stress 
intensity factor kl associated with the same crack terminating at the interface (the 
case 6 = 0). The results are presented as KI = kI61/2-~f(a, /3) and r? = Cki61-x0(o~, 
/3) where k is the strength of the stress singularity associated with 6 = O, f and ~7 
are functions calculated numerically and C is a material constant. These results can 
be used to determine the stress intensity factor and crack opening displacement of  
cracks of finite length 2a with one tip at a distance 6 from the interface for 6/a 
!. The selected results presented for a crack loaded by a uniform far-field tension in 
each half-plane show that the stress intensity factors approach their limits at a 
relatively slow rate. 

1 Introduction 

Consider the plane elastostafics problem shown in Fig. 1 (a) .  
A Mode I crack of length 2a is perpendicular to the perfectly 
bonded interface between two isotropic half-planes with shear 
moduli ~i and Poisson's ratios ui, i = 1, 2. The distance from 
the left tip of the crack to the interface is 6. Because of its 
relevance to fracture of composite materials, the problem of 
calculating the stress intensity factors for this configuration has 
been addressed by several authors (Erdogan et al., 1973; Atkin- 
son, 1975). It is well known that this elasticity problem can be 
formulated using the Green's function for the stress produced 
along the crack line by an edge dislocation. This procedure 
leads to the following singular integral equation and uniqueness 
condition: 

2#1 f f+2~b(~)[  1..~ + a + 3_____~2 1 
7r(Kl + 1) y ~ 1 - / 3  2 y +  

+ 2 ( ~ -  i )  ~(Y - ~ ) ]  , ,  ~y ~ _ - ~ 7 j a ¢  = - a = ( y )  

f ~+2ab(~)d~ = 0  6 - < y , ~ - < 6  + 2a (1) 

where or= is the stress along the crack line induced by the 
remote loading in the uncracked body, a and/3 are the Dundurs 
parameters (Dundurs, 1969) 

(9/ = 
~z(K1 + 1) - ~i(K2 + 1) 

#z(Ki + 1) + #i(x2 + 1) 

3 = ~2(K1 -- 1) - ~](K2 - 1) 
#2(K1 + 1) + #l(K2 + 1) 
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•i = 3 - 4vl for plane strain and Ki = (3 - vi) / (1 + vi) for 
plane stress. The unknown dislocation density b(~)  is defined 
in terms of the crack opening displacement [u~(()] as 

0 
b(~)  ~ - ~ [uxl. (2) 

The first equation in ( 1 ) represents the zero traction condition 
along the crack surfaces, while the second enforces single-val- 
ued displacements (both crack tips are closed). In the following, 
the loading is taken as uniform remote tension in each half- 
plane, (r (l) and a (2), such that 

l + a  o .(2) = - -  a (1) (3) 
1 - o r  

and therefore a= = a (1) in Eq. ( 1 ). 
The ratio 6/2a enters in the kernel of the singular integral 

Eq. (1) in such a way that stress intensity factor values calcu- 
lated using a direct numerical solution inevitably lose accuracy 
for 6/2a ~ 1. Indeed, the smallest ratio for which Erdogan et 
al. (1973) present results is df/2a = 0.05. Their results showed 
that as 6 ~ 0 the stress intensity factor of the crack tip closest 
to the interface approaches zero when #: > #t and infinity when 
#i > #2. These limits result from the discontinuous change in 
the order Of the stress singularity as 6 becomes equal to zero. 
As will be explained in the next section, for 6 = 0 and #: > 
#1 the stress ahead of the crack tip is of the order ktr -x with h 
< ½. This weaker singularity in effect reduces to zero, as 6 
0, the amplitude Ki of the square root singularity associated 
with 6 m 0. For #l > #2, h > ½, and similar arguments explain 
why Kt increases to infinity as 6 ~ 0. Assuming linear elastic 
fracture mechanics these limits imply that the crack reaches the 
interface at infinite load for #2 > IZl and zero load for 
/Zl > #2. 

As a first step toward the development of physically sound 
propagation criteria for interface cracks, this paper is concerned 
with determining, as functions of the elastic mismatch, the rate 
at which the square root singularity approaches the limits dis- 
cussed above. To this end the problem is formulated asymptoti- 
cally in terms of a semi-infinite crack in which the only length 
parameter is 6. 

The approach used is essentially the same as that used by 
Hutchinson et al. (1987) to study a crack very close to and 
parallel to a bimaterial interface. It relies on some relevant well- 
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Fig. 1 Finite length crack (a) approaching and (b) penetrating a bimate- 
rial interface 

known results for the asymptotic behavior of the stresses and 
crack-opening displacements in the vicinity of the tip of a crack 
impinging on a bimaterial interface. These are reviewed briefly 
in the next section. The solution of the semi-infinite crack prob- 
lem is discussed in the third section and an example of how 
the asymptotic analysis can be applied to the problem of Fig. 
1 (a)  is provided in the 4th section. The last section extends the 
method to the case of a finite crack that penetrates a distance 
6 through the interface, Fig. 1 (b) .  

2 Finite Crack Terminat ing  at the Interface 

The results of the Williams technique analysis for a crack 
terminating at the interface (6 = 0 in Fig. 1 (a ) )  show that the 

traction ahead of the crack tip is characterized by 

kl 
lim {a~) (y )}  = 2 ~  ( -Y)-X (4) 

y - * 0 -  

where superscript (i)  denotes " in  material ( i ) , "  ki is the stress 
intensity factor, and h(0 ~ k < 1) is the root of the equation 
derived by Zak and Williams (1963) 

cos (Mr) 2(/3 - a )  (1 - h) 2 + a + B 2 = - -  - -  ( 5 )  

(1 + /3 )  1 -/32' 
The loci of constant k in the cz-/3 plane are shown in Fig. 2 (a ) .  
As pointed out by Dundurs (1970), this figure clearly illustrates 
that for c~ -~ 1 the quantity k is more sensitive to the mismatch 
in the Poisson's ratios, while for c~ ~ - 1  it is more sensitive 
to the mismatch in the shear moduli. 

Another important result from the Williams analysis relates 
the crack-opening displacement ( COD ), [ u ~= ) (y) ], to the stress 
ahead of the crack, i.e., 

I ° t lim { a ~ ( - y ) }  = lim - O ~ y [ U ~ n ( Y ) l  
y - . 0  + y-*0  + 

= lim { ~Ob(y) } 
y--,O + 

where the bimaterial parameter ~0 is defined as 

2/z___.Z_~ 1 [ ~ 1  + c~ 
~0 - ( • 1 +  1 ) s i n  ( k r r ) ~ 1  - - - f ~ )  [ 1 -  

2/3(k - 1)]. 

(6) 

(7) 
Equation (6) allows the determination of the stress intensity factor 
of a crack of length 2a in terms of the dislocation density as 

kt = lim { ~Ovt~a×b(y) } (8) 
y-~O + 

in which 

b ( y )  = a- (X+V2)b(y)y~(2a  - y)1/2 

is the regular part of the dislocation density b ( y ) .  
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It is worth noting that (8) could also be derived by studying 
the behavior near the crack tip of the generalized Cauchy-type 
integral that represents the stress ~<2) uxx . 

3 Semi- inf in i te  C r a c k  Analys i s  

Consider a semi-infinite crack perpendicular to the interface 
and terminating at a distance 6 from it. The COD at a point r 
= y - 6 very close to the crack tip (r /6  ~ 1) is given by [Ux] 

Kzr ~/2, where Kt is the stress intensity factor. For r/6 > 1 
the COD approaches the one associated with the crack tip im- 
pinging on the interface (6 = 0), i.e., [u~] ~ k~r 1-~. The physical 
meaning is that since 6 is very small the COD in the far-field 
is indistinguishable from the COD of the same crack impinging 
on the interface. 

Linearity and dimensional considerations (6 is the only char- 
acteristic length) demand that 

K, 
k,61/2_x - f(oe,/3) (9) 

where f i s  a function of the Dundurs parameters only. This type 
of argument was employed by Hutchinson et al. (1987) and He 
and Hutchinson (1989). 

It should be noted that tNs last result was derived by Atkinson 
(1975) by applying the Mellin transform to the integral equation 
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and using the Wiener-Hopf technique. He showed that the stresses 
ahead of the crack are given by (using the notation in his paper) 

N 
•xx ~" EI/ZF-I/2{ ~ Ake 4-2 + O(~3s '1-4)}  ( 1 0 )  

k=l 

where the Ak are constants independent of e, al and /3 are 
material constants (not to be confused with the Dundurs param- 
eters), and s~ are the N real roots (Re(s) > 1) of the equation 

cos (Trs) + c~1 - /3(s - 1) 2 = 0. (11) 

It can be easily shown that the dominant term of the stress given 
by (10) corresponds to that produced by the stress intensity 
factor defined by relation (9), the constants A, being identified 
with the values of klf(ce,/3),  and st = 2 - k. Atkinson devel- 
oped his solution for a constant pressure loading, but did not 
present numerical results for coefficients Ak. The main contribu- 
tion of the present paper is that it presents complete results for 
these universal functions. 

As will be described in the next section, (9) provides a powerful 
tool for the asymptotic analysis of finite length cracks approaching 
a bimaterial interface. The values of the function f ( a ,  /3) were 
calculated by integrating numerically (1) for 2a = o0. The details 
of the solution procedure are given in the Appendix. 

The loci of constant f in the ce-/3 plane are shown in Fig. 
3 (a).  It is interesting to note that the sensitivity of f to  changes 
in shear moduli and Poisson ratios is qualitatively the same as 
that of the singularity coefficient k. 

4 Finite  C r a c k  V e r y  Close  to the Inter face  

The numerical scheme used for solving the singular integral 
equation for the finite crack depicted in Fig. 1 (a) becomes 
unstable when the ratio 6/2a assumes very small values. For 
these cases, an indirect method based on asymptotical analysis 
is recommended for computing the stress intensity factor. This 
approach relies on the combination of (9) and the stress inten- 
sity factor kl associated with the finite crack terminating at the 
interface (6 = 0). 

As an example, consider the case of a crack acted upon by 
a uniform remote tension field in the two connected half-planes 
according to (3). As shown in the Appendix the stress intensity 
factor kl can be represented as 

k, 
G~/~a× - h (a , / 3 ) .  (12) 

The loci of constant h in the c~-/3 plane are shown in Fig. 4. It 
is observed that the stress intensity factor for this problem is 
yet another parameter that is more sensitive to the mismatch in 
the Poisson's ratios for a -* 1, while for a ~ - 1  it is more 
sensitive to the mismatch in the shear moduli. Combining (9) 
and (12) leads to the following expression for the stress inten- 
sity factor of a crack of length 2a at a distance 6 from the 
interface: 
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o.~[~al/2 - g(o~, /3) = f(ot ,  /3)h(a,  /3); 

6/a --' O. (13) 

Selected results for the asymptotic value of the stress intensity 
factor as calculated using (13) are presented in Figs. 5 (a) and 
5 (b) for a = 4fl = +~; these values of the Dundurs parameters 
include u~ = u2 and /~2//z~ = 10 or #~/#2 = 10. The solid 
lines in these plots are the values of the stress intensity factor 
calculated through a direct numerical solution of ( 1 ) along the 
finite interval. The procedure used for these calculations is out- 
lined in the Appendix. As expected the direct solution for a 
given number of integration points breaks down as the distance 
from the crack tip to the interface assumes relatively small 
values. The asymptotic solution approaches the envelope de- 
fined by the value of 6/a at which the direct numerical solution, 
for a given value of integration points, becomes unstable. 

The most interesting results of this analysis is that the stress 
intensity factor approaches the aforementioned limits at rela- 
tively slow rates. For significant elastic mismatch, a = 4/3 = 
~, the stress intensity factor for 6/a = 0.001 is approximately 
30 percent of the nominal value associated with no interface. 
These results suggest that although the stress intensity factor for 
/z2 > #~ approaches zero, this limit is associated with distances 6 
much smaller than the plastic zone that inevitably surrounds 
the crack tip. The leading edge of the plastic zone will thus 
reach the interface at a finite load. Perhaps more importantly, 
cracks in typical engineering materials will have extremely 
small 6 values that will invalidate a continuum mechanics for- 
mulation. 

5 Finite Crack Extending Through the Interface 
The asymptotical technique described in the previous sections 

can be easily extended to other interface crack problems. The 
natural extension of the previous formulation is to a finite crack 
of length 2l = 2 (a + b) that has extended beyond the interface 
a distance 6 = 2b ~ 1 (Fig. 1 (b)).  This problem can be reduced 
to a set of coupled singular integral equations using the same 
Green's function approach that is used to derive (1) (Erdogan 

and Biricikoglu, 1973). These equations are written symboli- 
cally in terms of the dislocation densities b(°(~) (i = 1, 2): 

Ai b(l)(~)Ktid~ + A2 b(2)(~)K2id~ = -or (i~ 
- 2 b  

(i = 1, 2) 

£° £ b(l)(~)d~ + b(2)(()d~ = 0 (14) 
2b 

where K~j (i, j = 1, 2) are Cauchy-type kernels. The first two 
Eqs. (14) represent the traction boundary conditions, while the 
third enforces single-valued displacements. The condition on 
the dislocation density required to insure compatibility at the 
interface is given by 

lim b(2 ) (y ) lb ( l ) ( - y )  = F(a , /3 ,  I.Z) (15) 
y--if) + 

where 

(1 + o~)/3 + (a  - / 3 )  
× (1 - / 3 ) ( - 1  + 4/z - 2~ 2) 

F ( a , / 3 , # )  = - ( 1 - / 3 2  ) cos(#Tr) (16) 
(1 + a ) ( - 1  + 2 /3 -2 /3# )  

and/z is the power of the stress singularity, which satisfies the 
characteristic equation 

(1 -- /32)(1 + COS z pTr) 

+ 212c~/3 -- 1 -- (2c~/3 -- /32) COS #Tr] + 4#(2 - #) 

[(a  - / 3 )z (1  - /~)2 _ a/3 + / 3 ( a  - ,6) cos #Tr] = 0. 

The loci of constant/z are plotted in Fig. 2(b).  
Again a direct solution of Eqs. (14) is inadequate for very 

small b/a  ratios and an alternative approach is furnished by the 
asymptotical analysis. The reference problem is still the finite 
crack of length 21 terminating at the interface. The semi-infinite 
analysis on the other hand has to be redefined, since the crack 
tip is now located beyond the interface at a distance 6 from it. 
As before, the far-field COD has to approach the one associated 
with no penetration, [u,] cc k :  1-~, and in the vicinity of the 
crack tip the COD is given by [u,] cc K1r 1/2. However, an 
additional requirement is that the COD at the interface be of 
the order r ~-u. Equation (9) still applies withf(ce,/3) replaced 
by the new function f * ( a , / 3 )  whose values are computed by 
solving numerically the proper set of integral equations (see 
Appendix); the loci of this function in the a-/3 plane are plotted 
in Fig. 3(b).  

Combining (9) and (12) leads to the asymptotical expression 
of the stress intensity factor of a finite crack of length 21 the 
has penetrated in material 2 by the distance 6 = 2b ~ l 

K, 
amq.7l .~  = g*(a, /3) 

[ 2c \t/2-~ 

=  1--77c) 

where 

c = b/a.  

The predictions of Eq. (17) are valid in the limit 6/l  ~ O. 
Figures 6 and 7 show the convergence of the nondimensional 
stress intensity factor values found by direct numerical integra- 
tion to the asymptotic solution given by (17) for the two mate- 
rial combinations already used in the previous sections, a = _+ 

= 4/3. Note that the for the case ce = +~ = 4/3, which 
corresponds to k = 0.347, the rate of convergence is much 
slower than for a = - ~  = 4/3 (k = 0.755). 

Note that the asymptotic analysis can be used to compute not 
only stress intensity factors but also other quantities such as the 
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crack-opening displacement at the interface. In fact, for a semi- 
infinite crack the COD at the interface, r/, is given by 

l + X l  
-- - -  k / 6 1 - X ~ ( o t , / 3 )  ( 1 8 )  

2/Zl 

where ~ is a function of the Dundurs parameters whose loci are 
shown in Fig. 3(b) .  The asymptotic expression of the crack- 
opening displacement at the interface for the finite crack in Fig. 
1 (b) is then given by 

rlf = - ~ q b l 6  ~ h(a,/3)~(a,/3) 6/1~ 0 (19) 

where 

a(I)(Ki + 1) 

21zi 

6 Conclusions  
The numerical schemes that are used to solve integral equa- 

tions describing the elastostatics problems of finite length cracks 
close to a bimaterial interface are not accurate when the relative 
distance 6 from the •crack tip to the interface becomes very 
small. An asymptotic analysis has been developed that provides 
accurate stress intensity factors for such problems and gives 
insight into their rate of change as 6 -* 0. For the case of a 
crack approaching or penetrating a bimaterial interface, it has 
been shown that the stress intensity factor at the leading crack 
tip approaches its limiting value at a slow rate. These results 
suggest that propagation criteria for such problems are associ- 
ated with nonlinear processes. The technique presented in this 
paper can be used to solve a class of problems in which a small 
parameter leads to an unstable direct numerical solution of the 
governing equations. 
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Let 

A P P E N D I X  

2/zt 
Ai - (i = 1, 2) 

It(1 + ~ )  

a + /3  2 2 ( a - / 3 )  1 + a  
M =  1 _ / 3  z ,  N 1 + / 3  ; S =  1 - / 3 2 '  

p = a - / 3  2 2(a-/3___________). T =  1 - a  
1 - / 3  z ;  Q =  1 - / 3  ' 1 - f l  2; 

1 M {(y - ~ )N .  
K i i ( ~ ,  y) - + - -  + 

y - ~  y + ~  

K,2(~, y ) =  S I - - - L - -  2/3 ~-----~-----] ' 
Y ~ (3' ~)2 , 

(y + ~)3 , 

K21(~'Y) = T[---~---+ 2 / 3 - - - ~ 1  ~ (Y 

K=(~, y) - ~ P ~(Y - ~)Q (A1) 
y _ ~ y + ~ (y + ~ ) 3  

The following procedures were used to solve the integral equa- 
tions numerically. 

Crack of  Length 2a at Distance 5 From the Interface 
(3  -> O) 
The integral equations for this case are 

f 
6 + 2 a  

a ,  b(~)Kll(~,  y)d{ = -~r iI) 
o 6  

f ~+2. b ( O d ( = O  6 - < y , ~ - < 6 + 2 a  

The case 6 = 0 corresponds to a crack impinging on the inter- 
face. For the numerical computation these equations are ren- 
dered in nondimensional form and normalized in the interval 
[ - 1 ,  1] by means of the transformations 
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t = { - ( a + 6 ) . ,  { = y - ( a + 6 ) ;  
a a 

a(1)(~1 + 1) 
6 -  2#1 

The nondimensional stress intensity factor at the crack tip clos- 
est to the interface is given by 

where 

and 

kt ~1 + 1 0b(-1); 6 = 0 (A3) 
h ( a ,  /3) = a(l)x[TrTra~ 21 z, 

K, = b ( - 1 ) ;  6 > 0 (A4) 
g ( a , / 3 )  = cr ( l )~a l /2  

2~1 1 1 + a 
tp . . . .  [1 - 2/3(k - 1)] 

~1 + 1 sin (X~r) 1 -/3~ 

b ( t )  = b( t ) (1  + t)x(1 - t) ''2 

is the regular part of the dislocation density (X = ½ when 6 > 
0). For the numerical solution of (A1),  two methods were 
compared./~ (t) in the first method is represented as a truncated 
series of Jacobi polynomials (Erdogan et al., 1973), while in the 
second method it is expressed in terms of piecewise quadratic 
polynomials (Miller and Keer, 1985). The results shown a 
faster convergence for the latter method for which 64 integration 
points were necessary to capture three significant figures, versus 
400 integration points necessary for the first method. 

Semi-infinite Crack Whose Tip is at Distance 6 From 
the Interface 

The singular integral equation is the same as the first (A2) 
except that the upper limit 2a is replaced with oo. The unknown 
dislocation density is represented in real coordinates as 

b(~)  = 2 ~ ( (  - 6)'/2~ x b ( ( )  + w(~)~b -~ (A5) 

with the additional condition l im/~(()  = 0 replacing the crack 

closure condition that appears in the second Eq. (A2).  As dis- 
cussed by Rubinstein (1992), this representation stabilizes the 
singular integral equation, w(~) is a function of the type 

With the change of variables ~ = 26/(1 - t ) ,  y = 26/(1 - ~) 
(A4) is normalized in the interval [ , 1 ,  1]. 

By extracting the dominant term of the singularity of the 
resulting equation, the nondimensional ratio of the local and 
far-field stress intensity factors is determined as 

f ( a , / 3 )  = K~ 6×_~n = /~(-1) .  ( a 7 )  
k, 

Crack of Length 2a Extending Through the Interface 
by 6 ( ~  -> 0)  

The set of coupled singular integral equations is given in (14) 
with A~ and K 0 defined in (A1).  The compatibility condition at 
the interface is given in (15). The normalized nondimensional 

form of (14) and (15) is attained by means of the transforma- 
tions 

tl = ~ - a , '  ¢1 = y - a , '  ~bl = -  or(l)(1 + Kl),. 

a a 2/z1 

t2 = - ~ + b .  ~2 Y + b (/)2 O" (2)(1 + K2) - - ,  = - - - ;  = - 
b b 2/.z 2 

that lead to the following representation of the dislocation densi- 
ties: 

b(l)(tl)  = /~'(1)(ti)(1 - ti)-l/2(1 + ti)~; 

b(2)(t2) = b(Z)(t2)(1 - h)-1/2(1 + tz) u (A8) 

where 

c = b / a .  

The nondimensional stress intensity factor at the crack tip 
closer to the interface is then given by 

K, 
g*(a , / 3 )  - o.(i)xf- ~ 

_ 2u--~bll ~/1 2c+ c 11 _+ aa b(z)(1)i (A9) 

Semi-infinite Crack Whose Tip is at Distance 8 Beyond 
the Interface 

The equations for this case are similar to the first two Eqs. 
(14) with the upper limit 2a replaced with oo, and Eq. (15). 
The third Eq. (14) is replaced by the following condition that 
stabilizes the integral equations and insures uniqueness of the 
solution: 

lira ff t)(~) = 0. 

The dislocation density functions have the form 

kl 1 [•1 + 1/~(,)(() + Wl(()[//_l ] 
b(')(~) = ,~7 (~ + 6)~-"(" L 2ui 

k~ K2 + 1 /~(2)(~) 61/2+"-x (A10) 
b(=)({) = 2 ~  2#2 ( -{)~ ' (6  + ~)1/2 

where w~({) is a function of the type 
. = + 1 - i  

wl(<~)  = sm LT / ( A l l )  

The normalized form of the set of equations is attained through 
the change of variables 

tl = ~ -  6 y -  6 2~ + 6 2y + 6 
~+----6; ¢ ' = - - ; y + 6  t 2 = - - ; 6  ¢ 2 = - - f i  

By extracting the dominant term of the crack-tip singularity, 
the nondimensional ratio of the local and far-field stress inten- 
sity factor is then given by 

f * ( a , / 3 )  = K/6x_1/2 = ffz)(1).  (A12) 
k, 

The crack-opening displacement at the interface is given by 

r? = - B2 (~ )d~  = ~ B2(t2)dt2 
6 1 

_ 1 + Kl k~61_X~(oz,/3) (A13) 
2#~ 

Journal of Applied Mechanics SEPTEMBER 1995, Vol. 62 / 619 

Downloaded 04 May 2010 to 171.66.16.28. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



H. M. Jensen 
Department of Solid Mechanics, 

Building 404, 
Technical University of Denmark, 

DK-2800 Lyngby, Denmark 

M. D, Thouless 1 
IBM Research Division, 

T, J, Watson Center, 
Yorktown Heights, NY 10598 

Mem. ASME 

Buckling Instability of Straight 
Edge Cracks 
A buckling instability in a system where a straight edge crack lies at the interface 
between a thin elastic film and a substrate is analysed theoretically and experimen- 
tally, The buckling, which can occur also under remote tensile loads, may result in 
crack growth before the conventional criterion for  fracture is met on the straight 
crack front by enhancing the mode adjusted crack driving force. I f  crack growth 
occurs, buckling will cause a wavy crack front to develop. 

1 Introduction 
If the stress within a film, coating or laminate attached to a 

substrate has a compressive component, then delamination can 
occur by a mechanism of buckling-assisted crack growth (Chai 
et al., 1981; Evans and Hutchinson, 1984). In this process, 
buckling of the film over an interracial flaw provides a driving 
force for crack propagation along the interface. This mechanism 
has been analysed by a number of authors for the case in which 
the flaw is situated away from the edge of the laminated system. 
In practical cases though, the most likely location for a flaw is at 
the edge of the film. Such flaws may be introduced by handling, 
contact stresses along the edge of the substrate, or by dicing 
when a large coated system is cut into smaller components. It 
is the purpose of this paper to discuss some aspects of the 
initiation of delamination from this type of flaw. 

The geometry considered is sketched in Fig. 1. A crack lies 
at the interface between an isotropic, elastic film and substrate. 
The crack front is assumed to be initially parallel to a stress- 
free edge, and when the crack propagates it runs away from the 
free edge. Furthermore, it is assumed that the interface has a 
sufficiently low toughness compared to the surrounding materi- 
als that the crack always remains at the interface. Two distinct 
regions can be identified: a bonded and a debonded zone with 
the crack front at the boundary between these two zones. If it 
is assumed that the width of the system is large compared to 
the crack length, a, which in turn is large compared to the film 
thickness, h, and it is assumed that a homogeneous, biaxial 
stress state (cry, asy ) exists in the bonded film, and friction 
between the cracks faces can be neglected, then the stress state 
in the debonded film can be shown to be 

ay*~ = 0 

0".*~ ~ - - C 7 "  : O'xx - -  I)O'yy ( 1 )  

where u is Poisson's ratio of the film. When the crack length 
is much larger than the thickness of the film, the energy release 
rate, Go, for the crack exhibits a steady-state value which is 
independent of a. This steady-state energy release rate can be 
calculated from the difference in the strain energies ahead and 
behind the crack front: 

1 - -  /.,,2 
Go = - -  h~ry~ (2) 

2E 
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where E is the Young's modulus of the film. It should be noted 
that Go is independent of the elastic properties of the substrate 
and the stress components in the x-direction. The condition for 
crack propagation along the length of the debonded zone is 

1 - /2 2 
- -  hcry2y = F ( 3 )  

2E 

where F is the toughness of the interface under the appropriate 
stress state. The condition given by Eq. (3) is the same irrespec- 
tive of whether Oyy is compressive or tensile. However, the 
value of F may change; typically, it is much larger when Oyy is 
compressive. A detailed analysis of the crack-tip stress field 
shows that under these conditions the crack surfaces near the 
tip are forced into contact, and frictional effects can be expected 
to increase the toughness (Stringfellow and Freund, 1993; 
Thouless et al., 1992). 

The sequence of photographs in Fig. 2 show experimental 
results for the apparent shape of an edge flaw in a model system 
consisting of a mica film bonded to an aluminium substrate. 
The compressive stress in the mica is constant for all three 
micrographs, but the size of the flaw is different. Details of the 
experimental procedure are given below, but it can be seen that 
an edge flaw develops a characteristic wavy shape at some 
critical size. The instability is caused by an out-of-plane buck- 
ling of the film from a compressive stress in the delaminated 
region. It will be seen that an important consequence of the 
buckling is that it causes a nonhomogeneous stress state to 
develop at the crack front, resulting in regions for which there 
is an enhanced tendency for delamination. 

2 Buckling Analysis 
The assumption that the crack length is large compared to 

the film thickness allows the delaminated region to be treated 
as a thin plate clamped to the substrate at the crack front. In 
the following, nonlinear von Kfirmdn plate theory is employed. 

2.1 Classical Buckling. If ors is compressive, buckling 
of the film may occur at sufficiently large crack lengths. The 
shape of the buckling mode for a wide plate, neglecting effects 
of contact between the film and the substrate, is w(x,  y) = 
w(y)  cos (27rx/L), where L is the wavelength. The governing 
equation for the normal deflection w(y)  in nondimensional form 
(introducing y = y/a  and ff = w/h)  becomes 

~ . .  _ 2~¢2~, , + ~41~ : 12(1 - uZ)a2cr * ~zff~ (4) 
Eh z 

where ( )' = d( ) /dy and k = 27talL. The clamped/free 
boundary conditions consistent with the assumption a >> h are 

u3" - ukzff = 0, ~ . . . .  (2 - u)~:zu~ ' = 0 at free edge (5a) 

= 0, ~ '  = 0 at crack front. (5b) 
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Fig. 1 Geometry for the plane-strain edge crack 

The solution to the eigenvalue problem in a* described by (4) 
and (5) is a function of normalized wavelength and Poisson's 
ratio only, i.e., 

a * = f  _L u , a ~ =  (6) 
~ \ a '  12(i--~ ~) 

The variation of a*la~ with L/a  is shown in Fig, 3 for three 
values of u. The minimum buckling stress occurs at a finite 
wavelength which agrees with the observations in Fig, 2. From 
Fig, 3 using the value u = ½, buckling of the film will occur if 
the normalized stress in the delaminated film exceeds the mini- 
mum buckling stress, which is 

~*/c% ~ 1.24 at L/a  ~ 3.3. (7) 

2.2 Buckling and Post-buckling Under Contact. The 
results in the previous section neglect the unilateral constraint 
from the substrate. To investigate this effect and to predict the 
post-buckling behavior, a full nonlinear numerical analysis was 
carried out taking contact into account. 

The basis for the numerical method is the principle of virtual 
work in incremental form for the plate of area A : 

f fa [AAt'~6E'~ + AN,~,w,,~6w,a + N°,~,.,~6w,, 

+ ~I,~K,~a]dA = ffa [lq°~6E'~ + N,~6E,~a 

+ M,~6K,~] da  (8) 

where ( " ) denotes an increment, N ~  are the effective mem- 
brane stresses, and AN,~ denotes changes relative to the pre- 
stressed state, o o N.~, (i,e., N.~ = N.~ + AN.E). Furthermore, in 
(8),  M~, are the bending moments. The strain measures, E~, 
and K~,, are related to the plate displacements by 

10 mm edge m'ack frontl 

Fig. 2 Sequence of micrographs showing the shape of edge flaws of 
increasing size in a mica/aluminium system (h ~ 36 p,m, ¢ ~ 97 MPa) 
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Fig. 3 Variation of normalised buckling stress with wavelength for three 
values of Poiaaon's ratio for the film 

E a ~  ] = -~(v,~,, + va,~ + w aw,~) 

K ~  = w.~z (9) 

where v~ are the in-plane displacements in the x and y-direc- 
tions, respectively. In the numerical procedure, (8) is discret- 
ized by a FEM/Rayleigh-Ritz method of the type described in 
Jensen (1988). Some of the details involved in the analysis are 
described in Appendix B. 

In Fig. 4 a comparison of the classical buckling stress with 
the numerical prediction obtained when the effects of contact 

1 are included is shown for u = 7. This indicates that buckling 
of the film will occur if the normalized stress exceeds a critical 
value given by 

cr*/ac ~- 1.67 at Lla  ~- 2.6. (10) 

This is approximately a 35 percent correction to the results of 
Eq. (7).  

The changes in the membrane stress AN = ANyy - hayy and 
the bending moment M = M ,  along the crack front can also be 
obtained from the numerical calculations for the post-buckling 
regime. The energy release rate and the phase angle of loading 
at the interface crack tip is then given by (Suo and Hutchinson, 
1990) 

6(1 - u2) [ h2 1 G = E'~3- ~ AN2 + M2 l l a )  

tan ~v + 1 ~  M / ( h A N )  
= ( l l b )  

tan ~0 1 - tan w 1 ~  M / ( h A N )  

where w has been tabulated by numerical methods in Suo and 
Hutchinson (1990) as a function of the elastic mismatch for 
the bimaterial system. The ratio M~ ( h A N )  determines the phase 
angle of the crack-tip loading; if M / ( h A N )  < 1 / ( 1 ~  tan or) 

5.00*/Oc 

4.5 uniloterol bucklin 9 v=1/3 

Z0 2.5 ~ . ~  ~ . ~ .  ses 

1,5 
1.0 L/o 

2 3 4 

Fig. 4 Comparison of the buckllng stress including effects of contact 
and the classlcal buckling stress. Typical variations with x for fixed y of 
the normal deflection are indicated. 
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Fig. 5 Variation along the crack front of (a) normalised energy release 
rate and (b) ratio of effective crack-tip loads. Symmetry conditions are 
specified at x = 0 and x = LI2 and the stress state is aqui-biaxial com- 
pression. 

with M > 0 and AN > 0, the crack sides are in contact over 
distances comparable to the film thickness. Contact of the crack 
faces within a film thickness from the tip dueto the oscillations 
of the near-tip fields cannot be treated with the proposed numeri- 
cal method. It is seen that the stress state in the bonded zone 
has to be specified in order to calculate the crack-tip quantities 
(11). In the following, equi-biaxial compression is assumed 
(era = -~r, ~ryy = -or)  and Poisson's ratio of the film is set to 

l /// = ~. 

Figures 5(a)  and 5(b) show the variation of G/Go and M~ 
hAN along the crack front at two values of stress in the post- 
buckling regime. The variations are shown over the half wave- 
length analysed (with symmetry conditions specified at x = 0 
and x = L/2). The maximum values of G/Go and M/(hAN) 
along the crack front are shown in Figs. 6(a)  and 6(b) as 
functions of o'/crc for three values of L/a. The significance of 
the buckling instability is clearly demonstrated by Fig. 6; at the 
stress or/at = 3.05 which is only 20 percent above the buckling 
stress for L/a = 2.6, the energy release rate has already in- 
creased 37 percent compared to the plane strain value (2). 
Furthermore, the ratio M/(hAN) has increased from 0 to 0.19, 
and experimental results in Thouless et al. (1992) show that a 
such increase in M/(hAN) may result in a decrease of the 
toughness F in (3) by as much as a factor 0.5. 

3 E x p e r i m e n t s  

Three distinct sets of experiments were conducted; the first 
examined buckling in the absence of contact between the film 
and the substrate, the second examined the effect of substrate 
contact on buckling, and the third examined the mechanisms 
of delamination from an edge flaw. The system for all these 
experiments consisted of a thin sheet of mica bonded to a rela- 
tively thick block of aluminium by a thermosetting resin. Owing 
to the thermal-expansion mismatch between mica and alumin- 

ium, an equi-biaxial, compressive stress ( ~  = -or, Cryy = -or) 
was induced in the bonded portion of the mica by cooling from 
the bonding temperature. The magnitude of this compressive 
stress was determined by measuring the curvature of a system 
consisting of mica bonded to a thin substrate by the same resin 
(Hutchinson et al., 1992). Mica is a particularly suitable mate- 
rial for the film in these model systems as it is transparent, 
elastic, relatively tough in a direction normal to the plane of 
the film, and it can be obtained in large sheets of very uniform 
thickness. 

In the first set of experiments, a portion of the mica overhung 
the substrate by a distance a. When a was large this cantilevered 
portion buckled as shown in Fig. 7 upon cooling to room tem- 
perature. The wavelength of the buckling was measured opti- 
cally for the different thicknesses of mica and for various values 
of a. The results are plotted in Fig. 8, which show the conditions 
required for the onset of buckling and the variation of the wave- 
length with ~7"/~c. Included in the figure is the prediction from 
Section 2.1 since there was no contact with the substrate. 

In the second set of experiments, the mica did not overhang 
the substrate. Instead, a region of delamination was introduced 
up to a predetermined distance a by means of a razor blade 
inserted into the resin (Fig. 1 ). The sense of the mode II compo- 
nent drives such a crack to the mica-resin interface. Micrographs 
of the delaminated system after the razor blade had been with- 
drawn are shown in Fig. 2. It should be emphasized that no 
delamination took place in these experiments except for that 
introduced by the razor blade. The delamination front was ap- 
proximately straight when introduced; other than some possible 
healing, it is still straight in all the micrographs in Fig. 2, and 
is located approximately at the maximum extent of the wavy 
profiles. The apparent waviness at the two largest crack lengths 
in this figure is caused by the crack faces being forced into 
contact over a portion of the delaminated region owing to exten- 
sive buckling. When buckling occurred, the profile could be 
examined by running a stylus over the surface of the mica, and 
a typical example of the profile is shown in Fig. 9. The wave- 
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Fig. 6 Variation with compressive equi-biaxial stress of maximum val- 
ues obtained along the crack front of (a) normalised energy release rate 
and (b) ratio of effective crack-tip loads 
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1 0  m m  *. . " 
Fig. 7 Micrograph showing buckling of the mica film due to compres- 
sion. There is no contact between the film and the aubstrate. The system 
is viewed edge on (h ~ 28 #m, ~ ~ 97 MPa, a ~ 2.5 mm). 

length of the buckling was measured optically and the results 
are plotted in Fig. 10. It should be noted that the criterion for 
the onset of buckling agrees very well with that predicted by 
the theory of Section 2.2. The initial wavelength, L = 2.6a, is 
also in excellent agreement with the experiments. 

A final set of experiments examined the growth of an edge 
delamination under conditions of a gradually increasing equi- 
biaxial, compressive stress. Two distinct types of behavior were 
observed dependent on which of the conditions (3) or (10) 
was met first. When the initial delamination was small, crack 
propagation occurred simultaneously over the entire front. 
When the initial delamination was larger, the front did not move 
but, instead, tunnels of delamination developed at isolated por- 
tions along the front. The measurements made of the stress 
required to propagate the edge flaw are published in a compan- 
ion paper (Thouless et al., 1994), but they show that there are 
circumstances under which delamination along the entire crack 
front can occur before the condition for buckling is met. This 
type of failure appears to be one of pure mode II crack growth 
with crack-tip closure. In contrast to this mechanism, delamina- 
tion can occur at much lower stress levels if the buckling crite- 
rion is met before crack growth occurs. 

24 

~a 

z 

0 
0.1 0.5 1 5 10 20 

Normalised stress, o°/oc 

Fig. 8 Measured wavelength as a function of equi-biaxial compressive 
stress in the absence of contact between film and substrate. The lower 
set of data corresponds to what were clearly identifiable as higher-order 
buckling instabilities. The points marked with diamonds correspond to 
cases where buckling was not observed. 

. 

E 

~2 

h = 40pro 
o = 3.7"/0,2mm 10 ~m A I 

12 
horizontal distance, × 

Fig. 9 Typical buckling profile of the mica film under the influence of 
contact between the film and aubstrate 

4 Discussion 
An edge flaw in a film which is subjected to either tension 

or compression can propagate when the energy-release rate 
equals the appropriate interfacial toughness (Eq. (3)). This is 
a very well-known result for a tensile film, and edge delamina- 
tion has long been recognised as an important failure mecha- 
nism. That the same mechanism can also operate when the film 
is under a compressive stress is less well appreciated, owing to 
the fact that a mechanics analysis indicates that the crack tip is 
closed under such conditions. This crack-tip closure means that 
the crack is subjected to a pure mode II deformation with exten- 
sive frictional effects at the tip which can be expected to in- 
crease the apparent interracial toughness dramatically. How- 
ever, if the geometry is such that the buckling condition (10) 
is met before crack propagation occurs, then a transition in the 
failure mechanism can result in a lower delamination stress. 

Once buckling has occurred, not only is the crack-driving 
force enhanced over portions of the crack front (Fig. 5 ( a ) ) ,  
but there are local regions where the film-is lifted from the 
substrate resulting in the crack tip being open rather than closed 
(Fig. 5 (b)).  These perturbations in the stress state are responsi- 
ble for the development of local areas of delamination after 
buckling which can eventually grow to cause failure of the 
coated system (Thouless et al., 1994). Edge crack buckling was 
apparently observed in Campbell (1990) in a system where 
sapphire was coated with SiC. Associated crack growth was not 
reported. 

From Figs. 8 and 10, the experiments indicate that the value 
of L / a  decreases at very high values of a*/ac .  This decrease 
is probably caused by the onset of higher order instabilities that 
are beyond the scope of the analysis. From Fig. 6 it is seen 
that for relatively moderate post-buckling stresses there is no 
tendency for shorter wavelengths than L / a  = 2.6 to release 
more energy at the interface crack tip, and thus they are not 
more likely to be observed. A post-buckling analysis, however, 
based on the numerical method described in Appendix B, in 
which a search for solutions not satisfying symmetry conditions 

4 I , . . . . . . . .  I 

S 

o 
Z 

no buckling 

10 -1 100 101 102 
Normalised stress, o*/o r 

Fig. 10 Measured wavelength as a function of equi-biaxial compressive 
stress under the influence of contact between the film and substrate. 
The points marked with diamonds correspond to cases where buckling 
was not observed. 
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at x = 0 or x = L/2  was performed, showed such secondary 
bifurcations at stress levels 72 percent higher than the first 
bifurcation stress in the absence of contact. This result is in- 
cluded in Fig. 8 showing good agreement with experiments. It 
should also be noted that including into the numerical calcula- 
tions some residual component of a ~  in the delaminated region, 
due to friction between the film and the substrate, had a tendency 
to increase the critical stress (10) while decreasing the L / a  
ratio at buckling. 

The discussion of the previous paragraphs has been devoted 
to delamination under an equi-biaxial stress state, as is appro- 
priate for applications involving thin films. However, similar 
issues are pertinent for the delamination of composites which 
may be subjected to applied loads in addition to any residual 
stresses that may be present. In particular, Eq. (1) shows that 
buckling may be involved even if the remote stress components 
are tensile; i.e., buckling above an edge defect must be consid- 
ered if cr~ < uayy. Similar failure mechanisms to those in Sec- 
tion 3 were observed experimentally for the same model system 
subject to combinations of residual stress and plane-strain bend- 
ing for which ~ < Uayy but it was not studied systematically, 
since it appeared to be similar in detail to the equi-biaxial re- 
sults. 

The nonstraight crack growth resulting from the buckling 
instability is studied in detail in Thouless et al. (1994) where 
it is seen that it has visual similarities with the Taylor instability 
which can occur in an adhesive interlayer (McEwan and Taylor, 
1966, Fields and Ashby, 1976 and Conley et al., 1992). How- 
ever, the mechanisms causing these two instabilities are entirely 
different and, since they can occur in identical systems, caution 
should be taken not to mistake them. This holds especially for 
cases where buckling is induced by remote tensile loads. 

Finally, it is noted that the condition (10) is independent of 
whether the edge crack lies at an interface; buckl ing--and from 
this the enhancement of the energy release rate (Fig. 5 ( a ) ) -  
should be considered also for edge cracks in homogeneous 
materials. 

Suo, Z., and Hutchinson, J. W., 1990, "Interface Crack between Two Elastic 
Layers," International Journal of Fracture, Vol. 43, pp. 1-18. 

Thouless, M. D., Hutchinson, J. W., and Liniger, E. G., 1992, "Plane-strain, 
Buckling-driven Delamination of Thin Films: Model Experiments and Mode-II 
Fracture," Acta Metallurgica et Materialia, Vol. 40, pp. 1281-1286. 

Thouless, M. D., Jensen, H. M., and Liniger, E. G., 1994, "Delamination from 
Edge Flaws," Proceedings of the Royal Society of London, Vol. A447, pp. 
271 - 279. 

A P P E N D I X  A 

In-Plane Crack Perturbation Analysis 
For completeness, a perturbation analysis of the straight edge 

crack is given in this appendix to verify that buckling is the 
only mechanism causing the observed instabilities. As stated 
earlier, the interface is assumed to have a sufficiently low tough- 
ness that the crack remains at the interface. Assume no buckling 
has occurred, and that the crack front is perturbed by 

y P ( x ) = a [ 1  + e cos ( ~ ) 1  (A1) 

where e (e ~ 1 ) is the perturbation amplitude, and ( )P refers to 
state variables in the perturbed region. The in-plane equilibrium 
equations and the clamped/free boundary conditions consistent 
with h ~ a are (Jensen, 1993) 

crP~,~ = 0 (A2a)  

1, = ~r~y= 0 at free edge (y  = 0) (A2b) c r~  

v~ = 0, v~=-aey°y at crack front(y  = a) (A2e)  

0 is the strain in the unperturbed delaminated region. where eyy 
The solution to (A2) can be obtained in closed form and the 
energy release rate along the perturbed crack front is calculated 
from ( l l a )  and is given by 
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2rl(e 2~ - 1 - 2~e ~) 
g =  

(1 + u ) ( u  - 3)(1 + e 2") 
- e~[10 - 4u + 2u 2 + r?2(1 + u) 2] 

(A3) 

where ~ = 7ra/L. The in-plane perturbation introduces no bend- 
ing moment at the crack front and thus no change in the phase 
angle of loading to lowest order in e. The stable mode is there- 
fore given by the value of r/which releases the most energy at 
the crack tip. Inspection of g in Eq. (A3) shows that g < 0 for 

> 0 ,  andg  = 0 f o r t 7  = 0 f o r a l l u w h e r e 0 ~  u ~ ½ .  The 
lowest order contribution to Go is therefore always negative for 
any perturbation of the straight crack front that advances ahead 
of this front, and the straight-sided shape of the crack front 
must always be stable prior to buckling (assuming linear elastic 
material behavior). 

A P P E N D I X  B 

Numerical Formulation 
In the numerical procedure, the incremental form of the prin- 

ciple of virtual work, (8),  is formulated using displacements 
as free variables. By a combination of (9) and Hookes law, (8) 
is discretized in displacement space. The variation with x of all 
the displacements is represented by four Hermitian cubics H~ (s) 
(0 -< s -< 1) in N (typically 20) subelements. Only a half- 
buckling wavelength is analysed, i.e., 0 ~ x -< L/2,  and symme- 
try conditions at x = 0 and x = L / 2  are specified. The variation 
of displacements in the y-direction is represented by J (typically 
seven) Chebyshev polynomials Tj(t) ( - 1  --< t -< 1) modified 
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to meet the clamped-free boundary conditions at t = 1 and t = 
-1 ,  respectively. This means that in each subelement 

(~}= ~ ~ ~v!~ Tj(t)Hi(s)(1-t)( 1 ) 
,=l j=0 lw'JJ 1 - t ' (B1) 

The integrations in (8) are performed numerically with four 
Gauss integration points in the s-direction in each element and, 
typically, 16 Gauss integration points in the interval - 1  ~_ t 
--< 1. 

In (8), the terms on the left-hand side contribute to the FEM- 
stiffness matrix and the right-hand side gives the loads. The last 
two terms on the right-hand side of (8) are equilibrium correc- 

0 tion terms. It is seen that the prestresses, N,~, result in a sym- 
metric contribution to the stiffness matrix and, additionally, a 
load term. 

Contact between the film and substrate is modelled by treat- 
ing the substrate as an elastic foundation acting only if the film 
deformations are negative (penetration into the substrate). The 
stiffness is chosen to be sufficiently high that the negative defor- 
mations of the film are negligible compared to outwards deflec- 
tions. Frictionless sliding between the film and substrate is as- 
sumed to occur in the contact zone. 

The bifurcation stress is found for a given value of L/a by 
initially adding a small imperfection to the system. Increments 
of either stress or displacement are then specified until the bifur- 
cation point has been passed. The imperfection is then removed, 
and the sign of the specified increment is reversed. In this way, 
the bifurcation point is approached via the post-buckling path, 
as shown schematically in Fig. B 1. For the case of a vanishing 
substrate stiffness, the numerical results are in very close 
agreement with the analytical results of Section 2,1. 

This procedure for finding the bifurcation stress is repeated 
for different L/a ratios until the stress reaches a minimum value 
(at L/a = 2.6 for v = ½ cf. Fig. 4). As indicated in Fig. 4 larger 
values of L/a increases the contact area without affecting the 
bifurcation stress or the deformation in the film which has lifted 
off the substrate. In practice, this part of the curve would not 

• ~ imperfection 
o/oj . . , , ' /  remo~e~ 

J ~ imperfection 
L inctuded = 

w/h 

Fig. B1 Illustration of the numerical method used to find the bifurcation 
stress for a geometrically constrained problem 

be observed because the flat parts of the film will be critically 
stable in the sense that any small imperfection would trigger a 
new buckle. 

The algorithm for finding the bifurcation stress differs from 
that suggested by Nilsson et al. (1993) where an iterative proce- 
dure is formulated starting with the buckling mode in the ab- 
sence of contact. An attempt to compare the two algorithms has 
not been made. 

The numerical calculation of the secondary bifurcation 
stresses discussed in Section 4 and shown in Fig. 8 are carried 
out for the case of buckling without contact between the film 
and the substrate, only. This means that only one quarter of a 
buckling wavelength needs tO be considered under the boundary 
conditions 

01 = 9 2 ~ = ~ = 0  at x = 0  

0 1 = 0 2 ~ = w = 0  at x = L / 4 .  (B2) 

At each step in the incremental loading procedure, the sign of 
the determinant of the FEM-stiffness matrix is checked under 
nonsymmetric boundary conditions. For v = ~ and L/a = 3.3, 
initial bifurcation occurs at cr*/crc = 1.24 (Eq. 7) and secondary 
bifurcation occurs at cr*/crc = 2.13 in a mode satisfying the 
following boundary conditions: 

01~ = 02=  w = 0  at x = 0  

01~ = 02=  W ~ = 0  at x = L / 4 .  (B3) 
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Some Observations on Yield 
Surfaces for 304 Stainless Steel 
at Large Prestrain 
Experiments to study the yield surface of 304 stainless steel with either 20 percent 
tension or 20 percent shear prestrain have been conducted. Explicit transformation 
equations have also been derived to convert the experimentally determined first Piola- 
Kirchhoff stress components into the Cauchy stresses and the second Piola-Kirchhoff 
stresses for combined axial-torsional experiments. It has been found that, in the 
phenomenological approach, the stress measure and the definition of yield have 
significant effect on the degree of anisotropy of strain-hardening. In particular, the 
strain-hardening rule is extremely complicated if the second Piola-Kirchhoff stress 
is used. Also, the equivalent stress-strain curves have been investigated by means of 
different stress measures. 

1 Introduction 
The yield condition is one of the most important properties in 

the study of elastic-plastic deformation. This condition presents 
itself in the form of yield surface in the stress space. Previous 
investigators have shown that the yield surface translates and 
distorts from the initial state when it is subjected to preloading 
histories. Typical experiments to determine the yield surfaces 
are reported in Ivey (1961), Mair and Pugh (1964), Phillips 
and his co-workers (1972, 1973, 1974, 1984), Marjanovic and 
Szczepinski (1975), Shiratori et al. (1976), and Wu and Yeh 
(1991). Because of the small strain range and the small proof 
strain (or deviation from lineafity) definition of yield, almost 
no cross effect was found in the cited experiments under axial, 
shear, or combined axial shear prestrain histories. The amount 
of translation and the degree of distortion of yield surface is 
determined by the loading path and the extent of loading. 

In the finite deformation range, even though the strain harden- 
ing and anisotropy during plastic deformation are determined 
uniquely by the dislocation and texture development of the 
material, there are two major factors affecting the size, shape, 
and translation of yield surface, if the yield surface is being 
determined by use of the phenomenological concept as it has 
been done in the aforementioned experiments in the small strain 
range. The first factor is the stress measure. When the axial 
strain is large and the cross-sectional area changes, the differ- 
ences among stress measures (the Cauchy, the first Piola-Kirch- 
hoff, and the second Piola-Kirchhoff stresses) are then signifi- 
cant. The second factor is the definition of yield. Methods (Lode 
extrapolation, proof strain, and proportional limit) for determin- 
ing the yield point and the magnitude of proof strain for judging 
the occurrence of yield may also strongly influence the shape 
and size of the yield surface. This point is of interest, since in 
the case of large strain, the elastic strain is usually negligible. 
And, in this case, question arises as to whether a proof strain 
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of five microstrain (/.zc = 10 -6) should be used to define yield 
as in the case of small deformation or should a larger amount 
of proof strain be used? Both factors affect the evolution rules 
for isotropic and kinematic hardening from the phenomenologi- 
cal view point. 

In this paper, we investigate the translation and distortion of 
yield surface either subjected to a 20 percent axial or 20 percent 
engineering shear prestrain for 304 stainless steel. Based on the 
transformation equations among stress measures to be pre- 
sented, the experimental data of Wu and Yeh (1991) and some 
new experimental data by us, we present the initial and subse- 
quent yield surfaces in the stress space of different stress mea- 
sures. We shall refer to these yield surfaces as the Cauchy yield 
surface, the first Piola-Kirchhoff (or 1st P-K for short) yield 
surface and the second Piola-Kirchhoff (or 2nd P-K for short) 
yield surface. Based on the transformation equations, it is found 
that significant differences in the yield surface of different stress 
measures exist even when the axial prestrain is only of a moder- 
ate amount of 20 percent. These differences increase with the 
increasing amount of prestrain. Furthermore, we found a rota- 
tion in the 2nd P-K yield surface in the case of pure shear 
prestrain. This effect is not generally known and may have 
significant consequences in the quest for a hardening rule for 
yield surface. 

Even though the physics of plastic deformation is indepen- 
dent of the stress measure, the use of different stress measures 
to provide different representations of the same phenomenon do 
call for consistent descriptions for all aspects of the constitutive 
equation, i.e., the hardening rule of yield surface and the flow 
rule may depend on the stress measure as well. These problems 
should be further investigated. 

The equivalent stress of each stress measure for tension or 
pure torsion has also been determined and used to demonstrate 
the anisotropic rate of strain hardening, i.e., the rate of strain 
hardening with axial prestrain is different than that with shear 
prestrain. Different amounts of proof strain used to define yield 
have also been shown to significantly affect the extent of iso- 
tropic and kinematic hardening. 

2 Relations Among Stress Measures for Thin-Walled 
Tubes 

In this section, we establish relations among the stress mea- 
sures which will be used in the discussions related to the deter- 
ruination of yield surfaces by use of thin-walled tubular speci- 
mens. The following relations among the 1st P-K stress zr, the 
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2nd P-K stress P,  and the Cauchy stress or are usually found 
in the literature: 

o" = J - W ' ~ r  (1) 

P = r r ' ( F - ' )  r (2) 

where J is the Jacobian and F is the deformation gradient of the 
transformation that describes the deformation of the continuum. 
Notation ( ) r denotes the transpose of a tensor. From Eqs. ( 1 ) 
and (2) ,  we note that the deformation gradient F plays a major 
part and will be first determined. 

Considering the axial-torsion of a thin-walled tube, we use 
two sets of cylindrical coordinates ( X  ~ , X z, X 3) = (R, O, Z )  
and (x l, x 2, x 3) = (r ,  0, z) to describe the undeformed and 
deformed status, respectively. The two sets of coordinates are 
related by 

r = /3,,R,,, - /32(R,,, - R ) =  (/3,, - /3z)Rm + /32R 

0 = 19 + ~o/33Z 

z = /33Z (3) 

in the range of R~ >- R .~ R0, where Rt and R0 are the unde- 
formed outer and inner radii, respectively; and r~ _> r -> ro, 
where r~ and r0 are the deformed outer and inner radius, respec- 
tively; /3m = ( r m / R m )  describes the stretch ratio of the mean 
radii which are denoted by Rm and rm in the undeformed and 
deformed status, respectively;/32 = ( h / H )  describes the stretch 
ratio of the wall thicknesses, which are denoted by H and h in 
the undeformed and deformed status, respectively;/33 = ( z / Z )  
describes the deformation in the axial direction, which is de- 
noted by Z and z in the undeformed and deformed status, respec- 
tively; and ~ is the angle of twist per unit deformed length and 
is related to the shear strain 2~7 by 

2~ 7 = rcp. (4) 

We note that if the value of/3~ (i = m, 2, 3) is greater than 
one, then it implies stretching; if it is equal to one, then there 
is no length change; and there is contraction when this value is 
less than one. Taylor and Quinney (1932) found that the hoop 
and radial strains are not equal for a thin-walled tube under 
combined tension-torsional loading condition. According to 
Taylor and Quinney, the values of/3,, and/3z are the same for 
the tension only condition but are different and depend on the 
constitutive equations used for the combined tension-torsional 
loading condition. Usually, the stresses in the experimental data 
are the physical components in the cylindrical-coordinates sys- 
tem, so that all stress components have the same unit. 

The physical components of deformation gradient F is found 
from (3) as 

° °] i0o r B2 0 0 
F =  ~ ~p/33r = /3~ 2~7/33 • (5) 

0 Bs J 
0 0 /33 

The last expression of Eq. (5) is found by considering the mean 
radius of the tube, where R = Rm, r = rm = /3mR~ and 2r/ = 
rm~O. It may be shown that Eq, (5) is same as that obtain by 
McMeeldng (1982). The inverse of the above matrix is 

01 F -~ = B m  I -Rm~o • ( 6 )  

0 /3~1 

When the material is incompressible, which is a reasonable 
assumption for metallic materials undergoing large plastic de- 
formation, the Jacobian is 

J =/32/33/3,. = 1. (7) 

We now proceed to find the relations among the components 
of o', ~r, and P.  For the case of thin-walled tube under axial- 
torsional loading condition, the stress states of ~ ,  7r, and P are 
given by their respective physical components as 

O" = 0 7" ~ = 71-00 

T O" 71" zO 

and p = pOO (8) 
pzO 

in which cr ~ = cr is the axial stress, which is equal to the axial 
force divided by 27rrmh; c~ °~ = ~ 0  = 3- is the shear stress, which 
is equal to the torque divided by 2~rr~h; ~r °° = 0 due to symme- 
try and a r* = 0 due to no surface tractions on both the inner 
and outer lateral surfaces of the tube. The last condition is 
an approximation, but it is justifiable when the wall is thin. 
Substituting Eqs. (5) ,  (6) ,  and (8) into (1) and (2) ,  we obtain 

o o ] 
,19" = /3m71 "00 + c oem/3m/337r zO /3m71 "Oz + qoRm/3m/337r "zz 

(9) 

0 0 0 7 

0 - 3 - R m 9 9  ~ (3- - -  ~oRn,/3mCY) 
~r = /3" ( 1 0 )  

_L 2_ 
0 /3~ /3~ 

and 

0 0 

7q" Oz 

J -  (71"°° - -  ~ORm/3m~'°z) ~ 3  (11) P =  /3m 
ZZ 

!/3,. ( ~,o _ ~Rm/3,o~=) 

The component 7r ~°, which equals the torque divided by 
27rRmHrm, and the component zr ~, which equals the axial force 
divided by 27rR~H,  are known quantities from experiment, 
where R,, is the mean radius of the tube in the undeformed 
configuration and an approximated rm may be obtained by mea- 
suring the deformed outer radius r~ and then subtracting H /  
2 from it. For convenience, most experimental results in the 
literatures are presented in terms of the 1st P-K stress compo- 
nents 7r = and 7r ~°. However, this is only of an approximated 
nature since r,, is not measured in most experiments. The current 
wall thickness h is very difficult to measure. 

The other components of ~r cannot be readily determined 
experimentally in the case considered. However, they may be 
expressed in terms of ~r z~ and 7r ~°. To this end, we obtain, from 
(8) and (9) ,  the following relations: 

cr °° = 0 = /3mTr °° + ~oR~/3m/337r ~° 12) 

cr Oz = 3- = /3mTr °z + tpRm/3m/3371 "zz 1 3 )  

cr ~° = 3- = flsrr z° 14) 

~r ~z = a =/33~r ~. 15) 

Equation (12) leads to 

"1'i -00 : --  ~ e m  /3 3 7r zO , 16) 
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By substituting Eq. (14) into (13), we obtain 

7r °z = In (/3:r ~° - tpR,./3m/3:rZ~). (17) 

/3,. 

Thus, all components of the 1st P-K stress may be determined. 
By using Eqs. (14) and (15), Cauchy stress components may 

be calculated. In view of Eq. (8), the state of Cauchy stress 
can be completely determined. It is seen that when the axial 
strain is equal to zero, i.e., t3 = 1, we have cr ~° = 7r ~° and cr ~z 
= 7r ~z. But if the axial strain is large, then the difference between 
the two measures can be large. These transformation equations 
are used in the next section where we compare theoretical pre- 
dictions of yield surfaces with experimental data. 

For the axial prestrain only condition, we have 3m equaling 
t2 (Taylor and Quinney (1932)). From Eq. (7), we then obtain 
the relations among fli as 

1 

(18) 

For the torsional prestrain only condition, all values of/~i's 
may be approximated by one. This may be estimated by use of 
experimental results of Wu and Xu (1989) for pure torsion of 
304 stainless steel. It has been found that for an angle of relative 
grip rotation of 32.5 deg, qo is 12.76 rad/m and the correspond- 
ing engineering shear strain is 10.3 percent, which gives rise to 
an axial strain e of 0.23 percent. By using Eq. (3), we found 
that t3 = 1.0023, which may be approximated by one in this 
case• Since the diameter of the thin-walled tube undergoes a 
small amount of change during pure torsion, we obtain the 
following approximated relations among fli: 

/3m ~ /32 ~ t3 ~ 1. (19) 

These relations will be used in the next section and will be 
further discussed. 
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3 Experimental  Determinat ion of  Yield Surfaces 
Experiments were conducted, by use of a computer-con- 

trolled, axial-torsional, closed-looped, electrohydraulic MTS 
materials test system. The same batch of annealed 304 stainless 
steel specimens as in Wu and Yeh (1991) was used in this 
investigation. Tubular specimens were machined from annealed 
25 mm (1 in.) round bars in an as-received condition. The 
specimens have a uniform gage section with enlarged ends. The 
gage section has a nominal dimension of 15 mm (0.6 in.) in 
the outside diameter and 1.3 mm (0.05 in.) wall thickness. More 
detailed information about the material and specimens may be 
found in Wu and Yeh (1991). 

Strain was measured by rosette strain gages applied on the 
exterior surface in the middle section of the specimens. All 
tests to determine the yield surfaces were strain-controlled at a 
constant strain rate of 5 × 10 -6 per second. 

We used the proof strain method to determine yield points. 
Yield is defined to occur when axial and torsional stress-strain 
curves deviate from the elastic line by a specified amount of 
proof strain A~ which is defined as 

A~ = x/Ae 2 + ~A~72 (20) 

where Ae is the axial and 2A~ 7 is the engineering shear plastic 
strain increment. We used A~ = 5 microstrains which was a 
very small strain and was sensitive to factors such as elastic 
moduli, the zero offset strain, the elastic domain, and the prob- 
ing path as discussed in Wu and Yeh (1991). The probing of 
yield surfaces followed the procedures described in that paper 
even though in the present case the prestrains were finite. 

Experiments were conducted for two loading paths. For each 
path, the initial and a subsequent yield surface were determined. 
These two paths are further described as follows: 

Path 1. Loading in the axial direction. The initial yield 
surface was first determined. The probing paths in the axial- 
shear stress space for the initial and subsequent yield surfaces 
for this path are shown in Fig. 1 (a).  The numbers in the figure 
denote the sequence of yield point probing. 

After completed the determination of the initial yield surface, 
we switched the control mode of test machine from "strain" 
to "stroke." The specimen was then stretched to 20 percent 
axial strain in stroke control, and subsequently unloaded to zero 
axial load (zero nominal stress). We then removed the specimen 
from the test machine and installed a new strain gage on it. The 
specimen was then reset on the machine and loaded gradually 
to move the stress-strain curve back to merge with the original 
stress-strain curve by checking the stress magnitude. Figure 
1 (b) shows schematically the specimen strained to 20 percent, 
unloaded to zero stress, and then restrained to point M which 
had the same stress as the previous high before unstraining. 
At this amount of prestrain we determined the corresponding 
subsequent yield surface. The probing path of this yield surface 
is shown in the right side figure of Fig. l ( a )  as previously 
mentioned. Note that point k in Fig. 1 (a) corresponds to the 
stress represented by point M in Fig. 1 (b). 

Path 2. Loading in the shear direction. The initial and sub- 
sequent yield surfaces were determined by a similar procedure 
as in Path 1. However, the directions of probing paths were 
different. They were parallel to the axial stress direction. The 
determination of the subsequent yield surface following a 20 
percent shear prestrain also required a procedure that included 
the unloading and removal of the specimen and the installation 
of a new strain gage on the specimen before the probing for 
yield points. 
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Three specimens of annealed 304 stainless steel were tested. 
Specimens #1 and #2 were tested with Path 1 loading history 
and the results of these two specimens agree closely. Specimen 
#3 had Path 2 loading history. Figure 2 shows the experimental 
data of the initial yield surface for the three specimens tested 
together with the results obtained by Wu and Yeh (1991) for 
the same material. This figure is drawn in the 1st P-K stress 
space by using the axial stress divided by ~ as the horizontal 
axis and the shear stress as the vertical axis. It is seen that the 
initial yield surface may well be approximated by the Mises 
yield criterion (a circle). Deviation of some data points from 
the circle might be caused by the machining effect of specimens, 
since the specimens have not been heat treated after machining. 
However, the machining effect does not pose any problem for 
the subsequent yield surfaces. Figure 3 shows both the initial 
Mises yield surface (the circle) and subsequent yield surfaces 
(curves with data points) of specimens #1, #2, and #3 in the 
1st P-K stress space. The figure is again drawn by using the 
axial stress divided by q~ as the horizontal axis and the shear 
stress as the vertical axis. The results obtained by Wu and 
Yeh (1991) for small deformation (with less than one percent 
prestrain) are also shown by solid curves without data points 
to illustrate the differences in the translation and distortion of 
yield surface at two different prestrain levels. It can be seen 
that the characteristics and the magnitude of translation and 
distortion of the yield surface depend significantly on the load- 
ing path and the pre-strain level. 

The subsequent yield surfaces can be separated into the for- 
ward and rear parts by a hyperplane which passes through the 
center of the yield surface and is perpendicular to the loading 
path (Phillips and Weng, 1975). It is seen from Fig. 3 that both 
the forward and rear parts deflate as the loading proceeds. This 
observation contradicts with what is known at the small strain 
level, where the forward part inflates. Another observation 
which also deviates from the general understanding at the small 
prestrain level is that, for a prestrain of only 20 percent, the cross 
effect is very significant for the material tested. Specifically, for 
a prestrain of 20 percent in the axial direction, the maximum 
magnitude of shear stress on the subsequent yield surface has 
a significant reduction compared to the corresponding stress 
magnitude on the initial yield surface; and, in the case of shear 
prestrain of 20 percent, the axial stress on the subsequent yield 
surface is increased. This cross effect was not apparent in the 

work of Wu and Yeh (1991) for the same material at small 
strain level, and was also absent in the works of Phillips and 
co-workers (1972, 1973, 1974, 1984)for 1100-0 aluminum in 
the small strain range. 

It is of interest to compare the present result with those of 
Helling et al. (1986) who tested 1100 aluminum, 70:30 brass 
and 2024 aluminum alloy with prestrains in shear in the range 
of 1.2 - 32 percent. These authors observed the distortion of 
the subsequent yield surface, but with well rounded forward 
part. Furthermore, they observed a large expansion in the size 
of the yield surface for 1100 aluminum, a little expansion for 
70:30 brass and a little contraction for 2024 aluminum alloy. 
Some of these differences as compared to the present results 
could be due to the different materials used and could also be 
due to different methods used in the determination of yield 
surfaces. Although the proof strain was also 5#c, Helling et al. 
(1986) had radial probing paths versus the paths of the present 
investigation shown in Fig. 1 (a ) .  Furthermore, while the pres- 
ent probing was strain controlled, the probing of Helling et al. 
(1986) was load and torque controlled. 

The magnified unloading stress-strain curve of specimen #1 
is shown in Fig. 4 (a ) .  The intersections of the unloading curve 
with parallel straight lines that have the slope equal to Young's 
modulus indicate the different yield points defined by different 
amounts of proof strain (P.S.). Figure 4(b)  shows the experi- 
mental results with data points of the subsequent yield surface 
defined by a 5#e proof strain and the projected subsequent 
yield surfaces (dashed lines) for various proof strains. These 
projected surfaces are drawn based on only two yield points 
marked on the axial stress axis and experimentally determined 
by different proof strains shown in Fig. 4 (a ) .  It is seen that 
with different amounts of proof strain, significantly different 
features in the yield surfaces may be observed, both qualita- 
tively and quantitatively. With a large proof strain, the distortion 
of yield surface becomes less apparent. 

After the subsequent yield surface was found, the specimen 
was removed from the test machine and cut through the cross 
section in the middle of the gage section. By measuring the 
change of the cross-sectional area, it was found that the reduc- 
tion of the cross-sectional area was 17 percent for specimens 
#1 and #2 and no observable area change was found for speci- 
men #3. 

We now investigate the effect of stress measure on the shape, 
size, and translation of the yield surface. Figure 5 shows, in the 
middle of the figure, the subsequent yield surface for specimen 
#1 using the 1st P-K stress components. These stress compo- 
nents are determined from the experimental data. The experi- 
mental results for specimen #2 agree very closely with those 
of specimen #1, but are not shown in the figure. Also shown 
in the figure are the theoretical yield surfaces of the Cauchy 
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stress components determined from Eqs. (8),  (14), and (15) 
and the 2nd P-K stress components obtained by Eq. (11 ). As 
an independent verification, the Cauchy yield surface is again 
determined from the experimental Cauchy stress components 
which was obtained based on the measured deformed area. The 
agreement between the two Cauchy yield surfaces is generally 
good. However, it may be observed from the figure that the 
amount of axial strain affects the size of the Cauchy yield 
surface. In fact, from (14) and (15), cr =/337r z~ and r = /337r ~° 
and the Cauchy yield surface is an isotropic expansion of the 
1st P-K yield surface with/33 being the factor of expansion. For 
an axial prestrain of 20 percent, the size of the Cauchy yield 
surface is about 20 percent larger than that of the corresponding 
1st P-K yield surface. We also note that the translation (the 
back stress) of the former yield surface is 20 percent more than 
that of the latter. In the case of the 2nd P-K stress, we have p~O 

(7r~°//3,,) and p~z = (Tr~Z//33) from Eq. (11) for ~o approxi- 
mately equal to zero (~p is zero during axial prestrain and is 
very small and negligible during the probing of yield surface). 
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The 2nd P-K yield surface is about 9.5 percent larger than that 
of the 1st P-K yield surface in the shear direction but is about 
17 percent smaller in the axial direction. The back stress of the 
former is 17 percent less than that of the latter. These results 
have suggested that the evolution rules for both isotropic and 
kinematic hardening are stress measure dependent. 

Figure 6 shows the subsequent yield surfaces determined by 
each stress measure for the case of prestrain in shear. It can be 
seen that due to no observable area change, the Cauchy stress 

and ~- are almost identical to the 1st P-K stress components 
7r z~ and 7r ~° from Eqs. (14) and (15). Therefore, the Cauchy 
and the 1st P-K yield surfaces are indistinguishable in the figure. 
However, the components of the 2nd P-K stress are different 
than those of the Cauchy stress. It is seen, from Eqs. (11 ) and 
(19), that p~O ~ 7r~o _ t pRmTTZz  and P~ ~ 7r% i.e., the component 
p~O depends on the twist angle per unit length cp. This leads to 
a rotation of the 2nd P-K surface, with the angle of rotation 
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increasing with the shear strain. It also leads to a further distor- 
tion of the 2nd P-K surface in that the yield surface is not 
symmetric with respect to the shear stress axis. These results 
complicate the hardening rule of the 2nd P-K yield surfaces. 

In the aforementioned example, the theoretical results in the 
case of pretorsion is calculated based on the approximation of 
(19). Without this approximation, the axial strain exists but is 
very small. It is less than 0.3 percent for a prestrain in torsion 
of 20 percent. In this case, 1.003 > /33 > 1 and, from Wu et 
al. (1995) where the circumferential strain was investigated, 
we obtain 0.9973 </3,, < 1. Thus, the effect of this approxima- 
tion is very small. Also, we emphasize that the rotation and 
distortion of the 2nd P-K surface is independent of this approxi- 
mation. 

In the Appendix, the Mises yield criterion in the Cauchy 
stress space is transformed into the stress spaces of other stress 
measures. The results show similar features as those described 
in this section concerning the size, distortion, and location of 
the yield surfaces. 

4 The Equivalent Stress-Strain Curves 
It has been assumed for sometime in the literatures that the 

equivalent stress versus the equivalent strain curve describes 
the strain-hardening behavior of a material. Recently, there are 
discussions (Jonas et al., 1981; Wu and Yeh, 1987), to indicate 
that this curve for axial tension would be different than that for 
pure torsion• This difference in fact exposes the nonisotropic 
nature of strain hardening for an initially isotropic material. 

We now proceed to investigate the effect of stress measure 
on the equivalent stress versus the equivalent strain curve. By 
using the second invariant of the deviatoric stress tensor, the 
equivalent stress of each stress measure (the equivalent Cauchy 
stress ~, the equivalent 1st P-K stress ¢r and the equivalent 2nd 
P-K stress P) is defined by 

t 1/2 3~.2)1/2 ~" = [3 (~s i j s i i ) ]  = (or 2 + 

] d 7[. /dj)] 1/2 ¢r = [ 3 ( ~ r  o 

= [(TrOO)z + (Tr~z)2 _ 7r,,Tr00 + 37r,07r0,] l/z 

/fi 1 d d 112 = [3(~PuPu)  ] 

= [(pOO)Z + (pz02 _ pz~pOO + 3(pz0)2]l/2 (21) 

d where s u, 7r u, and P~ are deviators of ~r u, 7r u, and Pu, respec- 
tively. The equivalent strain is defined as 

47~2] 1/2 (22) 

where e is the axial strain. Explicit forms of these relations can 
be obtained for each stress measure for the following two cases. 

A U n i a x i a l  T e n s i o n .  In the uniaxial case, ~o = 0, 2~7 = 0, 
and ~- = 0. By considering the true strain, we have 

. . . .  . (23) 
z /33 

Thus, e = In (/33) or/33 = e '. Hence, e is the logarithmic strain. 
Then, by use of (10) and (11), Eqs. (21) and (22) become 

6 = o r  

~T 
# = ~ = e-'0- 

P = e-2'~- 

= e. (24) 

B P u r e  T o r s i o n .  In the case of pure torsion, a = 0. Equa- 
tions (21) and (22) can be reduced, through Eqs. (10) and 
(11) and the approximation of (19), to 
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Figure 7 shows the equivalent stress #, ~,/3 versus the equiva- 
lent strain ~ curves for uniaxial tension and pure torsion• (AI: 
b for tension, A2: ¢r for tension, A3: P for tension; Bi: ~ for 
torsion, B2: ~ for torsion, B3: P for torsion). The curves for 
torsion are plotted from experiment data for ~ less than 0.112. 
By extending the experimental data using the same trend of the 
curve, all the three curves have been calculated and extended 
to ~ = 0.2. It is seen that the difference between equivalent 
stresses for tension and torsion becomes appreciable when the 
strain becomes large. We note that the curves for tension and 
torsion of the equivalent Cauchy stress are almost parallel when 
the strain is large. But, the curves of the equivalent 1st P-K 
stress cross each other at ~ = 0.18 and those of the equivalent 
2nd P-K stress intersect each other quite early, at ~ of only 0•07. 
The projected back stresses for the case of uniaxial tension are 
also shown in Fig. 7. (CI: 1.0 percent proof strain (P.S.), C2: 
0.5 percent P.S., C3:0.1 percent P,S., C4:0.05 percent P.S., 
C5:0.005 percent P.S.). The back stresses, which have been 
obtained from Fig. 4(b) by use of different amounts of proof 
strain, represent only a rough estimation. Nevertheless, they 
show the trend of change for the back stresses. The data points 
which include a point from Wu and Yeh (1991) at small strain 
level are shown by circles in the figure. 

This figure shows that the extent of anisotropic hardening is 
greatly influenced by the stress measure if the phenomenologi- 
cal approach is used. The uneven tension and torsion curves 
shown in the figure further confirm the idea of anisotropic rate 
of strain hardening previously discussed by Wu and Yeh 
(1987). We note that the previous observation was from test 
results in the small strain range, whereas the present results 
provide data in the large strain range. The figure also shows 
that the definition of yield has a significant effect on the extent 
of isotropic or kinematic hardening. Therefore, in the discussion 
of deformation induced anisotropy, the effect of stress measure 
and the definition of yield are both important. 

5 Concluding Remarks 
Due to difficulties associated with the measurement of the 

deforming cross-sectional area of a thin-wall specimen, the first 
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Piola-Kirchhoff stress components are usually used for re- 
porting experimental results. Explicit transformation equations 
have been derived to convert the stress components into the 
Cauchy stress or the second Piola-Kirchhoff stress for combined 
axial-torsional experiments. 

Experiments have been conducted to investigate the yield 
behavior of annealed 304 stainless steel under 20 percent axial 
or 20 percent engineering shear prestrain. It is seen that the 
direction of the prestraining path strongly influences the distor- 
tion of the yield surface. A significant decrease in the size of 
yield surface (a strong cross effect) was found in the case of 
axial prestrain, and an increase in size with strong distortion 
was observed in the case with shear prestrain. It has been shown 
that the differences among the 1st P-K, the 2nd P-K, and the 
Cauchy stresses increase when the axial strain increases. Also, 
the evolution rules for both isotropic and kinematic hardening 
are stress measure and definition of yield dependent. 

The transformation equations derived in this paper have been 
shown to predict the Cauchy yield surface well, when compared 
with an independently determined experimental, subsequent 
Cauchy Yield surface based on the measured, deformed cross- 
sectional area. Many existing theories have been formulated in 
terms of the Cauchy stress. The present results seem to indicate 
that Cauchy stress is a reasonable stress measure to use in 
engineering analysis involving finite deformation. While the 1st 
P-K stress can also be a meaningful stress measure to use, it 
suffers the disadvantage of nonsymmetry. We suggest, however, 
that cautions be exercised when the 2nd P-K stress is used. 
Even though the 2nd P-K stress has an advantage of being 
symmetric, its physical meaning is not clear and, in particular, 
it leads to a strain-hardening rule much more complicated than 
usual and needs to be further investigated. Finally, we note that, 
for this simple stress state of axial-torsion, the Cauchy stress 
has only two nonzero components (~r, T), while the other two 
stress measures have additional nonzero components. Therefore, 
the first and second P-K yield surfaces shown in Figs. 5 and 6 
do not fully represent the stress state if these two stress measures 
are used. 
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A P P E N D I X  

The Mises yield surface in the Cauchy stress space is 

(• - ro) 2 + 3(~-  - r~) 2 = k 2 ( A 1 )  

where r~ and r~ are, respectively, the axial and shear components 
of the back stress, k is the shear yield stress and is assumed to 
be constant in this discussion. By use of Eqs. (14) and (15), 
Eq. (A1) is transformed into 

( ~ z z  r a ~  2 r r ~  2 k 2 

Using (11), Eq. (A2) is further transformed into an equation 
in the p~O versus P= stress space. 

In the case of axial prestrain only, ~ ~ 0 and r~ = 0; and 
by use of Eq. (18), the yield function in the p~o versus pz~ 
stress space may be written as 

pzz rob 2 

+ -  = 1. (A3) 

By comparing Eqs. (A1), (A2), and (A3), we see that the 
semi-major axes (in the axial stress direction) of the ellipses 
are k for the Cauchy yield surface, kl~3 for the 1st P-K surface, 
and k l ~  for the 2nd P-K surface. The semi-minor axes (in the 
shear stress direction) are, respectively, kl~13, kl'~B3, and 
kl3~3. The back stress for the three yield surfaces are, respec- 
tively, r~, rolE3, and ro/fl~. It is seen that the size, shape, and 
the back stress of the yield surfaces are all influenced by the 
deformation of the material element when different stress mea- 
sures are used. 

In the case of torsion only prestraln, r~ = 0. If we use the 
approximation of Eq. (19), then the yield surface in the 2nd 
P-K stress space is governed by the equation 

( p z z ) 2  + 3[(pzO + ~RmPZZ) _ rr]2 = k 2. (A4) 

This equation contains a 6~oR~PZ°P zz term, and a rotation in the 
ellipse has occurred. 
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Inertial Effects on Void Growth 
in Porous Viscoplastic Materials 
The present work examines the inertial effects on void growth in viscoplastic materials 
which have been largely neglected in analyses of dynamic crack growth and spallation 
phenomena using existing continuum porous material models. The dynamic void 
growth in porous materials is investigated by analyzing the finite deformation of an 
elastic/viscoplastic spherical shell under intense hydrostatic tensile loading. Under 
typical dynamic loading conditions, inertia is found to have a strong stabilizing effect 
on void growth process and consequently to delay coalescence even when the high 
rate-sensitivity of materials at very high strain rates is taken into account. Effects of 
strain hardening and thermal softening are found to be relatively small. Approximate 
relations are suggested to incorporate inertial effects and rate sensitivity of matrix 
materials into the porous viscoplastic material constitutive models for dynamic ductile 
fracture analyses for certain loading conditions. 

1 Introduction 

Dynamic fracture and spallation are important aspects of ma- 
terial behavior under high stress and loading rates. The major 
micromechanism that leads to ductile fracture in many structural 
materials is void growth and coalescence (McClintock, 1968; 
Rice and Tracey, 1969; Curran et al., 1987; Freund, 1990). 
Microvoids as internal defects exist practically in all structural 
materials fabricated by current material synthesizing and pro- 
cessing methods. Nucleation of voids may occur during defor- 
mation processes such as extrusion, forging and rolling, and 
pores may not be eliminated completely in materials produced 
via powder-metallurgy routes (Spitzig et al., 1988). Although 
such voids have little effect on the overall elastic-plastic defor- 
mation of structural materials under normal loading conditions, 
the growth of those voids under high tensile stress is the key 
micromechanism that controls the formation and propagation of 
cracks during dynamic ductile fracture and spallation processes 
(Godse et al., 1989). The cracking of compacts that occurs 
during the shock wave consolidation of metallic and composite 
powders is also related to the void nucleation and growth under 
tensile loading upon the reflection of compaction waves (Linse, 
1983; Thadhani, 1988; Tong et al., 1993). 

The deformation of a single hole or cavity in an infinite 
medium or a thick-walled shell containing a void has been 
extensively studied. Early investigations were mainly quasi- 
static analyses of a void in a rate-independent, perfectly plastic 
matrix material (McClintock, 1968; Rice and Tracey, 1969) 
and later in viscoplastic and/or strain-hardening matrix material 
(e.g., Wilkinson and Ashby, 1975; Nemat-Nasser and Hori, 
1987; Haghi and Anand, 1991 ). The inclusion of the dynamic 
(inertial) effects was first introduced by Carroll and Holt (1972) 
in their study of the collapse of a hollow sphere in a rate- 
independent perfectly plastic material. Johnson (1981) ex- 
tended the results of Carroll and Holt to the growth of a void 
in a viscoplastic solid described by a simple linear overstress 
model. An outcome of his analysis is the negligible effect of 
inertia (in comparison with viscosity) on the dynamic void 
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growth process in copper under loading conditions that were 
considered. Klocker and Monthellet (1988) analyzed the dy- 
namic growth of a void in an infinite medium using the same 
viscoplastic model for copper and concluded that inertial effects 
have a stabilizing influence for strain rates greater than 103 per 
second associated with void radii larger than 10/zm. Glennie 
(1972) modified the void growth calculations of Rice and Tra- 
cey (1969) to include the effect of inertia which was shown to 
play an important part in limiting the rate of void growth in a 
rate-independent, perfectly plastic medium. Luk et al. (1991) 
developed models for the dynamic expansion of spherical cavit- 
ies at constant velocity for elastic-plastic, rate-independent ma- 
terials with powder-law strain hardening. More recently, Ortiz 
and Molinari (1992) examined the effect of strain hardening 
and rate sensitivity on the dynamic expansion of a cavity in an 
infinite medium and showed that whereas the early stages of 
cavity expansion are dominated by viscous effects, inertia tends 
to dominate the long-term response of the cavity for weakly 
rate-dependent materials (they set the rate sensitivity parameter 
to 0.01 in their calculations). Cortes (1992a) applied the same 
approach of Carroll and Holt (1972) and Johnson (1981) t o  
some simple viscoplastic materials with strong rate sensitivity 
(a rate sensitivity parameter of 0.5 was used) and linear strain 
hardening or thermal softening and concluded that both material 
viscosity and strain hardening may have an important influence 
on the tensile strength of ductile materials against void growth 
at high strain rates while thermal softening by itself has a negli- 
gible effect. Inertial effects on dynamic void growth were how- 
ever not explicitly examined. 

The deformation and damage of voided materials has also 
been extensively modeled using phenomenological theories of 
dilatational plasticity (Hutchinson, 1987). Gurson (1977) pro- 
posed such a theory which consists of a yield condition, a flow 
law, and a nucleation and evolution law of voids in terms of 
the volume fraction of voids and his theory is widely used in 
analyzing ductile fracture and localization failure problems 
(e.g., Tvergaard, 1982; Needleman and Tvergaard, 1991). 
There is an increasing trend of applying continuum porous ma- 
terial models such as the Gurson-Tvergaard-Needleman (GTN) 
theory and others to analyze dynamic crack growth and spall- 
ation phenomena (Perzyna, 1986; Needleman and Tvergaard, 
1991; Eftis and Nemes, 1992). The present work examines the 
inertial (dynamic) effects on microvoid growth in viscoplastic 
materials which have been largely neglected in these phenome- 
nological porous material models. The dynamic void growth in 
porous materials is investigated by analyzing the void expansion 
under intense hydrostatic tensile loading. Under high loading 
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rates such as the ones generated by strong plane shock waves, 
the hydrostatic tension is the dominant stress state in ductile 
failure (Perzyna, 1986; Curran et al., 1987). The complication 
of the effects of triaxiality on void growth is excluded and hence 
inertial effects on void growth can be brought into forefront in 
our current analysis. The finite deformation formulation for 
stress wave propagation in elastic/viscoplastic materials applied 
to the spherical shell is adopted in our analysis. Such a formula- 
tion has recently been given by Tong and Ravichandran ( 1993 a) 
in their study of dynamic pore collapse of viscoplastic materials. 
The matrix material is modeled as rate dependent with both 
strain hardening and thermal softening. Under a typical dynamic 
loading condition, inertia is found to have a strong stabilizing 
effect on void growth process that leads to coalescence even 
when the high rate sensitivity of materials in the very high strain 
rate range is taken into account. Effects of strain hardening and 
thermal softening are found to be small in comparison to both 
inertia and rate-sensitivity of materials. 

In the following section, formulations are presented for both 
static and dynamic void growth in viscoplastic materials under 
hydrostatic tensile loading. Those formulations are then applied 
to pure aluminum and results of static and dynamic void growth 
analyses are given in Section 3. The inertial effects on void 
growth are discussed in terms of dynamic loading rate, void size, 
initial porosity, and matrix material properties. Approximate 
relations are suggested to incorporate inertial effects and/or 
strong rate sensitivity into the current porous viscoplastic mate- 
rial constitutive models for dynamic ductile fracture analyses. 
Finally, some conclusions from our present study are summa- 
rized in Section 4. 

2 Void Growth:  Cont inuum and Micromechanica l  
Models  

2.1 Gurson-Tvergaard-Needleman Model. A brief 
summary of the Gurson-Tvergaard-Needleman porous material 
model (Gurson, 1977; Tvergaard, 1982; Needleman and Tver- 
gaard, 1991) is given here and an expression of void growth 
under hydrostatic tension is derived in the following section for 
a viscoplastic matrix material. A central issue in analyzing the 
plastic deformation of such porous materials is to define a yield 
condition or a flow potential which provides the rate of plastic 
deformation tensor and subsequently the evolution relation of 
porosity as a function of external loading, and matrix properties. 
As one of the simplest forms, the flow potential • can be written 
as 

= ~ ( o ' , f ,  v), (1) 

where g is the applied Cauchy stress tensor, f is the void 
volume fraction (porosity), and v is the average strength of 
the matrix material which can in general be a function of strain 
rate, strain, and temperature. The plastic part of the rate of 
deformation, D p, is taken to be in a direction normal to the 
flow potential, 

0~  
D" = A 

where h is the plastic flow proportionality factor. 
The focus of current study is to understand void growth and 

coalescence, and hence the relations pertinent to nucleation of 
new voids is not included in the following discussions. The 
evolution equation in terms of porosity due to the growth of 
existing voids is determined from the condition that the matrix 
material is plastically incompressible, 

f = (1 - f ) D  p : I .  

The specific flow potential for porous materials introduced 

first by Gurson (1977) and then modified by Tvergaard (1982) 
is 

= q , f  = O, (4) cb ~ + 2q l fcosh  q2 -- 1 - 2 2 

~/3 1 O.r where ere = ~r' : ~ ' ,  ah = g~r : I,  = ¢r - crhI, and ql and 
q2 are dimensionless constants of the order of 1. The matrix 
material is characterized as a power-law viscoplastic solid with 
both strain hardening and thermal softening. The average matrix 
plastic strain rate is given by 

, = ) , (5)  

and the function g is prescribed in terms of the average plastic 
strain E and temperature 0 of the matrix material as 

( g('~, 0) = o'0 1 + Co/ \00]  ' (6) 

where ~0, ~z0, e0, 00, m, n, u are viscoplastic constants of the 
matrix material. The form of the function g in Eq. (6) is very 
similar to that used by Klopp et al. (1985). The treatment of 
strain hardening is modified here to give a better description 
of plastic deformation in the small strain range. Viscoplastic 
parameters for aluminum at high strain rates are (Klopp et al., 
1985): m = 0.254, n = 0.04, u = -0 .4 ,  ~r0 = 216.5 MPa, L0 
= 8.83 × 104 S - 1  , e 0 = 0.03, 0o = 295 K. 

The heating due to plastic dissipation is accounted for and 
adiabatic conditions are assumed under dynamic loading so that 
balance of energy leads to 

(7) 
pocp ' 

where P0 is the density of the matrix material in the reference 
configuration, cp is the heat capacity, and parameter/3 is the 
fraction of the plastic work converted to heat. For aluminum, 
P0 = 2700 kg/m 3, q, = 893 J /kg/K,  and/3 = 0.9. 

For comparison with results of the following analysis of 
dynamic void growth, only hydrostatic tension loading will 
be considered, i.e., or' = 0, ae = 0. The evolution equation for 
f for a given loading ah(t) can be written following Eqs. 
(3)-(5): 

: = ~O(1 _ f ) 2  

E i' 1 cosh_l 1 
2 q , f  / 

2.2 Dynamic Void Growth Analysis. The form of the 
flow potential proposed by Gurson (1977) itself is the result of 
a static analysis of the expansion of a spherical shell of perfectly 
plastic rate-independent materials. Following such an approach, 
we study the dynamic void growth in viscoplastic matrix materi- 
als by considering the expansion of a spherical shell under a (2) 
given dynamic tensile loading ah(t). The current inner and 
outer radii r of the spherical shell are a and b, respectively, at 
time t > 0. The initial inner and outer radii R are a0 and b0, 
respectively (i.e., t = 0). The initial (f0) and current ( f )  void 
volume fractions of the porous material are thus given by 

f o = ~ j , f  = 0--<fo-< 1 , 0 - < f <  1. (9) 

The finite deformation formulation for stress wave propaga- 
(3) tion in elastic/viscoplastic materials applied to the spherical 

shell has recently been given by Tong and Ravichandran 
(1993a) in their study of dynamic pore collapse of viscoplastic 
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materials. The resulting system of quasi-linear hyperbolic par- 
tial differential equations can be written in terms of relations 
along characteristics (for details, see Tong and Ravichandran, 
1993a) 

2 
dTR = ±pocdu - B i d t  ¥ ~ (TR - To)cdt, 

dR +c +_ Af~__~ 
dt ~ po 

(10) 
A2 dR 

dTo = ~ (dTR + B~dt) - B2dt, -~t- = O, 

r 2 2flu dR 
&7 = ~ ( d T R  + B~dt) +--r d t , - - ~ =  O. 

This system of characteristic relations written in the form of 
a finite difference equations is solved by using a second-order 
accurate integration method, except, where large oscillations 
exist, a first-order accurate scheme is used (Ranganath and 
Clifton, 1972; Tong et al., 1992). For aluminum, the elastic 
Young's modulus and shear modulus are set to 70 GPa and 26 
GPa, respectively. 

As a final note, the quasi-static analysis of a thick spherical 
shell under hydrostatic loading has been given by Wilkinson 
and Ashby (1975) for rigid power-law viscoplastic materials 
without either strain hardening or thermal softening (g -= ao, 
see Eq. (6)). Their results for current comparison purposes can 
be summarized as 

(~)l+m/m ( 1 - f ) f  (erh) 1'" 
- -  (11)  f = t°ml/m ~ ---f ,-~mkcrO/ " 

The above result of Wilkinson and Ashby (1975) is an exact 
quasi-static solution (neglecting elastic deformation) of the 
problem considered in our dynamic analysis while the GTN 
model (Eq. 8) provides an approximate quasi-static one (with 
n =  u = 0 i n E q . ( 6 ) ) .  

3 N u m e r i c a l  R e s u l t s  

We present here a series of numerical analyses of static and 
dynamic void growth in aluminum as formulated in the previous 
section. The viscoplastic material parameters for aluminum 
have been experimentally determined for strain rates of 105 s -~ 
and higher and the rate sensitivity of pure aluminum is among 
the highest ones at this very high strain rate range (Klopp et 
al., 1985; Tong et al., 1992). Thus, effects of rate sensitivity 
on void growth are expected to be strong and the importance 
of inertia on dynamic void growth can be critically assessed. 
The relative importance of dynamic effects as compared with 
other viscoplastic material properties are also examined in terms 
of initial porosity, void size, strain hardening, thermal softening, 
and loading rate. 

It is well known experimentally that coalescence of voids 
occurs when the porosity f in the materials reaches about 0.1- 
0.3 (Perzyna, 1986; Needleman and Tvergaard, 1991; Cortes, 
1992). To fix ideas, an empirical measure of the material resis- 
tance against void growth and coalescence under a given con- 
stant loading rate, the critical tensile strength of the porous 
matrix material, can be defined as the applied hydrostatic stress 
level when f = 0.3 (Cortes, 1992). Although being introduced 
just to facilitate discussions in the following, the critical tensile 
strength is somewhat related to the spallation strength of a 
material as determined in a plate-impact spallation experiment 
(Johnson, 1981; Perzyna, 1986). The tensile loading in such 
an experiment increases monotonically but in general not lin- 
early. The percentage of the difference between dynamic and 
static critical tensile strengths (~rdc and err,) will be use as a 
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Fig. 1 Comparison of void growth by both static and dynamic analyses 
(ao = 1 0 / z m ,  drh = 10 M P a / n s ,  q l  = 1.0, fo = 10-a) .  The legends used 
throughout the paper are: GTN--reaults given by Eq. (8) ;  TR-~results 
given by Eq. (10) ;  WA--results given by Eq. (11) .  

parameter in our following assessment of inertial effects on 
void growth, namely: 

6 = ~rec - cr,c (12) 
O'sc 

Results of static analyses given by the GTN model, Eq. (8), 
and by Wilkinson and Ashby (1975), Eq. ( 11 ), in which inertia 
is neglected altogether provide a description of effects of the 
viscosity on void growth, while results of our dynamic analyses 
in comparison with those of static analyses should show clearly 
the inertial effects on void growth in both rate-independent and 
rate-dependent materials. Figure 1 shows results of both static 
and dynamic void growth analyses in a rate-dependent material 
for a typical dynamic loading rate, initial porosity, and void 
size. At the early stage up to 150 ns, results of both analyses 
are nearly identical which indicates that inertial effects are mini- 
mal and the void growth is dominated by the viscosity so far. 
However, the dynamic void growth becomes much slower later 
and the dynamic critical tensile strength is about 41 percent 
higher than the static one for the highly rate-sensitive material 
(m = 0.254). Thus, inertia overtakes the viscosity and domi- 
nates the later stage of the void growth. The prediction of the 
critical tensile strength by the GTN model is even lower if 
values of the two adjustable parameters ql and q2 are set to be 
1.25 and 1.0, respectively, as suggested by Needleman and 
Tvergaard (1991). By trial and error, the result by the GTN 
model is found to be able to match that of Wilkinson and Ashby 
(1975) fairly well if qt = 1.0 and q2 = 0.8. Thus, parameters 
q~ and especially q= in the GTN model seem to be dependent 
on the rate-sensitivity parameter m of the matrix material (note 
that the rate sensitivity is 0.01 in the analysis of Needleman 
and Tvergaard ( 1991 )). 

As a parametric study of the effect of rate sensitivity on void 
growth, the rate sensitivity parameter m is allowed to change 
in the range of 0 to 1 which simulates materials from rate 
independent to very strongly rate dependent. These results 
shown in Fig. 2 indicate the strong effects of rate sensitivity on 
both static and dynamic void growth. For a given loading rate, 
void size, and porosity, the dynamic effect is more dominant 
in a more weakly rate-dependent material (6 = 125 percent, 41 
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Fig.  2 Effects of rate sensitivity of the matrix material on both static 
and dynamic void growth (at = 10  p m ,  ~ ,  = 10  M P a / n s ,  fo = 10  -s ,  m = 
O, 0 .01 ,  0 .254 ,  0.5,  a n d  1.0,  q t  = 1.0,  a n d  q2 = 1.0, 1.0,  0 .8 ,  0 .73 ,  a n d  0 .61 ,  
respectively) 

percent, 15 percent, and 0 percent for m = 0.01, 0.254, 0.5, and 
1.0, respectively). Again, parameter q2 in the GTN model are 
shown to depend strongly on the rate-sensitivity parameter m 
of the matrix material and the results of the GTN model do not 
compare well with those of Wilkinson and Ashby (1975) for 
large m (0.5-1.0). For both static and dynamic void growth 
analyses, there is no major difference between m = 0 and m = 
0.01. Our results confima the conclusions of Glennie (1972) 
and Ortiz and Molinari (1992) that inertial effects are important 
in stabilizing dynamic void growth when m = 0 or 0.01. Our 
results also indicate that inertial effects could be neglected for 
very strongly rate-sensitive material (m ~ 1.0) in void growth 
analysis under certain loading rates• However, the estimate by 
Johnson (1981) itself only proved that the dominance of the 
viscous effect in the initial stage of void growth which is also 
true for weakly rate-dependent materials (Ortiz and Molinari, 
1992)• Relevant to the dynamic fracture and spallation is the 
relative importance of viscosity and inertia on void growth over 
a long period up to a porosity of  0.1-0.3. Using the parameters 
used in the analysis of Johnson (1981), we find that the inertia 
is dominant at later stages of void growth (Tong and Ravichan- 
dran, 1993b). Furthermore, recent experimental evidence does 
not support the description of material behavior with a linear 
or near linear viscous relation at very high strain rates, even 
for pure metals (Klopp et al., 1985; Follansbee and Kocks, 
1988; Tong et al., 1992). At room temperature, the rate sensitiv- 
ity of pure copper at fixed structure is found to be only about 
0.05 and the total rate sensitivity of copper is at most 0.15-0.20 
(Tong et al., 1992) and the highest rate sensitivity was found 
to be only about 0.254 for pure aluminum (Klopp et al., 1985). 
Thus, analyses by Perzyna (1986), Klocker and Monthellet 
(1991), Cortes (1992a), and Nemes and Eftis (1992) using a 
rate sensitivity of 0•5-1•0 for copper would not be realistic and 
could greatly overestimate the viscous effects on void growth. 
The conditions under which inertial effects can be important 
on void growth would be highly overestimated using these 
analyses• 

Effects of initial porosity, void size, and dynamic loading 
rate on void growth are also examined (Tong and Ravichandran, 
1993b). A smaller initial porosity in the material gives a higher 
critical tensile strength in both static and dynamic analyses• 

The dynamic effect becomes more dominant with lower initial 
porosity: the dynamic critical tensile strength is found to be 25 
percent, 41 percent, and 67 percent higher than the correspond- 
ing static one for the initial porosity of 10 -2, 10 -3, and 10 -4. 
For the given moderate loading rate/~ = 10 MPa/ns, the param- 
eter 6 is found to be 6 percent, 41 percent, and 89 percent for 
void radii of 1, 10, and 25 #m, respectively. Due to the strong 
rate sensitivity (m = 0.254), the static critical tensile strength 
increases significantly with increasing loading rate. The dy- 
namic effect on void growth also increases with increasing load- 
ing rates (6 = 11 percent, 41 percent, and 157 percent for/~ = 
1, 10, and 100 MPa/ns, respectively). 

Finally, we examine the effects of strain hardening and ther- 
mal softening of matrix materials on both static and dynamic 
void growth. Figure 3 shows the results predicted by the GTN 
model for various matrix strain-hardening and thermal softening 
behavior. As expected, strain hardening increases the static criti- 
cal tensile strength while thermal softening reduces the strength. 
The change of the critical tensile strength due to either strain 
hardening or thermal softening is small in comparison with that 
due to inertial effects (see Fig. 1), unless a very large strain- 
hardening exponent is assumed (say, n -> 0.15). The results 
from our dynamic void growth analysis are shown in Fig. 4 for 
the same sets of viscoplastic parameters. The effects (both in 
trend and magnitude) of strain hardening and thermal softening 
on void growth are similar in both static and dynamic cases. 
Thermal effects seem somewhat less significant than that of 
strain hardening on void growth even for ~ = -1 .0  (linear 
temperature dependence) (see Figs. 3 and 4). One of the rea- 
sons for this is that the adiabatic heating is very much localized 
around the inner radius of the void during void growth. Heat 
conduction and melting are not included in our analysis which 
also tend to under estimate the thermal effects. Nevertheless, 
because of the degree of localization of heating the thermal 
effects are expected to be no stronger than those of strain hard- 
ening. In both static and dynamic void growth analyses the 
results of a matrix material with n = 0 and c, = 0 are virtually 
identical to that of a matrix material with n = 0.04 and ~ = 
-0 .4  which have been suggested by Klopp et al. (1985). Thus, 
the effect of strain hardening appears to annul the effect of 
thermal softening in both static and dynamic void growth in 

10 0 

1 0 - I  

10-2 

10-3 

Stress (MPa) 

0 500 1000 1500 2000 2,500 3000 
. . . .  '1 . . . .  I . . . .  I . . . .  I . . . .  I . . . .  

A - -  n=0, v=-l.0 B C D F 
B--n=0, v=-0.4 A jill' B ; 
c - - .=o ,v=o  ii/i, , 
D - -  .=0.04, v=-0.4 !fill : 

E -- n=O.04, v=O ;~}t / 

F - -  nffi0,2, v=0 ~ '  / /  

/ / /  

10-4 . . . .  I . . . .  t . . . .  I . . . .  t . . . . . . . .  

0 50 100 150 200 250 300 

Time (ns) 

Fig.  8 Effects of strain hardening and thermal softening of the matrix 
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Fig. 4 Effects of strain hardening and thermal softening of the matrix 
material on the dynamic void growth (ao = 1 0 / ~ m ,  drh = 1 0  M P a / n s ,  fo = 
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aluminum. The @namic effects (as measured by the parameter 
6) are, however, almost unaffected by the inclusion of both 
strain hardening and thermal softening. 

4 Discussions and Conclusions 
In examining the results of static and dynamic void growth 

presented in the semi-logarithmic scale in Figs. 1-4, the most 
striking difference is that the static analysis predicts an exponen- 
tial void growth at a later stage while the dynamic analysis 
predicts a nearly linear void growth. Thus, inertia has a strong 
stabilizing effect on void growth under a typical dynamic load- 
ing condition. Strong rate sensitivity of materials at high strain- 
rate range also increases significantly the resistance of matrix 
materials to void growth under both static and dynamic load- 
ings. Both inertia and a stronger rate sensitivity should be incor- 
porated into the analysis and modeling of damage and failure 
of ductile materials. We have demonstrated here that the strong 
rate sensitivity (say, m = 0.1-0.25) of matrix materials can be 
approximately incorporated into the GTN model by adjusting 
the parameter q2 to be a different constant. The parameter q~ in 
the GTN model seems to be very weakly dependent on the 
rate sensitivity of matrix materials (Sun and Huang, 1992). 
Furthermore, for material models without strain hardening and 
thermal softening, the parameter q2 can be determined explicitly 
for the given m and f b y  comparing Eqs. (8) and ( 11 ), namely 

( m )t/t+m( f y "/'+" 
q2(m,f) = \ 1 - - - ~ ]  \ ~ -  f l 

X cosh- '  (1  +q~fZ~.2qlf / (13) 

Naturally, the prediction by the GTN model on void growth 
using Eqs. (8) and (13 ) matches that by Wilkinson and Ashby 
(1975) using Eq. (11), as shown in Fig. 1. 

As pointed out by Carroll and Holt (1972), a dynamic void 
growth relation becomes quite complex even for perfectly plas- 
tic and rate-independent materials (a second-order ordinary dif- 
ferential equation). Inclusion of such a relation may not be 
feasible in the current modeling of dynamic failure using finite 

element analysis. An approximate method is thus sought to 
incorporate inertia into the framework of the phenomenological 
GTN theory for porous viscoplastic materials at least under 
some simple loading conditions. The parameter q~ in the GTN 
model is again assumed to be very weakly dependent on the 
inertial effects when the hydrostatic tension is the dominant 
stress state in controlling void growth. Further adjustment of the 
parameter q2 in the GTN model is found to be not satisfactory in 
incorporating the inertial effects into the GTN flow potential. 
Although the GTN model predicts correctly the dynamic critical 
tensile strength against void growth in aluminum as shown in 
Fig. 1 when q2 is set to 0.58, the characteristic of the void 
growth is still exponential instead of a nearly linear in terms of 
the semi-logarithmic scale. For a given dynamic void growth 
his toryf( t )  such as those shown in Fig. 2, the parameter q2 can 
be estimated from Eq. (8) and the results are shown in Fig. 5 
in solid lines for different rate sensitivities for ql = 1.0. Results 
given by Eq. ( 13 ) are also shown in Fig. 5 in dashed lines which 
represent the effects of only rate sensitivity on the parameter q2. 
In the original GTN model, the parameter q2 equals to a constant 
of 1.0 which corresponds to the static void growth in a rate- 
independent matrix material. Under the dynamic loading, q2 is 
found to be strongly dependent on both strain-rate sensitivity 
and inertia and is a function of the current porosity of the porous 
viscoplastic material. Initially the parameter q2 is much less 
than 1.0 and increases gradually towards 1.0 which indicates 
the strong effect of the rate sensitivity of the matrix materials 
(especially for m = 0.5-1.0) while inertial effects are negligible. 
The large decrease in q2 at later stages reflects the dominance 
of inertial effects over rate dependence on void growth (espe- 
cially for m = 0-0 .5) .  For m = 0.01, inertia dominates the 
void growth very early in terms of increase in porosity while 
for m = 1.0, inertia is not significant from early stages. In 
addition to rate sensitivity, the transition point, at which dy- 
namic void growth process which is dominated by rate depen- 
dence changes to one that is dominated by inertia, is also clearly 
affected by the initial porosity of the material, loading rate, and 
void size. 

The above procedure can be adopted in general to estimate 
the inertial effects on dynamic void growth in viscoplastic mate- 
rials. For any dynamic loading, the dynamic void growth curve 
f ( t )  can be obtained by using the dynamic analysis of spherical 
shell presented in this study. The dependence of parameter q2 
in the GTN model on f is then computed using Eq. (8).  For 
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strong rate dependence and/or inertial effects (i.e., q2 is far 
from constant), the function q2(f) can be obtained by curve 
fitting. The GTN model with ql and q2(f)  can then be used in 
finite element analysis to model the deformation and failure of 
porous viscoplastic materials under the similar dynamic loading. 
For example, the curve fitting of the dynamic void growth 
shown in Fig. 1 gives 

q~(f) ~ h21og 2 ( f )  + h t l o g ( f )  + h0, f - > f 0 ,  (14) 

where ho = 0.0646, hi = -0.494, and h2 = -0.10.  The predic- 
tion on the dynamic void growth using such a q2(f)  function 
and qi = 1.0 in the GTN model is also shown in Fig. 1, which 
is in excellent agreement with results of the current complete 
dynamic analysis. The initial porosity, void size, and dynamic 
loading rate will undoubtedly affect the curve-fitting results of 
q2(f ) ,  as discussed earlier, those factors have been shown to 
influence the dynamic void growth process for a given material 
(Tong and Ravichandran, 1993b). For example, for the case 
considered in Fig. 1, if f0 = 10 -2, then ho = 0.0086, hj = 
-0.801, and h2 = -0.21; if f0 = 10 -4, then h0 = -0.003, hi = 
-0.355, and h2 = -0.058. 

In a typical void growth induced failure process, the initial 
porosity fo in the material is commonly of the order of 10 -4 tO 
10-2. The porosity f defined in our spherical unit cell model 
(Eq. (9))  is related to the inner pore radius a through (neglect- 
ing volume change) 

- -  , -< 4. ( 1 5 )  f i  for, say, 1 -< a 

For example, consider the case in which f0 = 10 -3, one can 
verify that when f/fo = 7.9444 then a/ao = 2, and when f/fo 
= 60.2 then a/ao = 4. That is,f/fo is directly related to a length- 
scale parameter a/ao in the early stage of void growth. As shown 
in Fig. 1 in our paper that inertia clearly begins to overtake the 
effect of viscosity when f/fo ~ 2. In other words, when a/ao 
-> 1.26, microinertia effects become significant in that particular 
case considered which is consistent with the statement by Ortiz 
and Molinari (1992). They stated that microinertia effects are 
particular significant for voids which are larger than a character- 
istic dimension which depends on both the mechanical proper- 
ties of the solid and the rate of expansion. However, we prefer 
the porosity f t o  the void radius a as a parameter characterizing 
void growth: in analyzing the growth and coalescence of voids 
that leads to fragmentation process, the criterion for ductile 
failure of materials is commonly related not to the size of voids 
hut rather to the volume fraction of voids ( f ) .  Void size is not 
a micromechanical parameter or state variable in phenomeno- 
logical ductile failure models such as the ones proposed by 
Perzyna (1986) and Needleman and Tvergaard ( 1991 ). Thus 
a parameter such as 6 defined by Eq. (12) is a better measure 
of inertia on overall void growth and coalescence. There exists 
a possibility that in some cases microinertia effects will eventu- 
ally become significant only after f > 0.3 (which may not be 
relevant to dynamic failure analysis anymore). 

Other issues such as nucleation, interaction, size variation, 
and spatial distribution of voids are also important aspects of 
ductile failure processes and have yet to been addressed. Non- 
spherical symmetry of the loading and deformations on void 
growth are not considered in our analysis of a spherical shell. 
Analyses of void growth under combined hydrostatic and devia- 
toric dynamic loading are scarce and effects of deviatoric load- 
ing on dynamic void growth remain unclear. It appears that 
void growth may be affected by the presence of a field of 
deviatoric strain rates (Cortes, 1992b). The curve fitting of 
qz( f )  requires that the loading history at each material point 
or element is to be known a priori. Even with those limitations, 
there are some potential applications of our analysis. Dynamic 
ductile failure dominated by hydrostatic loading is one class of 
important problems encountered in shock wave phenomena. For 

example, although there is a relatively large deviatoric stress 
initially under a plane shock-wave loading, the inertial effects 
are expected to be small anyway during this very early stage 
of loading. Due to plastic flow, a hydrostatic stress state exists 
immediately behind a plane shock-wave front while inertia ef- 
fects on void growth begin to dominate. Our analysis can be 
used as a tool to estimate the relative importance of inertia and 
material viscosity in ductile failure processes. In a dynamic 
structural analysis, the loading history of the actual or possible 
ductile failure sites can be estimated either by experiment or 
by the finite element analysis using models such as the GTN 
theory. Calculations using the GTN theory and our analysis can 
then be carried out for the microvoid growth at those sites. A 
comparison between those two results can be used to determine 
the necessity of including inertia in the analysis. Furthermore, 
there are some important dynamic ductile failure phenomena 
and experiments in which the overall loading condition is simple 
and is known a priori, for example, the spallation of materials 
in normal plate-impact experiments (Johnson, 1981; Perzyna, 
1986). Our analysis combined with the GTN model can be 
readily applied to such an experiment. 

In the light of increasing accuracy in determining viscoplastic 
properties of materials, the exclusion of inertial effects would 
become one of the leading causes for errors in analyzing damage 
and failure in ductile materials under dynamic loading. From a 
series of numerical analyses of both static and dynamic void 
growth in aluminum, a clear view of the inertial effects on void 
growth has emerged. The inertia tends to dominate for lower 
initial porosity, larger void size, higher loading rate, and less 
rate-sensitive and less strain-hardening matrix (such as struc- 
tural steels and alloys) at a later stage of void growth. The 
dynamic void growth analysis presented here can be extended 
easily to other more sophisticated viscoplastic models for matrix 
materials (e.g., Follansbee and Kocks, 1988; Tong et al., 1992) 
and effects of loading histories and strain-rate histories on dy- 
namic void growth can readily be assessed. The role of heat 
conduction and melting can also be studied using the current 
formulation. 

In summary, the dynamic analysis of the expansion of a 
spherical shell can be used to compute the dynamic void growth 
curve f ( t )  for a given loading condition. Such a void growth 
curve can then be used in conjunction with continuum porous 
viscoplasticity theories such as the Gurson-Tvergaard-Nee- 
dleman (GTN) constitutive model to determine the relative im- 
portance of inertia and viscoplastic properties of the matrix 
(especially the rate dependence) on void growth process by 
examining the characteristics of the function q2(f). The inclu- 
sion of such a function into the GTN model is found to be able 
to provide an approximate dynamic void growth curve when 
inertia is dominant and/or material is strongly rate sensitive. 
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Damage-Coupled Creep 
Mechanics and its Structural 
Analysis Principle 
Continuum damage mechanics ( CDM ) is considered as a general method to treat the 
progressive deterioration of materials and structures in the framework of continuum 
mechanics. The damage-coupled creep mechanics based on CDM is discussed in the 
paper first, including the description of effective stress concept and the expression 
of all field equations in creep. The general formulation of a constitutive relation is 
presented qfter simpli~qng treatment for the sake of the modeling of creep damage 
problem in computational mechanics. The parametric variational principle ( PVP ) 
developed from the idea of optimal theory is introduced to establish the numerical 
principle of  structural analysis for damage-coupled creep mechanics, including both 
the associated potential variational principle and the corresponding FEM formula- 
tions. The possibility of applying the principle presented by this paper to the life and 
damage prediction of structural components is finally illustrated by some examples 
on creep experiments for three kinds of materials. 

1 Introduction 

The present computational possibilities should allow struc- 
tural analysis in which the material degradation and its corre- 
sponding strength decrease be taken into account during the 
whole calculation, but unfortunately there is no suitable method 
to deal with the complete coupling effect between the constitu- 
tive equation and damage in structural analysis. In the classical 
method of prediction of failure by CDM this coupling is usually 
neglected. In many circumstances, especially in the prediction 
of macrocrack growth, this coupling should not be neglected 
because the influence of the damage on the state of stress in the 
neighborhood of the crack is of primary importance (Lemaitre, 
1985). Therefore, the modern way to calculate the rupture con- 
dition should be to simultaneously calculate the stress, strain, 
and damage field histories with coupled constitutive equations. 

Saanouni (1985, 1988) and Chaboche (1989) introduced a 
correction term in the stiffness matrix of a common finite ele- 
ment model to take into account the damage coupling. It can 
be found that this approach actually is an approximate one based 
on the classical variational principle, not a complete coupling 
method. The difficulties associated with the corresponding nu- 
merical method are, perhaps, the complexity and nonlinearity 
of constitutive equations. 

It is well known that creep is an important field studied by 
CDM (Ashby, 1984; Hayhurst, 1972, 1975; Murakami, 1980), 
so this paper first discusses the framework of damage-coupled 
creep mechanics on the basis of CDM for structural analysis, 
which covers the descriptions of damage-coupled constitutive 
equations, equilibrium equations, strain-displacement relations, 
and boundary and initial conditions. Then the complete coupling 
structural analysis principle is proposed, and the corresponding 
implementations based on numerical technique are given. Fi- 
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nally, several applications to high-temperature creep are dis- 
cussed in detail. 

2 Damage-Coupled  Creep Mechanics  

2.1 Effective Stress Concept. The effective stress is de- 
fined by 

cru (1) 
~ 0 -  1 - c o  

where ~rej is the nominal stress, co is an isotropic damage variable 
(here, is a scalar). And the incremental form of effective stress 
is 

d~ ° = dcr 0 + cri~ dco. (2) 
(1 - co) (1 - coo)2 

Similarly, the damage-coupled constitutive equation can also 
he expressed as follows: 

do" 0 = (1 - co°)Dij~lde~t Go dco 
(1 - co) 

~r~ dco (3) = / g u J 4 1  (1 - coo) 

where 

Dijkt = (1 -- cv°)Dokt (4) 

is called the damage-coupled elasticity tensor. 

2.2 All Field Equations. The purpose here is to give an 
overall description of damage-coupled creep problems which 
will be used as a basis of structural analysis. Now, all associated 
equations based on CDM during loading are listed as follows 
in terms of incremental quantity: 
(a) equilibrium equations 

&r~. i + d b i  = 0  in f2 (5) 

(b) strain-displacement relations 

2d% = dui j  + dui,~ in ~ (6) 

(c) constitutive relations 
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Description of 
Mechanics System 

} minimizing 

I 
~bj~tto 

Constitutive Behavior 
of Matedal 

Fig. 1 The parametric variational prinoiple from optimal theory 

k p ~ >0 when 

t =0 when 

de 0 = de~ + de~ + de~ 

~ d~ daij = D-~jude~l (1 - ~o) 

Og 
deS) = k l ' -  

Oa o 

f(~j, e D <- 0 
f = 0 for plastic loading 

f < 0 for elastic loading or unloading 

(7) 

(8) 

(9) 

(10) 

(d) 

e~ = qo(8.u, a.') 

Ox* 

OY 

boundary and initial conditions 

dcr o" nj = dis on Sp 

dui = dt~ onS,, 

~1,=0 = 0 

c~l,=0 = 0 

11) 

12) 

13) 

14) 

15) 

16) 

17) 

in which de0, de~, de~, and dc~ are, respectively, the total, 
elastic, plastic, and creep components of the strain tensor; the 
superposed mark ' . '  denotes the time derivative; f i s  the yielding 
function; g is the plastic potential function; k p is the plactic 
flow factor; q is the creep function; x* is the dissipation poten- 
tial function of CDM, Y is the damage energy lease rate. 

3 Basic Framework of Parametric Variational Prin- 
ciple 

3.1 Fundational of Optimal Theory. The fundamental 
strategy of the parametric variational principle draws the con- 
cepts from the optimal theory. It can be found that there are 
mainly two aspects: the description of the mechanical system 
and the constraint of constitutive relations (see Fig. 1 ). 

3.2 On Complex Constitutive Relations. The expres- 
sions of all constitutive relations in CDM are very irregular, 
complex, and nonlinear, so it is difficult to directly apply them 
to deal with practical problems. In the parametric variational 
principle, all constitutive relations are considered as the con- 
straints to act on the mechanical system, which should be gener- 
alized in order to obtain a group of linear constraint equations. 

In general, after the mathematical treatment of the original 
constitutive relations, the corresponding constraint equations 
can be expressed as follows: 

qt(d~, du,  k) = 0 (18) 

where ~ indicates the vector function, d r  or du is the argument 
function, and k is the parameter variable, which as an argument 
does not participate in the variation. 

3.3 Parametric Variational Principle. The variational 
principle is an important basis of the numerical method. The 
parametric variational principle is a modern variational 
method coming from the optimal theory to solve the nonlinear 
unspecified boundary problems in continuum mechanics, 
which has been successfully applied in many fields, e.g., 
elastoplasticity, geomechanics, frictional contact problem, 
and viscoplasticity, etc. 

First, as a description of mechanical system, the generalized 
potential energy functional is constructed as 

H(d~, du, ~t) = fa  [A(d~, du, k)]df l  

- [ f  dbdud~2 + fs,,d~dudS ] (19) 

where A (dr ,  du,  k) is the generalized strain energy functional 
and d~ is the boundary force. 

After the above preparation of the constraint equations and 
generalized strain energy functional, the parametric variational 
principle can be expressed as follows: 

find dE or du 

minimize H(d~, du, k) 
d~ or du 

subject to ~ ( d r ,  du,  k) = 0. (20) 

4 General Expression of Constitutive Relations 
The constitutive relations of damage-coupled creep are very 

complex and nonlinear. In this paper, the all constitutive rela- 
tions are considered as the constraint conditions to act on the 
mechanical system, which should be generalized, aiming at ob- 
taining a group of linear equations. 

First, the loading consistent conditions (10) and (11) are 
mathematically treated. Then, substitution of relations (3), (7), 
(9) into the function f = f o  + d f  leads to the following 
relation: 

f =  fo  + Of d~ ° + ~ de~ 

= f o +  O f  Doude~ l+ X" Onf---~pde~ 
080 

• ( f )  itf)kp (f)x c ~ (f) = ~o dew + + Pij '~u + (21) 

where 

•(f) Of 
ij = Dokt (22) 

08.kt 

l(f) = Of Og Of Og 
Dokl - -  - -  (23) 

Oe~} &r~ 08.ij Oakt 

P (f) = _Dou Of (24) 
O~kt 

~(s) = f 0  (25) 

k i = de~. (26) 

By introducing a positive complementary factor u into the load- 
ing consistent condition, (10) and ( 11 ) could lead to 
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f +  u = 0 (27) 

h 'u  = 0, k p-> 0, u--> 0, (28) 

Define the function $ (S)(deu, X p, h~, u) as 

¢(f) (de e , k  p, X~, v) = f +  v 

~(f)  " l ( f ) k p  ( f ) .  c = ~u aeu + + P u  ~u + ~ ( s ) +  u (29) 

so Eqs. (27) and (28) could be rewritten as 

0 (:)(dQ, k", k~, u) = 0 (30) 

kPu = O, h p ~ 0, u >- O. (31) 

Similar treatment of the creep Eq. (12) gives the following 
expression: 

(c) 
Oij (de~t, dw, k p, k~l) 

(c) ( c ) .  (c) (c) c (c) 
= ~ijkldekt + ~6 dw + I u k p + Puktk~t + ~0" = 0 (32) 

where 

~(c) Oqij 
im= Dm,kt ~ dt (33) 

rl!. ~ = Oqu . ~ dt (34) 

/~=-D~.kl Oq° Og dt (35) 
O~m. Oakt 

(~) Oq o 
Pokl = --Dm,kl ~a~, dt - 6U6kt (36) 

( ~ ) =  q°dt. (37) 

Furthermore, the damage Eq. (13) could also be expressed as 

~(d)(deo, &o, k p, k~) 
• (d) (d)h~ ~ (d) = ~u dez~ + rl(d)da: + l(d)kP + Pij ij + = 0 (38) 

where 

~<~) Oh dt (39) 

rl (a) = Oh 
~w at - 1 (40) 

I (d) = --Dijkt O__h_ Og dt (41) 
0~ u 

(d) Oh dt (42) PO = -D°*~ Oa~t 

~<a)= hOdt. (43) 

The above expressions on constitutive relations could be sum- 
marized as follows: 

0 (:)(deu, k ' ,  k~, v) = 0 (44) 
(c) 

OU (de~, dw, k p, X~) = 0 (45) 

o<d)(deu, dw, k p, k~) = 0 (46) 

X P v = 0 ,  k p - > 0 ,  v > 0  (47) 

which give the overall descriptions of constraint equations for 
elastoplastic creep damage problem together with the initial 
conditions (16) and (17). It can be found that Eqs. (44), (45), 
and (46) are all linear equations in terms of variables deo, k p, 
k~, dw, u, and the nonlinear item is only in the positive comple- 
mentary Eq. (47). 

5 PVP for Damage-Coupled  Creep Mechanics  

According to the basic framework of the parametric varia- 
tional principle discussed above, a potential energy functional 
for the damage-coupled creep problem is actually constructed 
as follows: 

I-I(d~ u, dut, do~, k p, h~) 

= ~ ( ~  l)oktdeijd£kt-- XPl)ok, Og dek, 
Oa u 

- dry cr~dQ}df2. - huDuktdekl (1 ~ v  °) 

- I f  dbiduidf~ + fspd~duidS 1 . (48) 

Now the structural analysis principle for the damage-coupled 
creep problem could be stated as follows: in the range of any 
time [t, t + dt], among admissible solutions which satisfy 
the strain-displacement relation (6) and geometric boundary 
condition (15), the exact solution renders the functional FI a 
minimum under the constraint conditions of Eqs. ( 4 4 ) - ( 4 7 )  
together with the initial conditions (16) and (17), where dul 
(or deu) is the argument function, dtv, X}, X p are the parameters 
representing the incremental quantities of damage, creep and 
the plastic flow factor, respectively, which as arguments do not 
participate in the variation (Zhong et al., 1988; Zeng, 1991). 
For related proof please see the paper of Zeng (1992). 

6 Corresponding F E M  Formulat ion  

The finite element method (FEM) is a numerical approach 
which can be used for obtaining an accurate or approximate 
solution of complex engineering problems. Now, based on the 
above variational principle, the finite element analysis is inter- 
preted as an approximate means for solving the damage-coupled 
creep problem. The procedure includes the discretization of 
the domain or structure, and the introduction of interpolation 
polynomial functions, i.e., 

du  = N,8 (49) 

de  = B,8 (50) 

dto = N ~  (51) 

k c = BcK (52) 

where 8,  ~ ,  and ~¢ are the incremental vectors of nodal displace- 
ment, damage, and creep strain, respectively, N,, B,, N~, and 
Bc are the matrice of interpolation functions (shape function) 
of displacement, strain, damage, and creep strain, respectively. 

Substitution of Eqs. ( 4 9 ) -  (52) into Eq. (48) yields the ma- 
trix formulae of potential energy of mechanical system, and 
also substitution of Eqs. ( 4 9 ) -  (52) into Eqs. ( 4 4 ) -  (47) gives 
the matrix formulae of constraint equations, they are listed as 
follows: 

II(8) = ~ ~TK8 8T[tI~l kp + ~2~ + ~3J¢ + q] (53) 

subject to 

Ci~ + Ulff + Vlk p + W1/¢ + d~ = 0 (54) 

C2~ + U2c]g + V2J~ p + W2K + d 2 = 0 (55) 

C38 + Vah p + W3/¢ + d3 + v = 0 (56) 

v rk  p = O, V r~- O, X p.~ 0 (57) 
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with 

K =  ~ f , ,  (B~DB,)df2 

: ( 1 - w  °) ~ f (B,rDB,)df~ 
e=l ~e 

Ill ~, = E BFD d a  
e=l ~e 

(58) 

(59) 

1 (B ~r ~roN~) ] df~ 
e=l 

(60) 

~I~3 = ~ f~ (B,rDBc)df~ (61) 
e=l le 

if q = (N~db)df~ + ~ (N.rdp)df~ (62) 
e : l  le e e=l 

e=l ~e 

~ f (N~.(C))d~ (64) U i  ~ T 
e=l )e 

Vl = ~ I(C>df~ (65) 
e=l le 

W l  = ~ (B~'p(C))df~ ( 6 6 )  
e=l ~e 

d~ = ~ (~(~))df~ (67) 
e=l ~e 

C2 = ~ (B~r~(d))dO (68) 
e=l ~e 

U2 = ~ f (N~r'q(d))df~ (69) 
e=l )e 

Ill f ~  
V2 = ~ ICd)df~ (70) 

e 

Io W 2  = ~ e (B~rp(d))df~ ( 7 1 )  
e=l 

d2 = ~ ~(a)df't (72) 
e=l ]e 

nl f [~ C3 = ~ , (B~( f ) )dQ (73) 
e=l 

V3 = ~ I(f>df~ (74) 
e 

e=l 

"'f. W3 = ~ ~ (B~rp(f))df~ (75) 
e=l 

d3 = ~ ~ ~(f)df~ (76) 
e=l 

where n is the number of total elements, nl is the number of 
plastic elements, n2 is the number on the force boundary, the 
suberscript 'e' denotes the element number, K is called the 
damage-coupled assembled stiffness matrix for the creep prob- 
lem, and K is the assembled stiffness matrix of an undamaged 
body, which is same as that of an elastic problem. It is to be 
noted that the potential energy functional without considering 
the damage-coupled effect and plasticity is given by 

e / t e raln . t f  ) 

5. 1 
• ~ r ~ a e n t  

i  K-R=o I m7 
. ..... 1 

;? ,, 
00 

0. 0,2 0.4 0.6 0.8 I. 

t / t f  

Fig, 2 Creep curve of GH33A alloy at 700°C 

1 n ( 8 )  = ~ 8q~8 - 8Tq, (77) 

which is the potential energy functional of the elastic structure 
or body. 

Equation (53 ) expresses the total potential energy of structure 
or body for damage-coupled creep problem in terms of the nodal 
displacement 8. By the variational principle expressed by (48), 
we have 

OH 
- - =  0. (78) 
O8 

By using the expression (53), the above equation can be ex- 
pressed as 

K8 - ~ l k  p - ~ 2 ~  - ~3t¢ - q = 0. (79)  

Linking up Eq. (79) with the constraint Eqs. (54) - (57) ,  we 
can simultaneously solve the unknown variables 8, a ,  i¢, X p, 
v with coupling between them, i.e., 

K S -  ~ tk  p -  ~ 2 a -  ~ 3 K - q = 0  (80) 

C l 8  q- U i ~  + V i  k p  ÷ W I K  ÷ dt : 0 (81)  

C 2 8  ÷ U 2 a  + V22k p ÷ 'V~'2 K ÷ d2 = 0 (82) 

C38 + V3k p + W3K + d3 + v =  0 (83) 

YrS. p = 0, k p ~ 0, v ~ 0. (84) 

Among these equations, the first four equations are linear and 
the last one is nonlinear; however, they can be transferred into 
the linear complementary problem and be solved by using qua- 
dratic programming (Bararaa, 1979; Zeng, 1990). 

7 E x p e r i m e n t s  a n d  A n a l y s i s  

7.1 Simple Examples.  The following examples are of in- 
terest to show the ability of the application to the above numeri- 
cal method. First, the paper quotes the results of high-tempera- 
ture creep experiments about GH33A alloy at 700°C (see Liu, 
1990, 1991) in which the smooth specimen is submitted to a 
constant load. We apply the proposed structural analysis princi- 
ple to carry out the corresponding calculations and analysis 
which are compared with the results of both experiments and 
the Kachanov-Rabotnov theory model. Figure 2 gives the creep- 
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Fig. 3 Damage curve of GH33A alloy at 700°C 

i 

time curve of GH33A alloy at 700°C, and Fig. 3 gives the 
damage behaviour curve. 

Another two examples about 2.25Cr-1Mo steel at 550°C and 
GH36 alloy at 650°C have been carried out with satisfactory 
results. 

7.2 CT Specimen. The paper has also dealt with CT 
(compact tension) specimen (GH36 alloy) with the complex 
field problem. The experiment condition is high-temperature 
creep at 650°C by ASTM standard. The two-dimensional FEM 
based on the coupling principle of the paper is used to numeri- 
cally calculate the whole process of damage deterioration of a 
CT specimen in comparison with results of experiments (see 
Fig. 4 and Fig. 5). 

From the above examples regarding the uniaxial specimen 
and the CT specimen with a complex damage field problem, it 
is shown that the coupling principle proposed by this paper is 
effective to numerically deal with damage-coupled problems. 

8 Concluding Remarks  
An effort has been made to elucidate some of damage-cou- 

pled structural analysis of creep problems and the corresponding 
framework from the point of view of continuum damage me- 
chanics. Furthermore, the attention has been focused on the 
numerical variational principle for damage-coupled creep prob- 
lems that aims at developing a useful means to deal with the 
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complex and nonlinear constitutive relations. The established 
variational principle can be summarized as follows, in brief: 

find dui or de o 

minimize H(deij, dui, dw, k p, k~)) (85) 
du i (or deq) 

subject to 

~l, (:)(dei:, k p, k~, u) = 0 (86) 
(c) 

~b o (deu, d~v, k p, k~,l) = 0 (87) 

~b <d)(deo, dov, k p, k~) = 0 (88) 

kvu = 0 ,  k I'-> 0, u - > 0  (89) 

w[,=o = 0 (90) 

k~l,=0 = 0 (91) 

where the expressions of H, ~p ~:), ~b I] ) , ~b ~J) refer to (48), (29), 
(32), (38), respectively. 

The main contents of the paper and features of the proposed 
principle may be found as follows: 

1 The complete description of creep problem for structural 
analysis considering damage-coupling effects has been estab- 
lished, strongly aimed at engineering applications. 

2 All the constitutive relations of the damage-coupled creep 
problem are treated in generalized forms with linear equations, 
except for one (i.e., positive complementary Eq. (89)). There- 
fore, the principle proposed in the paper is suitable for the 
general creep problem expressed in Eqs. (12) and (13). 

3 The proposed structural principle can be easily approxi- 
mated by numerical methods (e.g., FEM techniques) in a direct 
equation-solving way without any iterative procedures for the 
nonlinear problem. Its implementation of FEM is also discussed 
in detail. 

4 The principle is very simple since the variation operation 
is carried out only for dui or d%, and h p, k~, dw may be 
regarded as constants during the variation operation, but kP, 
h~, and dw play the important role in connection between the 
energy functional and the constraint equations. 

5 Some examples about high-temperature creep of GH33A 
alloy at 700°C, 2.25C-1Mo steel at 550°C, and GH36 at 650°C 
are presented to show some applications of the principle. 
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Measurement of Cyclic Biaxial 
Elastoplastic Stresses at 
Notch Roots 
A straightforwardprocedure is demonstrated for  measuring local cyclic elastoplastic 
biaxial stresses at notch roots. First, the biaxial cyclic strains are measured over 
short gage lengths (150 or 200 micrometers) with a laser-based strain measuring 
system. Then, cyclic stresses are computed from those measured strains by using an 
elastoplastic constitutive model. The material selected for  this study is HY-80 steel 
which has a fine grain size and is isotropic. Double-notched specimens were prepared 
with two different notch geometries: a U-shaped notch with a 4.76 mm radius and 
a V-shaped notch with a 1.0 mm radius. Two thicknesses, 2.54 and 12.7 mm, were 
tested for  each notch geometry to produce four different amounts o f  notch constraint. 
The results o f  cyclic biaxial strain measurements show good reproducibility. Stress 
computations based on two different constitutive models were used to compute stresses 
for  the first cycle and a stable cycle. One of  the constitutive models is the classical 
J2 flow theory and the other is a two-surface cyclic plasticity model. The results 
computed using these two models show good agreement with each other. The mea- 
sured stresses show the effect o f  constraint on the elastoplastic behavior at notch 
roots under cyclic loading conditions. 

1 Introduction 
Most engineering components and structures contain notches 

or other forms of geometrical discontinuities where failures 
initiate; often these failures are associated with complex loading 
histories. Designs with high load-to-weight ratios are required 
to meet economic or operational considerations in many modem 
applications. These considerations have led to a trend of loading 
part of the component or structure, generally around geometrical 
discontinuities, into the inelastic range. Engineering compo- 
nents subject to cyclic inelastic loadings usually have a finite 
life which is shorter than those subjected to elastic cycling. 
One purpose of research in low-cycle fatigue is to improve 
the accuracy in life prediction for components loaded into the 
inelastic region. 

In the last three decades a method known as the local strain 
approach (Dowling, 1979) has become very useful in low-cycle 
fatigue life prediction. This approach, based on local stresses 
and strains, incorporates three major modules: (a) material 
stress-strain properties, (b) relations between remote loads and 
local strains, and (c) fatigue damage laws. The first two mod- 
ules provide the local stress/strain history of a structural compo- 
nent subject to a given loading history. This local stress/strain 
history is the basis for failure damage calculations. The goal of 
this research to experimentally investigate the local inelastic 
response--in particular the stresses--at notch roots subjected 
to cyclic loading. 

The next section reviews previous works and cyclic constitu- 
tive models. Materials and specimens used in the experimental 
studies are described in Section 3. Section 4 shows the results 
of cyclic strain measurements at the notch roots via an optical 
technique. Section 5 describes the process of cyclic stress com- 
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putation based on the measured strains and shows the results 
of computed stresses. The last section contains the conclusions. 

2 Background 

Stresses are not directly "measured," but computed from 
measured strains through a constitutive model. As pointed out 
by Sharpe (1992a), only a few cases of elastoplastic stress 
measurement are found in the literature. Stresses were computed 
from monotonic tests by Theocaris (1962), Durelli and Sciam- 
marella (1963), and Keil and Benning (1979). A companion- 
specimen method was employed by Griffith (1948) and Crews 
(1969) to measure the cyclic elastoplastic stress at notch roots. 
In the companion-specimen method, local strains were mea- 
sured at the notch roots. The local strain records were then 
reproduced on an unnotched companion specimen to determine 
the stress corresponding to the strain history. The essential as- 
sumption in the companion-specimen method is that when the 
thickness of the specimen is much smaller than the radius of 
the notch, two of the principal stresses vanish--one normal to 
the notch surface and the other in the thickness direction. Thus 
the assumed uniaxial stress state at the notch root can be simu- 
lated with a companion specimen undergoing the same strain 
history as in the notch root. 

However, if the thickness-to-radius ratio becomes significant, 
a biaxial (instead of uniaxial) stress state exists at the notch root 
and the companion specimen method is not accurate anymore. 
Griffith's notches had a radius of 50.8 mm and a thickness of 
2.30 ram. Crews' specimens had radii of notch roots ranging 
from 3.10 mm to 42.47 mm and thicknesses around 4 mm. In 
the latter case, the largest ratio of thickness to radius is 1.3, 
which could make the assumption of uniaxial stress state at the 
notch roots suspect. Actually, the thickness-to-radius ratio in 
the notches in common engineering applications can easily be 
as high as this value. This points out the need of a more sophisti- 
cated scheme for measuring cyclic stresses. One of the solutions 
is to measure the local in-plane strains at the notch roots and 
then compute the stress through a constitutive model. However, 
there are two difficulties in obtaining elastoplastic stresses at 
the Critical locations with this methodology. 
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F i g .  1 Dimensions of the two notch geometries 

First, as the size of the notch decreases the first part of this 
scheme--strain measuring--becomes more difficult. Although 
miniature resistance strain gages have been used, the bonding 
between gages and specimens can be a problem (Keil and Ben- 
ning, 1979). A laser-based interferometric optical technique 
developed by Sharpe and Wang (1991) has been demonstrated 
to be suitable for measuring local elastoplastic biaxial strains 
at notch roots under cyclic loadings. 

The second difficulty concerns the constitutive model de- 
scribing cyclic plasticity. During the past three decades, incre- 
mental plasticity models have proved to be suitable constitutive 
relations for describing plastic behavior in metals. These incre- 
mental plasticity models can be grouped into two categories. 
The first group uses a single surface to describe yielding behav- 
ior; while the second group uses multiple surfaces. The first 
group of models are simple and able to describe inelastic behav- 
ior under monotonic loadings, but are presumed inadequate for 
more complex cyclic• loading histories. Motivated by this inade- 
quacy, a multisurface model was proposed by Mroz (1967) to 
accommodate cyclic loading. Due to its computational complex- 
ity, Mroz's model was modified into various two-surface mod- 
els; Krieg (1975), Dafalias and Popov (1976), Lamba and 
Sidebottom (1978a, b) ,  Tseng and Lee (1983), McDowell 
(1985), and Ellyin and Xia (1990). 

Among the two-surface models, the one proposed by Tseng 
and Lee (1.983), which was motivated by the experimental work 
of Philips and Lee (1979) and Lamba and Sidebottom (1978a, 
b),  is widely known and can be easily coded for computation. 
This model is used in this work to calculate cyclic stresses from 
measured strains. 

3 M a t e r i a l  a n d  S p e c i m e n s  

The material used for the study of notch root behavior is HY- 
80 steel. It is a high strength low alloy (HSLA) 'naval  steel 
used in submarine structures. HY-80 has a fine grain size com- 
pared with the gage length of the experimental technique used 
in this study. The grain size is around 20 #m which is only 10 
to 13 percent of the gage length. Although local strains are 
measured over a gage length of 150 or 200 #m, the average 
response of 7 to 10 grains are measured instead of individual 
grain behavior. 

Four kinds of notched specimens were tested: thin-U, thin- 
V, thick-U, and thick-V. Two notch geometries and two thick- 
nesses were used; the geometries are shown in Fig. 1. The 
" thin"  specimens have a thickness of 2.54 mm and the " thick" 
specimens have a thickness of 12.7 mm. These four kinds of 
specimen simulate notch constraints at the notch roots from a 
nearly plane stress state at the notch root of a thin-U specimen 
to a nearly plane-strain state at the notch root of a thick-V 
specimen. 

Local biaxial strains were measured at the center of the root 
of the notch (not on the fiat side of the specimen) using the 
laser-based technique described in the next section. To quantify 
the notch constraint, an effective Poisson's Ratio, c~, is defined 
as ce = -(e2z/etl  ), where xl is along the axial direction of the 
specimen and x2 is in the thickness direction. (The effective 
Poissons Ratio for plane strain would be zero.) The effective 
Poisson's Ratio was computed from the measured strains and 
is 0.26 for the thin-U, 0.19 for the thin-V, 0.17 for the thick- 
U, and 0.10 for the thick-V geometry. 

The material for the specimens was received in block form 
and first cut into plates using electric discharge machining 
(EDM). Then, the U-notches were machined using a computer 
numerically controlled (CNC) milling machine, and the V- 
notches were cut via EDM. The stress concentration factors 
obtained from the local strain measurements for those four spec- 
imens are 1.96 for thin-U, 2.10 for thick-U, 3.56 for thin-V, 
and 3.70 for thick-V specimens, respectively. Specimens for 
stress-strain tests were fabricated in the form of round bars 
following ASTM standard E606. 

4 S t r a i n  M e a s u r e m e n t s  

Monotonic and cyclic stress-strain curves for the material 
were obtained by testing the round specimens in an electrohy- 
draulic test machine. A clip gage with 25.4 mm gage length 
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Fig. 3 Results of  cyclic biaxial strain measurements at the notch roots of the four kinds 
of  specimens for the first cycle 

provided the feedback signal for strain controlled testing. Six 
specimens were tested to obtain cyclic stress-strain curves, with 
different strain ranges. All the specimens were cycled until the 
hysteresis loop became stable; this occurred within 100 cycles. 
Figure 2 shows a typical stress-strain curve of HY-80, including 
the first fully reversed cycle and a stable cycle. The strain limits 
in this example are ±0.8 percent. Other stress-strain curves are 
similar, but with strain limits up to ± 1.0 percent. In all cases, 
the material softened only very slightly under cyclic loading. 

A laser-based strain measuring system known as the Interfer- 
ometric Strain Displacement Gage (ISDG) was used to measure 
Cyclic biaxial elastoplastic strains at notch roots. The principle 
of the ISDG is simply Young's two-slit interferometric phenom- 
enon, but in reflection rather than transmission. Two indenta- 
tions are placed in the surface of the specimen with a Vickers 
microhardness tester. The distance between the two indentations 
(the gage length) is 150 micrometers for the V-shaped notches 
and 200 micrometers for the U-shaped notches. When the in- 
dents are illuminated with a laser, interference patterns form in 
space. These fringe patterns move when the distance between 
indents varies while external load is applied. A computer con- 
trolled system monitors the fringe patterns and translates them 
into strains. The biaxial version of ISDG operates in the same 
manner, but a third indent is needed to form an " L "  shape 
arrangement. Details of the biaxial ISDG system are discussed 
in (Sharpe and Wang, 1991 ). 

Cyclic biaxial elastoplastic strains at the center of notch roots 
were measured with the biaxial ISDG system. The ISDG contin- 
uously measured strains from the first cycle until a stable cycle 
was reached. The first fully reversed elastoplastic cycle used 
the longitudinal strain measured by the ISDG as the controlling 
parameter. When the local longitudinal strain reached a preset 
value, say + 1.0 percent, the loading was stopped, then followed 
by unloading until another preset limit, - 1 . 0  percent, was 
reached. The load then returned to zero, completing the first 
cycle. Several strain controlled cycles were run after the first 
cycle, but the rest of the cycles were run in a load-controlled 
manner for simplicity. 

Figures 3 and 4 show the results of cyclic biaxial strain 
measurements as applied load versus longitudinal and transverse 
strains measured at the notch roots. Figure 3 is for the first 

cycle and Fig. 4 is for a stable cyc le - -cyc le  100. Each of these 
two figures contains four plots pertaining to results measured 
for the four kinds of specimens. Except for the thick-V case, 
replicate tests were run. One notices that the repeatability of 
the separate tests is in general good. There does exist some 
discrepancy in the measured strains at the maximum tension 
load; this is typical in elastoplastic strain measurement (Papirno, 
1971). 

Note that these tests were performed in the longitudinal strain 
control mode with limits of ± 1.0 percent. The effect of notch 
constraint is readily visible in the transverse strain. The notch 
constraint increases in the order of thin-U (nearly plane 
stress) ~ thin-V ~ thick-U ~ thick-V (nearly plane strain). 
The measured transverse strains shown in Figs. 3 and 4 do 
indicate the trend of decreasing transverse strain as the notch 
constraint increases. The thick-V specimen is an extreme case, 
in which the transverse strain almost vanishes. The measured 
strains are used as inputs for computing stresses through consti- 
tutive models. 

5 Computation of Cyclic Stresses 
Two independent stress computations were performed based 

on two different constitutive models. The first computation fol- 
lowed the classical J2 flow theory and treated a cyclic loading 
event as segments of monotonic loading. The other one is based 
on a two-surface cyclic plasticity model with a combined iso- 
tropic-kinematic hardening yield surface traveling inside a 
memory surface. These two constitutive models are briefly de- 
scribed in the next section. Then the computation processes, 
fitting of stress-strain curves and results of the stress computa- 
tions are discussed. 

5.1 Constitutive Models. 

5.1.1 J2 Flow Theory. Under the assumptions of the Mises 
yield criterion and isotropic hardening, the classical J2 flow 
theory provides the following equation for computing stress 
increments from strain increments: 

do'iy = 2#deij + k6~dekk - FS i jSmndf .mn  (1) 

where 
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F - 18#2 (2) 
(2H '  + 6/z)a~ 

and #, k are Lame constants. S u = cr U - (1 /3 )akk6  V, and ae = 
( (3 /2 )SuSu)  ~n is the effective stress. The quantity H '  is the 
slope of the uniaxial stress versus plastic strain curve. 

Since the stress and strain tensors are symmetric, Eq. (1) ,  
has six scalar equations in 12 unknowns: six stress and six 
strain components. If only principal stresses and strains are 
considered, the number of equations is reduced to three, while 
the number of unknowns becomes six. If biaxial in-plane strains 
can be measured on a surface, where the normal stress compo- 
nent vanishes, Eq. ( 1 ) becomes simply a set of three equations 
with three unknowns- -de3 ,  do't, and da2. Here x~ is along the 
axial direction of the specimen, x2 in the thickness direction, 
and x3 normal to the notch surface. One can then rewrite Eq. 
(1) in the following form for the calculation of stress increments 
from strain increments: 

d e 3  = ( F S 1 S 3  - h)del + ( F S 2 S 3  - k)de2 (3) 
k + 2# - FS~ 

do't = (h  + 2# - FS~)dEi 

+ (k + 2/z - FSiS2)de2 + (h + 21p - FS~S3)de3 (4) 

de2 = (k + 2# - FS1S2)del 

+ (k + 2# - FS22)dc2 + (k  + 2/., - FS2S3)de3. (5) 

5.1.2. Two-Surface Model  by Tseng and Lee. The two- 
surface model introduces a memory surface which encloses all 
the initial and the subsequent yield surfaces in the stress space. 
Cyclic loading events are then described by two sur faces- -a  

yield surface and a memory surface. The definition of a memory 
surface is identical to that of a yield surface in the classical 
theory of plasticity. In general, both the memory surface and 
the yield surface may deform and translate in the stress space 
as plastic loading takes place. Mathematically the yield surface, 
expressed in terms of the isotropic-kinematic hardening rule, is 
given by 

3 _ K 2 f = 2(S u - au ) (S  u au) - = 0 (6) 

while the memory surface is described by the Von Mises yield 
function 

3 _ R2 F = 7SuS u = 0. (7) 

Here a u = ~u - ( 1/3)akk6 u is the deviatoric tensor correspond- 
ing to the center of the yield surface ~. The parameter K is the 
instantaneous size of the yield surface, which is ( ( 3 / 2 ) ( S  u - 
au)(Sij , , 1 /2  - '~u)) , while ~ is the current size of the memory 
surface. Since the yield surface has a combined isotropic-kine- 
matic hardening characteristic, it is allowed to deform as well 
as move inside the memory surface. The motion of the yield 
surface inside the memory surface is schematically shown in 
Fig. 5. In this illustration, the tensor space is schematically 
represented in two-dimensional vector form. The current center 
of the yield surface is located at Oy with radius (2/3)1n•; the 
memory surface has radius (2 /3)1n~ and is centered at O. 

Hardening rule. According to Fig. 5, the yield surface 
moves along the segment OyC, which has u as a unit vector: 

2 --  
~(K - K)X U - c~ u 

(8) 

where k is the unit vector along O---B, and 

T a b l e  1 S t r e s s - s t r a i n  p a r a m e t e r s  in T s e n g ' s  m o d e l  

cAsEs Part oes-s II h I -MPa I -MP  I -MP  I 
ALL MONOTONIC 35000 580 600 0 

Thin U UNLOADING 45000 500 1360 4000 
Thin-V, Thick-U, Thick-V UNLOADING 70000 500 1350 2000 
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n* 

11 

Subsequent~  
YieM Surface 

Current 
Yield Surface 

Memory Surface 

Fig. 5 A schematic showing the motion of the yield surface inside the 
memory surface in the Tseng-Lee two surface cyclic plasticity model 

S V + 6 dS° 
[dSol 

Xu = (9) 
S + 6  d ~  

where the relative distance 6 (with the dimension stress) 

between the two surfaces is equal to the segment AB and is 
given by 

_(aug&j ) + [(S,jdSa)2 + (~R2 _ [Si2)ldSlq,/2 
6 = . (10) [dSl 
The magnitude of the incremental movement for the yield 

surface I o~ I is determined by using a consistency condition and 
is given by 

Of.  dS 
OS 

I d a l  = - -  (ll) Of 
OdS 

Generalized plastic modulus function. The generalized 
plastic modulus, H, is given by 

H =  l + h l _  e 

in which h, the shape parameter, can be determined from a 
cyclic uniaxial stress-strain curve and e = 6161~. Here 6 and 61,, 
are the current and initial distance between the load point and 
memory surface. H corresponds to the generalized plastic modu- 
lus of the memory surface, i.e., the extreme slope of the stress 
versus plastic strain curve. 

It is shown in Dafalias and Popov (1976) that in the special 
case of proportional loading H = -~H', where H '  = do-ldd ), is 
the plastic modulus. Since H = ~H' = ]&r/dc v, Eq. (12) repre- 
sents the differential equation of the nonlinear stress-strain 
curve. When integra}ed, Eq. (12) yields a representation for h 
in terms of 6in and H: 

o- 6i, in 1 + (13) 
h = ~  c" c"  ~i,~ " 

Equation (13) can be used in a curve-fitting procedure to find 
the best value of h by choosing points (cr, e p) on the stress- 
plastic strain curve. 
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Fig. 6 Figures explaining the process of computing cyclic stresses based on the J= flow 
theory by segmenting the complete cycle into three partsmloading, unloading and reload- 
ing; (a) measured biaxial strains, (b) plastic strain-stress curve, (c) shifted unloading part 
of measured biaxial strains, (d) shifted unloading part of plastic strain-stress curve 
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I n c r e m e n t a l  s t ress -s t ra in  relation.  The inelastic stress- 
strain relation can be written as 

doi: = Du,tde,t (14) 

where the fourth-order tensor Du,t is considered in two cases; 
first, when the yield surface is moving within the memory sur- 
face, 

Di~k~ = Id( 6ik6j t  + 6i l6:k)  "1- h6i:6kl  

1 6 #  z 
- -  ( S  u - a u ) ( S , , -  a , , ) ;  ( 1 5 )  

x~ H + 2 #  

second, when the yield and memory surface contact at the load 
point and move together, 

Du,t = IZ( 6i,6:l + 6~t6:~) 

1 6# 2 
+ h606~ ~2 I t  + 2 ~  (Su ) (S~)"  (16) 

On a surface where only principal strains and stresses appear 
and normal stresses vanish, Eqs. (14) and (15) are reduced to 
the following form: 

( F i ( S i  - -  O L I ) ( S 3  - -  ~ 3 )  - -  h ) d e l  

+ ( F i ( S 2  - 0 t 2 ) ( $ 3  - a 3 )  - X)de2 
de3 = (17) 

k + 2# - Fi(S3 - -  OZ3) 2 

d~rl = ( h  + 2 #  -- F i ( S i  - cel)2)del  

+ ( h  + 2#  -- F i (S1  - c~l)(S2 - ce2))de2 

+ ( h  + 2 #  - F~(Sa - cq ) (S3  - o t 3 ) ) d £ 3  ( 1 8 )  

da2 = ( h  + 2#  - F~(S~ - oq)(S2 - o~2))de~ 

+ ( h  + 2#  - F~(S2 - o~2)2)de2 

+ (k + 2 #  - F i (S~  - a2) ($3  - a3))de3 (19) 

where 

Fl 1 6/.z 2 (20) 
x 2 (H + 2#) 

while Eqs. (14) and (16) are reduced to 

(F2SiS3  - k)del + (F2S2S3 - k)de2 
de3 = (21) 

h + 2#  - F z S  2 

da l  = ( h  + 2 #  - F2S~)dc j  + (h + 2# - F2SiSz )de2  

+ ( k  + 2#  - F2SiS3)de3 (22) 

dcr2 = ( ~  + 2 #  - F 2 S t S z ) d c l  + (k + 2# - F2SZ)dc2 

where 

+ (k + 2# - F2S2S3)de3 (23) 

Fz = 1 6/z 2 (24) 
~2 (./~. + 2#) 

Note that in the special case of proportional loading with 
isotropic hardening, in which H = ( 2 / 3 ) H '  = ( 2 d c r / 3 d e  p) and 
ce u = 0, Eqs. (20) and (24) have the same form as Eq. (2) for 
the J2 flow theory. If the special case of pure isotropic hardening 
is further assumed, Eqs. (17)- (19)  and Eqs. (21)- (23)  are 
exactly the same as Eqs. (3 ) - (5 )  for the J2 flow theory. 

5.2 Computat ion of Stresses. The computation of 
stresses based on J2 flow theory for monotonic loading has been 
investigated by Sharpe (1992b). Here it is extended to cyclic 
loading. Strictly speaking, the classical J2 flow theory should be 
used for materials obeying the isotropic hardening rule, which is 
not the case here. However, one can approximate a cyclic event 
as many segments of monotonic parts with each of them de- 
scribed by the J2 flow theory. Figure 6 is used to explain the 
process of computing cyclic stresses based on the J2 flow theory 
by segmenting the complete cycle into three parts--monotonic 
loading, unloading, and reloading. Figure 6 (a )  shows the mea- 
sured biaxial strains and Fig. 6 (b) shows the stress versus plas- 
tic strain curve used for computing stresses. A method similar 
to the companion-specimen method employed by Griffith 
( 1948 ) and Crews (1969) was used to generate the stress-plastic 

800 , , 

60O 

400 ~ 

2O0 

o 

-200 

-400 I 
-600 ! 
-800 t , , , , 

-600 -4OO -200 ( 

Thin  U °E 
° J2 

Tseng 

0 2O0 460  600  

N E T  S T R E S S  * K t - MPa 

800 , , , 

6O0 

40O 

200 .~ ~ ° ~  02 
-200  

-400 

-600 
-BOO • ' i , i 

-1500 -IOOO -5OO 

Thin  V 

:°  : 

I " T s e n g  . 
, , i , t , 

0 500 1000 1500 

N E T  S T R E S S  * K t - MPa 

Thick U 

800  , , , ~ , , , , , , 

600  

,° L A . i  
0 

-200 

-4oo ] 

-6OO i J2 Tseng 
-800! ~ i , = , , i , i , 

-1500 -loo0 -500 0 500 1000 1500 
N E T  S T R E S S  * K t  " M P a  

800 

600 

400 

200 

0 

-200 

-400 

-600 

-800 

Thick V 
-- , r ' i ' ' I ' I ' 

S 
. . . . . . .  T , , e . f  

o1800 -1200 -600 0 600 1200 1800 
N E T  S T R E S S  * I ~  - M P a  

Fig. 7 Results of the computed local biaxial stresses for the first cycle, The abscissa 
is the net stress multiplied by the appropriate stress concentration factor K t  f o r  each 
geometry. 

Journal of Applied Mechanics SEPTEMBER 1995, Vol. 62 / 651 

Downloaded 04 May 2010 to 171.66.16.28. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



800 

600 

400 

200 

0 

-200 

-400 

-600 

-800 

T h i n  U 

i , i , , i , 

o~o 
a a  ¢ ~  ° J 2  

Tseng 

-1500 -1000 -500 0 500 1000 1500 
N E T  S T R E S S  * K t - M P a  

Thin V 
800 , , , , , , , ~ 

5oo oo~ 

400 ~,, ~ ~, - 

200 =d ~°~: ~ 
o --~-~w °%0°° - 

-200 ~ 0~ ~ 

-400 ~o ~° ~ , . * ~  °° J 2  

- 5 0 0  ~ ~°°°;~'~° Tseng 
-800 , I , i , , L , i , 

-1500 -1000 -500 0 500 1000 1500 
N E T  S T R E S S  * K t" M P a  

800 

600 

400 

2O0 

0 

-200 

-400 

-500 

-800. 
-1500 -1000 -500 

Thick U 

, i , i . i , i 

~ ; ?  
~a~ ° o~ - 

~ ° ~  J 2  _ 

Tseng 
, i , i , i , i , 

0 500 1000 1500 

N E T  S T R E S S  * K ,- M P a  

800 

600 

400 

200 

0 

-200 

-400 

.-600 

-800 

6~ 

Z o ~  

-1800 -1200 -500 
N E T  S T R E S S  * K C M P a  

Thick V 

' i , i , , i , ~obo=,~ ffl 

o ~ g ~ % ~ ° ° ~  

J 

/ 
~a ° J 2  

Tseng - 

0 600 1200 1800 

Fig.  8 R e s u l t s  o f  t h e  c o m p u t e d  l oca l  b i a x i a l  s t r e s s e s  f o r  t h e  s t a b l e  c y c l e  #100 .  T h e  
a b s c i s s a  is t h e  n a t  s t r e s s  m u l t i p l i e d  b y  t h e  a p p r o p r i a t e  s t r e s s  c o n c e n t r a t i o n  f a c t o r  Kt 
f o r  e a c h  g e o m e t r y .  

strain curve in Fig. 6(b) ;  the plastic strain limits at points E 
and F in Fig. 6(b)  correspond to the total strain limits at points 
A and C in Fig. 6 (a ) .  

The biaxial stresses during initial loading were computed 
using the biaxial strains OA and OB in Fig. 6 (a )  along with 
the stress versus plastic-strain curve O ' E  in Fig. 6(b)  as inputs 
to Eqs. (2) to (5).  The biaxial stresses during unloading and 
compression loading were computed in a similar manner using 
AC and BD along with curve EF after the biaxial strains at 
points A and B had been shifted to the origin along with point 
E on the stress versus plastic-strain curve; see Figs. 6(c)  and 
6 (d).  These biaxial stresses were then added to the final stresses 
at points A and B in Fig. 6 (a ) .  The same process was used to 
compute the stresses in the reloading part. 

The stress computation based on Tseng's model (Tseng and 
Lee, 1983) incorporates the kinematic and the isotropic harden- 
ing feature. In principle, this stress computation does not need 
to break the cyclic loading event into segments. However, be- 
cause of the dissimilarity between the loading and unloading 
parts of the stress-strain curve, it is necessary to process the 
initial loading part separately from the rest of the loading his- 
tory. Still, this is an improvement, because no matter how long 
the loading history is, the whole process contains only two 
parts-- ini t ial  loading and subsequent loading. 

5.3 Fit t ing of Stress-Strain Curves. The two different 
constitutive models employed require different ways of repre- 
senting the uniaxial material response. H '  = H '  (~re), which is 
the slope of uniaxial stress versus plastic strain; is needed in 
the J2 theory, while in Tseng's model four parameters, h, K, e, 
• O must be determined. A cubic spline fitting technique has been 
demonstrated by Sharpe (1992b) to work well and is used here 
to fit the monotonic, unloading and reloading part of the stress 
versus plastic strain curve. 

Determining the four parameters in Tseng's model is simple. 
First, K is taken as the initial yielding stress in a stress-strain 
curve from a uniaxial test. The second parameter, he, is taken 
at the maximum stress of the stress-strain curve. H is the ex- 
treme slope of the stress versus plastic strain. And h is deter- 
mined using Eq. (13) and a point on the stress-plastic strain 
curve. These parameters must be determined for both the load- 

ing and the unloading stress-strain curves; furthermore, the un- 
loading must begin at a strain equal to the maximum effective 
plastic strain limit at the root of the notch. This limit is similar 
for the three more constrained notches. These four parameters, 
h, K, e, H, for monotonic loading and unloading are listed in 
Table 1. These parameters enable the stresses within the plastic 
region of interest to be predicted within five percent. 

5.4 Results of Stress C o m p u t a t i o n  a n d  Discuss ion.  Re- 
suits of the computed local biaxial stresses are shown in Fig. 7 
for the first cycle and Fig. 8 for the stable cycle. Each figure 
has four plots corresponding to the stresses computed for the 
four kinds of specimens. Each of the plots shows one set of 
local biaxial stress histories computed by the J2 flow theory 
and one by Tseng's model for the same strain history. Local 
longitudinal stress ( a l )  and transverse stress ((r2) are plotted 
versus a parameter proportional to external loading--Kt  × net 
s t ress--where Kt is the elastic stress concentration factor. 

Based on the results, several observations can be made. 

• It is generally seen in all the plots that stresses computed 
by the J2 flow theory and Tseng's model agree very well 
with each other almost anywhere in the whole loading 
history. 

* The stress measurement demonstrated here is more gen- 
eral than the companion-specimen method which is lim- 
ited by the notch constraint. Indeed, as shown in both 
figures, the calculated transverse stress in the case of thin- 
V, thick-U, and thick-V is significant enough to violate 
the assumption in the companion specimen me thod- -a  
uniaxial stress state. However, in the thin-U case, the 
results support this assumption of uniaxial stress state 
which is physically expected. 

• The notch constraint shows the strongest effect on the 
transverse stress. In fact, the effect of the notch constraint 
is to bring the transverse stress "in phase" with the longi- 
tudinal stress. 

• For the case with least notch constraint--the thin-U 
case- - the  local longitudinal stress decreases in the mono- 
tonic regime as plasticity prevails. This unusual behavior 
is confirmed in a finite element analysis (Tregoning, 
1992). 

652 / Vol. 62, SEPTEMBER 1995 Transact ions  of the A S M E  

Downloaded 04 May 2010 to 171.66.16.28. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



6 Conclus ions  
Biaxial stresses at a notch root can be computed with little 

difficulty from measured strains, and there is little difference 
in the stresses obtained by using the simpler J2 flow theory 
compared to the more sophisticated Tseng model. 

These results quantify the increase in the principal stress in 
the thickness direction with the increase in the ratio of thickness 
to root radius. Unless the thickness-to-radius ratio is small, 
implying plane stress at the notch root, the companion method 
of measuring stresses is incorrect. 
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Diffusion Rate for Stress in 
Orthotropic Materials 
Axial rates of  diffusion of  the symmetrical state o f  stress caused by equal but opposed 
normal forces acting on opposite sides of  an indefinitely long strip or plate, are 
examined in the context of  orthotropic elastic materials. To obtain the stress compo- 
nents for  this boundary value problem, the imposed surface tractions are represented 
by a Fourier integral. At distances larger than one quarter o f  the thickness, the 
normal stress on the middle surface is closely represented by the sum of eigenfunctions 
for  this problem, up to, and including the first complex eigenfunction as well as its 
conjugate. Each eigenfunction is a product of  exponentially decreasing and oscilla- 
tory terms. The exponential term is more significant for  determining the rate of  
diffusion o f  stress in materials with a large ratio of  axial to transverse Young's 
moduli Ex/Ey >-- 3; this term shows a strong dependence on the ratio o f  transverse 
Young ' s modulus to shear modulus Ey/G. x. 

1 Introduction 

The stress field in an elastic body is governed by elliptic 
partial differential equations, so stress concentrations as well as 
discontinuities in stress diffuse with increasing distance from 
the source. Quantitative measures of the diffusion rate of stress 
have received considerable attention, mostly in the context of 
Saint Venant's principle for bodies with self-equilibrating end 
tractions. Early studies in this regard include those of Toupin 
(1965) and Knowles (1966), who provided a measure of the 
stress decay from an end disturbance, using strain energy decay 
bounds. A more recent study by Durban and Stronge (1992), 
of an isotropic elastic bar subjected to large initial stretch 
showed that away from the loaded section, the transverse stress 
exponentially decreases with increasing distance, at the same 
rate as the smallest eigenvalue for a self-equilibrating end distur- 
bance. In plane-strain plasticity, symmetric and antisymmetric 
axial stress distributions in a bar have very different rates of 
axial decay at any level of initial stretch (Durban and Stronge, 
1988). Analysis of a compound circular cylinder with axisym- 
metric self-equilibrating end loads (Stephen, 1991 ), has shown 
that the rate of transfer of axial force from one cylinder to the 
other is rapid when both the ratio of stiffnesses Eouter/Ei ..... as 
well as the ratio of diameters douter/di .... of the cylinders are 
small. 

Particular attention was focused on diffusion of stress in an- 
isotropic materials by Choi and Horgan (1977), and Horgan 
(1974, 1982, 1989). These investigations obtained lower 
bounds on the decay rate for axial stress; the bounds depend 
on elastic properties of the material. For example, for a highly 
anisotropic rectangular strip of width b, shear modulus G, and 
axial stiffness Ex, Horgan (1982) concluded that the stress de- 
cay rate k, has an asymptotic value k ~ (27r/b) G ~ ,  as (G/  
Ex) ~ 0. Also, for an axisymmetric problem of a circular cylin- 
der of radius c~ with self-equilibrating end loads, k 
( 3 . 8 3 / c ) ( ~ J E z ) ,  as (~r/E~) ~ O. Here, z and r refer to the 
axial and radial directions, respectively, of the cylinder. An 
extensive review of important results within the framework of 
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Saint Venant's principle was provided by Horgan and Knowles 
(1983). 

The present study addresses the problem of diffusion rate of 
a stress perturbation in either a beam or plate which is loaded 
on the lateral surfaces by a pair of equal but opposed transverse 
forces. For isotropic materials, Filon (1903) obtained a solution 
for the stresses in the strip. In the present work, the same prob- 
lem is examined in the context of anisotropic materials. The 
imposed surface tractions are represented by a Fourier integral, 
and an analytical solution is derived for the stress distribution 
in a beam or plate. The influence of the ratio of Young's moduli 
Ex/Ey, and that of the transverse Young's modulus to shear 
modulus Ey/G, on the distribution of normal stress ~ry, along 
the middle surface is examined under conditions of either plane 
stress or plane strain. For this boundary value problem, the axial 
rates of decay are obtained for components of stress; for highly 
anisotropic materials the rates for different components of stress 
are distinct. 

An important conclusion from the present study is that for 
this boundary value problem, the lower bound given by Horgan 
(1982) is representative of the rate of decay for all components 
of stress only if the material is not too anisotropic. This lower 
bound is obtained from the smallest eigenvalue of the corre- 
sponding eigenfunction problem of a self-equilibrating end load 
on the strip. The present study reveals that at practical distances 
from the loaded section, good estimates for the rates of decay 
of different components of stress lie between those of eigenfunc- 
tions for the smallest and the smallest complex eigenvalues. 
For isotropic materials the smallest eigenvalue is complex, so 
all components of stress have the same rate of decay. For highly 
anisotropic materials, however, the smallest eigenvalue is real; 
in this case the axial rate of decay is not a material property. 

2 Plane Deformation of an Orthotropic Body 

Consider an orthotropic elastic strip and a Cartesian coordi- 
nate system. If the transverse and the axial directions of the 
strip are taken as the y and x-axes, respectively, the strains are 
related to the stress components (Lekhnitskii, 1968), 

~x = a l l tTx  -t- a l 2 0 y  

Ey = a120  x + a22Cry 

"Yxy = a667-xy ( 1 ) 

where in plane stress, 
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1, 
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Fig. 1 Orthotropic beam (a), or plate (b) compressed by two  equal but 
opposite collinear normal forces 

1 1 
all = ~ x ,  a22 = ~ ,  

and in plane strain, 

1 
at1 

E~* 

1 
e~ 

v,y 1 
a12 = _ _ _  , a 6 6 = - - ,  (2) 

E~ (J 

1 ( 1 -  v2 E ~  
Ex \ X~E~] 

1 1 - vyz 
a22 = Ey 

--l"_.....~l"xY(1 +l"xzl"YzE~x ) 
a 1 2 -  E* Ex vyx 

1 1 
a66 = - -  m - - ,  ( 3 )  

G* G 

In (2) and (3),  Ex, Ey, G, and v 0 denote axial Young's modulus, 
transverse Young's modulus, shear modulus, and Poisson's r a -  
tio, respectively. Also, an asterix superscript denotes an effec- 
tive modulus for plane strain. 

We introduce an Airy stress function ,IT(x, y),  which is related 
to stress components by 

O" x = I~I),yy, O'y = ~.~, r~y = - ~ y .  (4) 

In the absence of body forces, the equilibrium equations for 
the strip are identically satisfied by ~. Thus the condition of 
compatibility for plane stress yields 

Ey ' Ex: ' Ex (I)'YYYY = O, ( 5 )  

while for plane strain 

1 
Ey* ' ~ -  2--E~, ] ~xxyy, "[---I~,yyyy = O ' E r ,  (6) 

In the case of an isotropic material Ex = Ey = 2(1 + u ) G  = 
E, and Eq. (5) is further reduced to the familiar biharmonic 
equation: 

~,xxxx + 2~,.rxyy + (I),yyyy ~ O. (7) 

3 B o u n d a r y  V a l u e  P r o b l e m ~ O p p o s e d  T r a n s v e r s e  

Forces on Strip 
Consider an infinite beam with depth 2h, that is in equilib- 

rium under the action of two equal but opposed normal forces 
P,  acting on the upper and lower edges of the strip at x = 0 
(Fig. 1 (a ) ) .  Let dimensionless spatial coordinates be defined 
a s  

x = y  (8) 
~ = ~ ,  ~7 h" 

On the lateral surfaces, the transverse stress ~ry(~, ~7) and shear 
stress r~y((, r/) satisfy boundary conditions that can be ex- 
pressed in Fourier integral form as 

"f l  cry(G, ±1)  = - ~ (cos a ( ) d a  

"rxy(~, _+1) = 0, (9) 

where a is the Fourier integral parameter. 
A stress function of the form 

= h f ; f ( a ,  r/)(cos a ( ) d a  (10) 

can be substituted into (5) and (6) to obtain the explicit form 
of governing differential equation 

f " "  - (2a2R1) f  " + (a4R2) f  = 0, (11) 

where f '  ~ d f /drb  For plane stress, 

Er2a Ey' 

and for plane strain, 

R, = E~* E] ~,;, R2 = E-L (13) 
Ey* 2G* E] 

It is assumed that R~, R2 > 0 for the materials under consider- 
ation (for isotropic materials RI = R2 = 1). Also, Ex/G is 
expressed as a product (Ex/Ey)(Ey/G),  in order to emphasize 
the separate roles of the two elastic parameter ratios Ex/Ey and 
Ey/G, on diffusion of stress in different materials. It follows 
from Eqs. (1 1 ) - (13)  that any difference between the behavior 
of the stress field for plane strain as opposed to plane stress, 
will be due to a change in value of quantities R1 and Rz. 

We seek a solution of the form 

f = e ~'" (14) 

The characteristic equation of ( 1 1 ) is 

w 4 - 2Rlw 2 + R2 = 0. (15) 

The symmetry of the problem about the middle surface (7 = 
0) suggests that we require only an even solution o f f ( a ,  ~7), 
the arbitrary constants of which can be determined from the 
boundary conditions (9).  The roots of (15) appear in conjugate 
pairs, 

w = ± ( F  ± ifD, (16) 

where 092 = R~ ± ~/~  - R2. Three possibilities exist: (1) real 
and distinct roots, (2) complex roots, or (3)  real repeated roots. 

3.1 Real Distinct Roots. The characteristic Eq. (15) has 
real roots if 

R~ > R2 > 0. (17) 

Most carbon fiber composite materials of practical importance 
fall into this category. The elastic properties of some typical 
composite materials are given in Table 1. 

The quantity f~ in (16) is complex, and the required roots 
are 

091 = (I- '  -- ~ )  = 1-'1 092 = - E l  

093 = ( F  + ~ )  = F 2  094 = - F 2 .  ( 1 8 )  
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Table I Elastic properties for some carbon fiber composite and crystal- 
line materials 

Msterial E= Eu (E.)Gp a v=, v=. v,. 
(GPs) (GP~) (GPs) 

(~) Gr./Ep. composlte 

uaidirectional 137.93 8.90 6.90 4.13 0.2.5 0.2.5 O.01 

(Chol and Horg~a, 1977 

(b)Gr./Ep. composite 

(0°,45°,0°,-45°,0°)2R 93.1 9.7 21.1 4.92 0.3 0.64 0.15 

(Cairns, 1991) 

(e) Gr./Ep. composite 

QuasMsotropie .50.81 11 .78  50,81 4.11 0.25 0.31 0.06 

(Shiwkumar et al., 198.5) 

(d) Msgnesium crystal .50.76 45.2.5 4.5.2.5 16..56 0.25 0.28 0.3.5 

(Daha~ and Zarka,, 1977) 

(e) Zinc crystal 37.88 121 .5  121..5 40 0.25 0.08 0.04 

(Dahan and Zark~, 1977) 

The symmetric solution o f f ( a ,  r/) is 

f (a ,  r/) = A~ cosh Flar/ + A2 cosh F2ar/ 

where F~ and F2 are 

E l  .~ ~ /R i  .~ ~ - 2  - -  R 2  

F2 = ~/R1 - , . ~ -  R2. 

(19) 

(20) 

Us ingf (a ,  r/) given by (19), the stress components can be 
obtained from the stress function (10), 

(Ty ( ~ ,  r / )  

h (A1 cosh Flat  7 + A2 cosh F2ar/) cos a~da 

o-x(¢, r/) 

a2f  = -~- (AiFL z cosh F,ar/ + A2Fz 2 cosh F2ar/) cos aCda 

r x y ( ( ,  r / )  

 2f( = -~- (AiF1 sinh Flar/ + A2F2 sinh F2ar/) sin a~da. 

(21) 

Constants Ai and A2 are obtained from the boundary conditions 
(9), to give 

P F2 sinh Fza 
Al = 

7ra 2 F2 sinh F2a cosh Fla  - Fl sinh F ia  cosh F2a 

P - F1 sinh F la  
A 2 = 

71"0/2 F2 sinh F2a cosh Fta - F1 sinh F la  cosh F2a ' 

(22) 

3.2 Complex Roots, Equation (15) has complex roots if 

R~ < R2. (23) 

The elastic properties of crystalline zinc (see Table 1) corre- 
sponds to this case. Here, the roots are 

Wl = F + i f ~  w 2 = - ( F + i ~ )  

w3 = F - if~ LU 4 = - -  (F - ill).  (24) 

The symmetric solution off(G, r/) is 

f (a,  r/) 

= BI cosh Fat7 cos liar/ + B2 sinh Far /s in  liar/ (25) 

where 

1 
f ~ -  R1 (26) 

By substituting (25) into the stress function (10), and with the 
appropriate differentiation, we arrive at the stress components 

f 2a2 (B1 cosh Far/cos f2ar/ 
O'y = - - T  

+ B2 sinh Far /s in  ~ar/) cos a~da 

2a2 f :  a~ = ~ [B,((F 2 _ f~2) cosh Far/cos liar/ 

- 2f2F sinh ~TFa sin r/f~a) 

+ Bz((F 2 _ f~2) sinh Far / s in  Oar/ 

+ 2~2F cosh r/Fa cos r/f~a)] cos a~da 
2a 2 

f f  [Bl(F sinh aFr/cos aFr/ TxY = h 

- f~ cosh aFr / s in  aFr/) 

+ B2(F cosh aFr /s in  aF~ 7 

+ f2 sinh aFr/cos  aFr/)] sin a~da. (27) 

By substituting the boundary conditions (9) into (27), Bi and 
B2 are obtained, 

P F cosh Fa  sin ~2a + 9/sinh Fa  cos ~ a  
Bi - - -  

7ra 2 F sin 2f~a + f~ sinh 2Fa 

P f~ cosh Fa  sin f~a - F sinh Fa  cos ~ a  
B2 = - -  (28) 

7ra 2 F sin 2f~a + f~ sinh 2Fa 

3.3 Real Repeated Roots. The subcase of (15) with re- 
peated real roots includes isotropic elastic materials. Real re- 
peated roots occur only if 

R~ = R2. (29) 

In this case the roots are 

0J I = (a.) 3 = F ~a) 2 = ~.u 4 = - F  (30) 

where F --- ~/~. The symmetric solution o f f ( ( ,  r/) is 

f (a ,  rl) = C1 cosh Far/ + C2r/sinh Far/. (31) 

In view of (31) and boundary conditions (9), the stress com- 
ponents are 

2P 
Cry(g ,  r / )  = - -  - -  

7rh 

[(aF cosh a F  + sinh a F )  cosh aFr/ 

f :  - aFr /s inh a F  sinh aFr/] 
× sinh 2aF + 2aF cos a~da 

2P 
o x ( ( ,  77) = - -  

7rh 

[(aF cosh a F  - sinh a F )  cosh a f t /  

f :  - aFr /s inh a F  sinh aFr/] 
× sinh 2aF + 2aF cos a~da 
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2P 
7-xy(~, ~ )  -- 

7rh 

[aF cosh a F  sinh aF~ 7 

f ~  - aF~ 7 sinh a F  cosh aft?] sin × a ~ d a .  (32) 
do sinh 2aF + 2aF 

For F = 1, (32) reduces to the solution obtained by Filon 
(1903) for an isotropic material. 

4 E igenfunct ions  for B o u n d a r y  Value  P r o b l e m  

Our primary interest is in investigating the longitudinal decay 
rate for stress in an orthotropic strip or plate. In this section a 
procedure for obtaining the decay rate of normal stress on the 
middle surface of the strip is outlined; this is done without 
recourse to numerical computation of the stress components 
given by (21) or (27). Returning to Section 3, recall the charac- 
teristic Eq. (15) 

w 4 - 2R~ov ~ + Rz = 0. (33) 

Forpurely real roots of (33) 0.)1,2( = ±Fi ) ,  0.)3,4( = ±F2), we 
obtain from (21 ), the expression for the nondimensional normal 
stress component on the middle surface ~ = 0, 

7rh 
-- - -  f ir(K, O) 

P 

~= Fz sinh F2a -- F~ sinh F~a 

J0 Fz sinh Fza cosh F~a - F~ sinh Fla  cosh F2a 

× cos a~da. (34) 

Now, consider the integral 

r = F2 sinh F2a -_ F~ sinh F~a 
I 

IF2 sinh Fza cosh F~a 
- F~ sinh F~a cosh F~a] 

cos ~ada. 

Applying the residue integration method to (35), we have 

(~ F~ sinh F:.g - F1 sinh Fl2 eSZ(d2 
1 

J Fz sinh FaZ cosh F~2~ - F~ sinh F~2 cosh F:2 

= 27ri ~ [Residues] (36) 

where Z =- a + iO is a complex variable in the (a, 0) plane. 
The integral I, is taken counterclockwise along a semicircular 
path in the upper region of the ;~ plane. The path of integration 
is bounded by the a-axis and [21 = ~ in the limit as '~ --, o~; 
this path encloses the poles of the integrand in (35). The poles 
are given by the roots of 

Fz tanh Fz2 - Fi tanh F12 = 0. (37) 

Because the coefficient of e ~ze in (36) is even, the value of I is 
twice that of the integral in (34). By applying the transforma- 
tion 2 = ik, (37) becomes 

F~tan Fzk - F~tan F~k = 0. 

Equation (38) is the exact form of eigenvalue equation for 
exponential axial stress decay in the self-equilibrating end load 
problem examined by Choi and Horgan (1977), for materials 
with real eigenvalues for Eq. (15). Thus the eigenvalues (and 
hence, the eigenfunctions) for the stress function due to opposed 
transverse forces are entirely equivalent to the eigenvalues for 
the stress function due to self-equilibrating end disturbance, as 
previously noted by Durban and Stronge (1992). The poles of 
(35) in the upper half of the 2 plane are 

£m = i[Re(km) ± ilm(km)] (m = 1, 2, ' .), (39) 

where k,,, is the eigenvalue of (38), and has a positive real part. 
The expression for the first residue reads 

First Residue = i F~ sin F~kl - F1 sin Flk~ e_~e. (40) 
(F~ - F2~) cos Flkl cos F~k~ 

If kl is complex the residue (--40) also includes the term contrib- 
uted by the conjugate part k~. As ~ becomes large the value of 
I asymptotically approaches 

7rh 7r F2 sin F2k~ - Fi sin F~k~ e k~ 
2--P O'y(~, 0 )  ~ ~ (F22 _ i ~ )  c o s  F i e  I cos  F2kl 

7r F2 sin F2kl - F1 sin Flk~ 
+ -  e ~,e. (41) 

2 (F~ - F~) cos Flkl cos F2kt 

If  the roots of (33) are complex, we have 

LUi, 2 = . ± ( F  -q- i ~ )  ~.U3, 4 = ± ( F  - if/). (42) 

After some algebraic manipulation, the first equation in (27) 
transforms to 

7rh 
2P Oy(~, 0) 

[F cosh Fa  sin f~a 

f f  + ~2 sinh Fa  cos f~a] = cos ~ada (43) 
F sin 2f~a + ~ sinh 2Fa 

In the limiting case of f~ = 0, F = 1, we arrive at the case for 
an isotropic material, and (43) reduces to 

y_h f ~  a cosh a + sinh a 
2P ~ry(~, 0) = sin 2a + 2a cos ~ada. (44) 

(35) This expression is the same as that obtained by Filon (1903). 
Applying the residue integration procedure to (43), we obtain 

(~ F cosh FZ sin Y2 + f~ sinh FZ cos f~2 e~Z~d2~ 
I 

d F sin 2f22 + f~ sinh 2FZ 
= 27ri ~ [Residues] (45) 

with poles given by roots of the equation 

F sin 2f~2 + f~ sinh 2F2 = 0. (46) 

Using the transformation 2 = ik, in (46) gives 

F sinh 2f~k + f~ sin 2Fk -- 0. (47) 

Again, (47) is the eigenvalue equation for exponential stress 
decay rates in the self-equilibrating end load problem, obtained 
by Choi and Horgan (1977) for materials with complex roots 
for (15). If kl is the first eigenvalue in the upper half of the 2 
plane, and its conjugate is kl, then, for large values of kl~ (43) 
has an asymptotic value 

7rh 
2--fi %(~' 0) 

(38) 
7r f~ cosh f~k~ sin Fkl + F sinh f~k~ cos Fk~ e_k~ ~ 

2Ff~(cos 2Fkl + cosh 2f~kl) 

~2 cosh f~kl sin I~1 + X sinh f~kl cos Fkl 
+ 7r e -~1~ (48) 

2Ff~(cos 2Fkl + cosh 2f~kl) 

For the case of repeated roots of (33), the eigenvalue equa- 
tion is 

sinh 2Fk + 2Fk = 0 (49) 
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Fig. 2(b) 

Fig, 2 Normal stress try on the middle surface ( (y /h)  = O) as a function 
of the ratio of axial to transverse Young's moduli Ex/Ey for (a) (Ex/G) = 
2, and (b) (Ex/G) = 2. In-plane Poisson's ratio u~ = 0.3. 

where F = ~J~ = R2, and the first eigenvalue is given by 

Fk~ = 2.1061 ± i1.1254. (50) 

The expression for nondimensional normal stress is obtained 
from (48), by taking the limiting value of f~ = 0. Thus for 
repeated roots, 

7r_.h klF cos Fkl + sin Fkl e_kl ~ 
2P cry(g, 0) ~ 7r 2F(1 + cos 2Fk]) 

+ 7r k~F sin I-~ + sin I ~  e_~,~. (51) 
2F( 1 + cos 2I~1) 

The special case of an isotropic material where F = 1, in 
(49), was considered by Durban and Strange (1992). 

5 Eigenfunctions and the Rate of Decay for St res s  

The influence of elastic parameter ratios EflEy and Ey/G on 
the distribution of normal stress ay, along the middle surface 
(y/h) = O, is illustrated in Figs. 2 to 3 for plane-stress and 
plain-strain conditions; these curves were evaluated from Eqs. 
(21) and (27). Our studies indicate that the normal stress on 
the middle surface ay(x/h, 0) is insensitive to the modulus 
ratio EflEy for values of the ratio of transverse Young's modulus 
to shear modulus (E/G) >> 1. However, for constant values of 
the ratio of axial Young's modulus to shear modulus Ex/G, the 

rate of decay of the normal stress on the middle surface ay(x/ 
h, 0) becomes more rapid as the modulus ratio Ex/Ey becomes 
smaller. 

If the ratio of transverse to shear moduli Ey/G is held con- 
stant, for large ratios of axial to transverse Young's moduli Eft 
Ey, the rate at which the middle surface stress (Trh/2P)cry is 
spread by shear does not significantly change, as shown in Fig. 
2(b) .  However, for small values of the ratio of axial to trans- 
verse Young's moduli (Ex/Ey) < 1, the influence of Poisson's 
ratio on the distribution of normal stress (Trh/2P)cry is signifi- 
cant, causing more rapid diffusion of the middle surface stress. 
It is evident from Figs. 2 that the transverse Young's modulus 
Ey has a strong influence on the distribution of normal stress 
on the middle surface. This might be expected from physical 
reasoning, since in the present problem the applied forces are 
directed along the y-axis. 

Figure 3 shows the distribution of normal stress on the middle 
surface (y/h) = 0, for plane stress and plane strain, for crystal- 
line zinc, an isotropic material, a crossply composite (b),  as 
well as a unidirectional composite (a) .  The plots indicate that 
the stress distributions for plane stress and plane strain are 
practically identical. This is because the quantities R~ and R2 
given by (12) for plane stress, and (13) for plane strain, remain 
relatively unchanged for all the materials. 

6 Comparison of Eigenfunctions and Analytical 
Solution 

The exponential axial diffusion of normal stress on the middle 
surface is examined in this section, in the context of the eigen- 
functions obtained in Section 4; i.e., 

7rh 
2-P o-,(,~, o) = £ { n,,e-k,, e + ~ e  -;,,e } (52)  

n 

where tacitly it has been assumed that I-In and k. are complex. 
Let Fin be the conjugate of I I . ,  and 

kn=/3n + ix. 

I-I. = ~Pn + in. (53) 

where ?., ~g., 13., and x .  are real, and/% and X. have positive 
values. In the region close to the plane of applied forces ( = 
0, the diffusion of stress is determined by the sum of exponential 
terms in (52), which in turn are governed by the real part of 
the decay rate ft.. The eigenvalue k. has an imaginary part X~, 
which becomes more important at large distances from the axis 
of applied forces, where the normal stress is negligibly small. 

The axial diffusion of stress can be evaluated on the basis of 
the eigencomponents (52) of the solution for the boundary value 
problem. For the materials listed in Table 1, values of decay 

1.6 r l = i i J i 1 i 

1.& ~Crystolline zinc 
1.2 ~ \ \  ~..---Isotropic material 

2P 0,8 Crossply composite (b) 

0.6 ~k Unidirec!ional 

0.4 ~ 
0.2 

-°'2o o12 o'.4 o'.6 o',6 ~ 112 114 116 1)8 
N o n - d i m e n s i o n a l  ax i a l  d i s t a n c e , . ~ -  

Fig,3 Normal stress distribution on the middle surface for beams (plane 
stress) and strips (plane strain) composed of typical orthotropic materi- 
als. Curves for plane strain are shown as bold lines, while plane stress 
are shown as light lines. Middle surface stresses for plane stress and 
plane strain almost coincide for all the materials. 
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Table 2 Comparison of elastic parameters and property ratios with eigen- 
values for stress function 

Isotroplc Magnesium Zinc Composite Compo6ite Composite 
(~) (b) (~) 

M&terial I ~t  2.6 2:73 3.04 1.67 1.07 2.87 
i 

parameters ~ 2.6 3.00 0.94 33.4 18.92 12.36 
1 i ~ 1.0 1,12 0.31 19.99 9.61 4.31 

Roots for r l  + i~t 1.0 1,417 (0.625 0.6814 4,2170 3.3893 
elastlc field I +/0.400) 

eq, (15) I~= + i fl~ 1,0 0.748 -i0.409)(0"625 03870 0.7347 0.6128 

Smallest - 0,5646 - 

sigenvalues k = - 1.1360 0.7712 0.9625 

eqs. (38) (IJ + iX) - 1.7773 1.5804 1.9888 

(47) ~md (2.1062 + (2.1401 + (2.4755 + (2.0505 + (2.1676 + (2.6207 

(49) , /1.1254) ~0.9375) i1,9785) i0.1521) i0,2802) /0.3243) 

rate k,, (n = 1, 2 . . . .  ) taken in the order of increasing real part 
of the smallest eigenvalues evaluated from (38), are compared 
in Table 2. We find that except for the composite materials, the 
first eigenvalue k~ for all the other materials is complex. The 
eigencomponent given by each first complex eigenvalue kl is 
an accurate approximation for the stress distribution on the 
middle surface of the strip, at axial distances that are more than 
one quarter of the strip or plate thickness (x/h > 0.5) away 
from the line of action of the applied forces. This is illustrated 
in Fig. 4, where the first eigenfunction for crystalline zinc and an 
isotropic material are compared with the numerically computed 
stress distributions. 

In the case of a unidirectional fiber composite (a ) ,  the fourth 
eigenvalue k4 (taken in the order of increasing real part), is the 
first complex eigenvalue. The eigenfunctions for k~, k2, and k3 
(which are all purely real) give a normal stress on the middle 
surface that is tensile at every section, as illustrated in Fig. 5. 
The tensile stress field is associated with positive real values 
of stress amplitude Ill (see Table 3), evaluated from (41) for 
these eigenvalues. On the other hand, the normal stress on the 
middle surface given by the sum of eigenfunctions for the first 
complex eigenvalue and its conjugate, is compressive. As 
shown in Fig. 5 ( i) ,  the sum of eigencomponents for eigenvalue 
terms from k~ up to and including k4, as well as its conjugate 
k4, gives a stress distribution on the middle surface (y/h) = O, 
which is in close agreement with the numerically computed 
stress field. 

The first and second eigenvalues for both the angle-ply com- 
posite (b) ,  as well as quasi-isotropic composite (c) ,  are also 

1 . 6 ' , , , . , , , , ,  

1.2 

0.6 
_Isolropic material 

0"~ t ~ / /  ~rystallinezinc °:F 
- 0 , 2 / l l r l l l l t l  

0 0.2 ~ 0.6 0.8 1 1.2 1.~ 1.6 t,8 
Non-dimensional axial d i s t a n c e , ~  

Fig. 4 Comparison of the first eigenoomponent (shown in open sym- 
bols) along the middle surface, with numerically evaluated stress field 
(curves) for an isotropic material and crystalline zinc. The smallest eigan- 
value for both materials are complex. 

purely real. Similar to the case of a unidirectional fiber compos- 
ite (a ) ,  these eigenvalues give tensile eigencomponents for nor- 
mal stress at every point along the middle surface; these eigen- 
components have real positive values of stress amplitude Hi ,  
Ha, as tabulated in Table 3. For both materials, the sum of 
eigencomponents for eigenvalues up to, and including the first 
complex eigenvalue k3, as well as its conjugate ~3, gives a close 
approximation for the stress field on the middle surface (y/h) 
= 0, as shown in Figs. 5(i i)  and (iii). 

Figure 6 relates the number n of purely real or imaginary 
eigenvalues smaller than the first complex eigenvalue, to the 
elastic parameter ratios Ex/Ey and Ex/G. The curves indicate 
the transition regions where there is a change in the number of 
eigenvalue terms smaller than the first complex eigenvalue. For 
example, in a region where n = i, there are i purely real or 
imaginary eigenvalue terms smaller than the first complex ei- 
genvalue; i.e., k~+l is the first complex eigenvalue. For a ratio 
of axial to shear stiffness (Ex/G) = 0.5, the first eigenvalue kl, 
is always complex, with both the real part ~ ,  and the imaginary 
part X~, having the same value. Below an (Ex/G) ratio of 0.5, 
the eigenvalues are either purely imaginary or complex, while 
for values of ExIG larger than 0.5, the eigenvalues are either 
purely real or complex. For reference purposes, the elastic mod- 
uli ratios for an isotropic material, unidirectional composite (a ) ,  
crossply composite (b),  as well as quasi-isotropic composite 
(c) ,  are indicated in Fig. 6. 

Since the first complex eigenvalue plays an important role in 
the distribution of this component of stress, it is necessary to 
have a simple expression for evaluating this quantity. As illus- 
trated in Fig. 2(b), for a ratio of axial to transverse elastic 
modulus (Ex/Ey) ~ 3, a further increase in Ex/Ey does not cause 
any significant change in normal stress distribution. Using the 
method of least squares, a relation was obtained for the real 
part of decay rate ,8, for materials with a ratio of axial to 
transverse elastic moduli ( Ex/Ey) >> 1, 

Re(k) ~ 1.7 ~ - ~  - 0.28. (54) 

It is worth mentioning that the asymptotic value for rate of 
decay obtained previously by Choi and Horgan (1977), 

k ~ 1r (55) 

gives an estimate for the first eigenvalue rather than the first 
complex eigenvalue. 

Finally, in order to examine whether decay of normal stress 
on the middle surface ~y(X) is representative of decay rate for 
all stress components, the rate of decay of the standard deviation 
#x of axial stress variation on cross sections was obtained for 
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Table 3 Amplitude of stress 11. f rom small e igenvalues kj, for materials 
in Table 1 

Stress Amplitude 11. = Pn + i Q. (n = 1, 2,,,,), eq, (41) 

Isotropie Magnesium Zinc Composite(&) Composite(b) Composite(c) 

t (0.0250 + 
10.0) 

2 - (0.0180 + 
i0.00) 

3 - (1,0178 + 

10.0) 

4 ( - 1 . 0 -  ( -1 .001-  (-o.9674- 

i0.088) i0.333) i0.475) 

(0.0594+ (0.0816 + 

io.o) io.o) 

(0,1406 + (0.2679 + 

10.o0) i0.00) 

(-1.2588- (-0.9036- (-1.1943- 

i 1.1327) i0.0894) i0,3564) 
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0 k 1 =0.g625+i0.0 
+ k z = 1.9888+i.0.0 

a a (k3,k31 = 2.6207± 0.32&3 
a zx sum of eigencomponents 

a ~ m i d d l e  surface stress 
z= o 
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0.2 0./4 0.6 0,8 1 1,2 1./4 1.6 1.8 
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n 

Fig. 5(ii i) 

Fig.5 Comparison of the sum of e igencomponents for eigenvalue terms 
up to, and including the first complex eigenvalus, with stress field ob- 
tained numerically, for (i) unidirectional fiber composite (a), (//) crossply 
composite (b) ,  and (iii) quasi-isotropic composite (c).  

a unidirectional composite (a),  and an isotropic material. These 
results were compared with the decay of normal stress on the 
middle surface Oy(X, 0), the lower bound on decay rate pre- 
dicted by Choi and Horgan (1977), Eq. (55), and the present 
estimate for the real part of the first complex eigenvalue Eq. 
(54). This comparison is shown in Fig. 7, where the stress 
values have been normalized by the stress magnitude on the 
axis of applied forces. Figure 7 indicates that the decay of 
normal stress on the middle surface and that of axial stress 
variation on different cross sections are not the same. Near the 
axis of applied forces, the axial stress variation on cross sections 
decays more rapidly than the normal stress on the middle sur- 
face. However, for both stress components the relative magni- 
tudes of decay rates for unidirectional composite (a) and an 
isotropic material are similar; in both cases, decay is slower in 
unidirectional composite (a) than in an isotropic material. 

For a highly anisotropic unidirectional composite (a),  it can 
be noticed that far away from the loaded section, the lower 
bound on decay rate predicted by Choi and Horgan (1977) is 
in close agreement with the decay rate of axial stress variation 
in the strip. This is because Eq. (55) gives an estimate based 
on the smallest eigenvalue; which is purely real for the unidirec- 
tional composite (a).  On the other hand, at practical distances 
from the loaded section the decay rate estimate given by Eq. 
(54) is in good agreement with the decay rate of normal stress 
on the middle surface. In the case of an isotropic material where 
the first eigenvalue is complex, at distances larger than one- 
half of the strip thickness, there is good agreement between the 
rate of decay of variations in the distribution of axial stress and 
the exponential decay predicted by either (54) or Choi and 
Horgan's (55). 

7 Conclusions 
Analytical solutions have been presented for stresses in an 

orthotropic strip or plate, loaded transversely by equal but op- 
posed collinear forces. At distances larger than a quarter of the 
thickness from the plane of applied forces, the sum of eigen- 
functions for eigenvalue terms up to, and including the first 
complex eigenvalue as well as its conjugate, closely approxi- 
mates the stress field on the middle surface. The real part of 
thisfirst complex eigennvalue has a major influence on the expo- 
nential decay of normal stress, while the imaginary part governs 
the sinusoidal variation. In highly anisotropic materials, the 
smallest eigenvalues are real rather than complex. For boundary 
value problems involving highly anisotropic materials, the rate 

10 2 
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E,/G 

10 0 

10-2| 
10-5 

unidirecHonal o0mposit e ( o ) / / / /  

cros.,,y co mpo. ,e I 
q u o s l - l s o t r o p i c  ~ . . n  = 1 

isotrapic mat, n = 2 n ~& n = 3 ~ - J , ~ / i s ° t r o p i c  materiel 

_ ~ ' j , , ~ ' e i g  e nvolues are purely 
_ ~  ~ rear or com_ple_x 

~ ~~,- eigenvolues arepurley- 

\IlL_o-1 

10 -2 101 10 4 
Ex/  

Fig. 6 Effect of elastic parameter  ratios E,,/Ey and Ex/G on the number 
n of purely real or imaginary eigenvalues smaller than the first complex 
eigenvalue for plane stress (exy = 0.3) 

660 / Vol. 62, SEPTEMBER 1995 Transactions of the ASME 

Downloaded 04 May 2010 to 171.66.16.28. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



-0.2 

0.6 
% (,-~,o) 
%(0,0) 

or 0.6 

" ~  0.2 

(i) 

1 

0.~ 

0.~ 

0.4 

0.2 

0 

-0.2 

(li} 

iddle surface stress 

~ ~ . , . ~  Cho{ and Horgon's 

standard deviation of axial stress / 
&x.voriotions on cross sections 

01.5 ; 1:5 2 215 
Non-dimensional axial distonce,~ 

Fig. 7(i) 

~y(O,O) 
or 

~, IR} 
a, to) 

1 

0.8 

i r i , i 

middle surface stress 

\ ~  / / C h o i  and Horgan's 
~ (1977)estimate 

~ N ~ e q  .157} 

~'x,VOriation on cross sections 

o'.~ ~ ~15 ~ 2:5 
Non-dimensional axial distance, 

Fig. 7(1i) 

Fig. 7 Comparison of the axial decay of standard deviation of axial 
stress with the decay of middle surface stress as well as exponential 
decay predicted by Choi and Horgan (1977), as well as Eq. (54), for (i) 
unidirectional composite (a), and (//) an isotropic material. Values of 
stress were normalized by the stress magnitude on the axis of the applied 
forces. 

of decay is not a material property; it differs between various 
components of stress. Nevertheless, for each component of 

stress the rate of decay lies somewhere between the rates given 
by the first and the first complex eigenvalues. 
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Rotation of a Cylinder in a 
Casing at Zero Reynolds Number 
A finite solid cylinder rotates inside a larger, fluid-filled cylindrical casing. The Stokes 
equation is solved by an efficient method using domain decomposition, eigenfunction 
expansion, and collocation. The resistive torque is found as a function o f  the geometric 
parameters. The torque due to the rotation o f  a finite cylinder in an infinite fluid is 
extrapolated. 

1 I n t r o d u c t i o n  

Due to the advent of micro fluid-mechanical devices such as 
miniature motors, Stokes or zero Reynolds number flow analy- 
ses (e.g., Happel and Brenner, 1986) have become more and 
more important. Of interest is the rotation of rigid bodies in a 
viscous fluid. Jeffrey (1915) and Kanwal ( 1961 ) used separable 
orthogonal coordinates and studied the rotation of ellipsoids, 
lenses, and tori in an infinite fluid. The solution of the rotation 
of concentric spheres separated by a viscous fluid was presented 
by Landau and Lifshitz (1959). A sphere rotating inside an 
infinite cylinder was solved by Brenner and Sonshine (1964) 
using cylindrical singularities expressed in terms of spherical 
coordinates and solving the subsequent infinite system of alge- 
braic equations. Kim (1981) used dual integral equations and 
expansions to solve the rotation of a disk in an infinite cylinder. 
The problem of a disk in a finite cylindrical casing was studied 
by Schmieden (1928) using elliptic integrals and numerical 
methods and more recently by Wang (1992) using an eigen- 
function expansion and point match method. 

The present paper studies the rotation of a centered, finite 
cylinder in a larger cylindrical casing. Due to the geometry all 
aforementioned methods do not apply. We shall use a domain 
decomposition and matching method perhaps first used by Well 
(1951) who studied the Stokes flow into a gap. Other variations 
of the method include the works of Trogden and Joseph (1982) 
who solved the flow over a slot and Wang (1993) who investi- 
gated the flow through filter slits. 

2 F o r m u l a t i o n  

Figure 1 (a)  shows the cross section of a cylinder (diameter 
2bR, height 2aR) rotating with an angular velocity w inside a 
larger, fixed casing (diameter 2R, height 2 c R ) .  For very low 
Reynolds number, the flow between the cylinders is governed 
by the Stokes equation 

O Zv 1 0 v  v 02v 
Or 2 + + - -  = 0 (1)  r Or r 2 Oz 2 

where v is the azimuthal velocity normalized by wR and all 
lengths have been normalized by the outer radius R. The bound- 
ary Conditions are that on the outer casing v = 0 and that on 
the inner cylinder v = r. 
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Since the domain between the two finite cylinders is complex, 
we partition it into simple regions to be solved separately and 
then matched along their common boundary. The following two 
cases are distinguished. If c ~ 1 the outer casing is "cake- 
l ike" and the domain is decomposed as in Fig. 1 (b) (only ~ of 
the cross section is shown). If c ~ 1 the outer casing is "rod- 
like" and the domain is decomposed as in Fig. 1 (c) .  As we 
shall see later, such separation decreases the number of neces- 
sary collocation points and thus increases numerical efficiency. 
Since the problem can be solved for any of the two decomposi- 
tions, there is considerable overlap where both methods are 
quite efficacious. The distinction according to the value of c is 
only a useful guideline. 

3 c -< 1 C a s e  

For Region 1 in Fig. 1 (b) let vl (r ,  z) be the solution. Partial 
boundary conditions are 

O l ( 0 ,  Z) "~ 0 (2) 

vl (r ,  0) = 0 (3) 

vl (r ,  c - a)  = r, (4) 

The general solution satisfying Eqs. ( 1 ) - ( 4 )  is 

vl(r ,  z)  = rz + ~'. A .  sin (oGZ)ll(Ot.r)e -%b. (5) 
c - a n=l 

The first term on the right-hand side of Eq. (5) satisfies the 
nonhomogeneous boundary condition; a ,  = m r / ( c  - a)  are 
eigenvalues in z; Ii,  Ki are modified Bessel functions; and A, 
are unknown coefficients. Since Ii ( a , r )  ~ exp(a , r )  for large 
or,, the exponential factor in Eq. (5) is multiplied such that the 
coefficients A, would be of reasonable magnitude. For Region 
2 partial boundary conditions for v2(r, z)  are 

v2(r, 0) = 0 (6) 

v2(1, z) = 0 (7) 

002 
- -  (r ,  c )  = 0. ( 8 )  
Oz 

The general solution is 

v2( r, z)  = ~ B, cos [/3,(c - z ) ] [ Ii ( f l ,  r)Kt (/3,) 
1 

--  I i ( / 3 . ) K l ( / 3 n r ) ] e  - ~ . t l - b ) .  ( 9 )  

Here/3. = (n - 1/2)7r/c are eigenvalues in z, and the exponen- 
tial factor ensures the coefficients B. are of order unity, The 
solutions vl, v2 are then matched along r = b. 

v 2 ( b , z ) = b  c - a < z < - c  (10) 

v z ( b , z ) = V l ( b , z )  O ~ z < c - a  (11) 
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Fig. 1 (a) Axial cross section of a rotating cylinder inside a casing; (b) 
Partition into Regions for c < 1 (only ~ of cross section is shown); (c) 
Partition into Regions for c > 1 

0v2 ( b , z )  Ov~ 0-r- = ~ r  ( b , z )  0 - ~ z <  c - a  (12) 

Equations ( 1 0 ) - ( 1 2 )  represent an infinite system of linear 
equations in the unknowns A., B.. One can of course eliminate 
a set of unknowns by using Fourier inversion. Since the mixed 
boundary conditions and thus collocation is unavoidable, there 
is little advantage in doing so. We truncate B. to N terms and 
A. to M = Int [(1 - a / c ) N ]  < N terms since v~ serves a lesser 
height. Then N uniformly spaced collocation points are chosen 

z~ = ( i - 0 . 5 ) c / N  i =  1 t o N .  (13) 

After some work, Eqs. ( t 0 ) - ( 1 2 )  become 
N 

B,, cos [/3,,(c - z i ) ] t l , ( t 3 , , b ) K l ( ~ . )  
1 

- l~( /3 . )K~( /3nb)]e-~ .  (l-b~ = b i = M + 1 to N (14) 
N 

B. cos [/3.(c - Zi)] 
1 

× [l~(13.b)K,( f l , , )  - 11 ( ,O . )K l ( f l . b ) ]e -~ .  ~l-b) 
M 

_ bzi + ~ A .  sin ( a . z i ) l l ( a . b ) e - %  b i = 1 to M (15) 
c - - a  1 

Y. B,, -~- cos [/3.(c - z i ) ] {[ Io (13 .b )  + 1 2 ( ~ . b ) ] K l ( 1 3 . )  
1 

+ [Ko(/3.b) + K2(15, ,b)]l l (13.)}e - p n ( l - b )  

M 
Og n 

_ Zi + ~ a,,-~- sin ( a . z i ) [ l o ( a . b )  + 12(a .b ) ]e  -%b 
c - - a  I 

i =  1 t o M ,  (16) 

There are N + M equations and N + M unknowns. Figure 2 

0 . 5  

z 

. i 
1 

Fig. 2 Matching of v2(b, z) with b and v~(b, z), the latter shown only 
for 0 ~ z < c - a (c = 1,a = b = 0.5, N = 40) 

. . . . . . . . . . . . .  

Fig.  3 C o n s t a n t  v e l o c i t y  l ines ,  c = 1, a = b = 0 .5  

shows the match of Eqs. (10),  (11) for the case c = 1, a = b 
= 0.5, The error, mostly at the corner z = c - a is about five 
percent for N = 40 and decreases to one percent for N = 80. 
The corresponding constant velocity lines are shown in Fig. 3. 

4 c -> 1 Case  

From Fig. 1 (c) the matching boundary is along z = c - a. 
We seek eigenfunctions in the r direction. Partial boundary 
conditions for Region 1 are 

vl(O, z) = 0 (17) 

v~(r, 0) = 0 (18) 

vl(1, z) = 0. (19) 

The general solution satisfying Eqs. ( 1 ), ( 17 ) - (19 )  is 

v l ( r ,  z )  = ~ C,  J t ( k , r ) ( e  x,,(z-c+a) - e -x.(z+C-a)) (20) 
1 

where h, are the zeroes of the Bessel function Jl:  3.83171, 
7.0156, 10.1735, the other zeroes are well approximated by 
(Olver, 1967) 

kn = n + 7r 8 (n  + 1/4)7r n ~- 4. (21) 

For Region 2 partial boundary conditions are 

vz (b ,  z )  = b (22) 

v2(1, z) = 0 (23) 

0v2 
'2-- (r ,  c) = 0. (24) 
O Z  

The general solution is more complicated 

vz ( r ,  z )  = 1 / r  - r + ~ D . [ J l ( y . r ) Y l ( y . b )  
1 / b  2 -  1 1 

- J t ( y . b ) Y l ( y . r ) ] ( e ~ , ,  (z-C-") + e-~.  (z-c+")) (25) 

Here the first term on the right-hand side of Eq. (25) satisfies 
the nonhomogeneous boundary condition, Jl ,  Yi are Bessel 
functions, and 3'. are the eigenvalues of the equation 

J ~ ( y ) Y l ( y b )  - J ~ ( y b ) Y ~ ( y )  = 0. (26) 

For each given b, y .  can be obtained from Eq. (26).  For large 
n, an asymptotic solution is highly desirable. Since for large 
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(27)  

(28) Yl(~) ~ 2 s i n ~ + ~ c o s ~  + . . .  

where ~ ~- ~ - 37r/4, Eq. (26)  gives 

( )( , ) - ~ sin (t sin (2 + 8 ~  cos (2 COS ~1 8 ' y  

( )( , ) - cos ~z - ~ sin ~z sin {1 + ~ cos {] 
8yb 

1 
T 

where ~ = y - 3rr/4, ~2 = 7b - 3~r/4. Equation (29) simplifies 
to 

sin [3,(1 - b)] + ~ 1 - 

/ 1 \  
x cos [ y ( 1 - b ) ]  = O ~ 5 ) .  (30) 

The perturbation solution for large y is then 

nTr 3(1 - b) 
7.  = ~ + - -  + O(n-3)  • (31) 

1 - b 8bTrn 

From Eq. (26) we solved the first ten eigenvalues numerically 
by bisection and the higher eigenvalues are well represented by 
Eq. (31 ). The matching conditions are 

v ] ( r , c - a )  = r O ~  r < b  (32) 

v l ( r , c -  a) = v 2 ( r , c -  a) b < r ~  1 (33)  

(~1)1 ( r , c - a) Or2 = - ~ - ( r , c - a )  b < r - < l .  (34) 

Similar to the c ~ 1 case, we truncate C, to N terms and D, 
to M = Int [N( 1 - b)] terms. The N collocation points along 
z = c - a a r e  

rj = ( j  - 0 .5) /N.  (35)  

The M + N linear equations are then 
N 

C, Jt(hnrj)(1 - e -zh"(~-a)) = rj 
1 

N 

CnJl(knrj)(1 - e - 2 x " ( c - a ) )  

1 

j =  1 to N - M ( 3 6 )  

M 
_ l lr j  - r s + y .  D.[ j](g .rs)  Y , ( y . b )  

1/b 2 -  1 

- J l (y , ,b)Yl(y .rs)](1  + e-2"v.) 

j = N - M +  1 to N (37) 

C.h.J l (Mrj ) (1  + e -2~"(~-")) 
1 

M 

= 2~ D.yn[J , (Y . r j )Y t (Y .b )  
l 

-- Jl(Tnb)Yl(Tnrj)](e -2a~" - 1) 

j = N - M +  1 to N. (38) 

0.5 

c 

0 
0 

cos ~ - ~ sin ~ + . . .  

Fig. 4 Matoh of v l ( r ,  c - a )  with r and v = ( r ,  c - a), the latter shown 
only f o r b < r ~ 1 ( c = 1 ,  a = b = 0 . 5 ,  N=40)  

The match along z = c - a is shown in Fig. 4. The error is 
similar to that of  the c -< 1 case. The constant velocity lines 
are identical to Fig. 3. 

5 T o r q u e  

The torque T ' induced by the rotation can be integrated from 
the shear on the casing 

T___~_ fo'OV fomOO T - 47r#wR 3 = - ~ r  (1, z )dz  + ~z (r ,  O)r2dr 

where # is the viscosity. For the c -< 1 case 

fl T = -  ~ r  (1, z)dz 

f~' 0Vl fb' ov~ + ~ z  (r.  O)r2dr + ~ z  (r,  O)r2dr 

b 4  M 
_ _ _  + ~ A . b 2 h ( o l . b ) e  .... b 

4 ( C  - -  a )  l 

N 

+ 2 B . ( - 1 ) " b 2 [ h ( 3 . b ) K t ( 3 D  
1 

For the c -> 1 case 

T = 

(39) 

+ I , (3 . )K2( /3 .b ) ]e -& °-°) .  (40)  

• --a O01 
- ~r  (1, z)dz 

_ f '   2(1, z)dZ+ fo' , d~-. Or -~z (r, O)rZdr 

Cn 
~ - ~ -  [J2(h.)(1 + e-X"(c-")) 2 - Jo(h . ) (1  - e-×"(c-")) 2] 
1 

2a M 
q - -  Y, D .[Jo(y . )Y , (ynb)  

l / b  2 -  1 

- J~(y .b )Yo(y . ) ] (1  - e-ZOv"). (41) 

Since the torque is a function of  three geometric parameters a,  
b, c, we shall present the results only for some specific cases. 
Figure 5 shows the torque for constant gap width ratio 6, i.e., 
b = 1 - 6, a = c - 6. The dashed lines are from the linear 
Couette approximation for small 6. The velocities on the side 
and bottom (top) are assumed to be (1 - r) /6  and rz /& giving 
a torque of  
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0.2 0.4 0.8 0.8 1 6 

Fig. 5 To rque  as a f u n c t i o n  o f  gap width 8 for constant c.  - - -  Eq. (42) ,  
. . . .  Eq. (43) .  Circles represent disks, 

T = 6 c + . (42) 

The relative error of Eq. (42) is of order 6, severely restricting 
the validity of the linear approximation. The torque decreases 
as 6 increases. For c > 1 the torque is zero at 6 = 1, where the 
rotating cylinder shrinks to a thin rod. By using the solution of 
an infinite rod in an unbounded fluid, the torque is approximated 
by 

T = 2(1 - 6)2(c - 6) (43) 

which is shown as dotted lines in Fig. 5. For c < 1, the curves 
terminate at c = 6 whereby the rotating cylinder becomes a 
disk. Our values compare well with those of Wang (1992). 

Results for other combinations of a,  b, c can be obtained by 
the methods outlined in this paper and will not be presented 
here. 

6 Rotating Finite Cylinder in an Infinite Fluid 
Consider the case of a finite cylinder rotating between and 

perpendicular to parallel plates, i.e., a,  b, c ~ 0 while their 
ratios remain finite. Let a / b ~ a ,  c / b ~ p, T = T ' / 4 7r # w (  bR ) 3. 
We expect as R ~ ~ the torque T will be a function of a, p 
only. Given a, p we decrease b until T tends to a limit. The 
accuracy is determined by increasing N (to about 50 for three- 
figure accuracy). The results are shown in Fig. 6. The torque 
approaches infinity as p ~ a. An approximate formula using 

8 

e 

i '  

4 

I I 
I i I 
I t ', 

! ! 

P 

Fig. 6 Torque of  a finite cylinder rotating perpendicularly between two 
parallel plates. - - -  Eq. (44) .  • • .  • Je f fe ry ' s  va lue  o f  8 / 3 ~ .  

8 

6 

? 

4 

2 

. . . . . . . . .  G=O 

o ' ~ , ; 
1/b 

Fig. 7 Torque o f  a finite cylinder rotating coaxially inside an infinite 
tube, - - -  Eq. (46) ,  • • • • Jeffrey's value o f  8 /31r .  

linear velocity for top and bottom gaps and the velocity of an 
infinite rotating cylinder for the sides is 

1 
T = 2a + - -  (44) 

4 (p  - or) ' 

Equation (44) is represented by dashed lines in Fig. 6. For 
the disk (a  = 0) the torque for large p approaches Jeffrey's 
(1915) value of 8/37r for a disk rotating in an infinite fluid. 

Next we investigate the case of a finite cylinder rotating 
inside an infinite coaxial tube. We fix a, b and increase c until 
T tends to a limit. The results are shown in Fig. 7. As b ~ 1 
the torque is infinite logarithmically. For the disk ( a  = 0) we 
plotted Kim's  (1981) asymptotic formula as b ~ 1 

3-~ - 4 1 n ( 1  - b ) - 0 . 5 8 1 8  . (45) 

Of interest is the torque of a finite cylinder rotating in an 
unbounded fluid. We can approach this limit by increasing p in 
Fig. 6 or decreasing b in Fig. 7. A better way is to extrapolate 
using Brenner 's  (1962) result for a small object rotating on the 
axis of an infinite tube. In our parameters the formula is 

T(cr, b) = To(a) (46) 
1 - 0 . 7 9 6 8 2 b 3 T o ( G ) / 2  + O ( b  5) 

where To is the torque in an infinite fluid. Solving for To, we 
find 

T(a ,  b)  
T o ( a )  = + O ( b S ) .  (47) 

1 + 0.39841b3T(cr, b) 

By using Richardson's extrapolation for b = 0.1, 0.2, the torque 

o~ ° , ; , 
cr 

Fig. 8 Torque of  a finite cylinder rotating in an infinite fluid. Dashed line 
is Eq. (48) .  Circles are from Chan et al. (1986) .  
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To due to a finite cylinder rotating in an infinite fluid (b ~ 0) 
is accurately shown in Fig. 8. The asymptote for large cr is 
found to be 

T0~  2a + 1.242. (48) 

Since 2or is the torque due to an infinite cylinder (per same 
length) half of the constant in Eq. (48), 0.621, must be the 
added torque due to the truncation of one end. Chan et al. 
(1986) used Greens function integrals to obtain the torque of 
a rotating finite cylinder in an infinite fluid. Their results are 
slightly higher (e.g., for ~r = 10 they obtained To = 21.306 as 
compared to our 21.242). 

7 Di scuss ion  
The present method is highly efficient in comparison to finite 

difference or finite element methods. The number of computa- 
tions is about the square root of that needed for direct numerical 
integration. The number of collocation points is further mini- 
mized by considering separate formulations for c > 1 or c < 
1 and taking the shorter distance for the matching boundary. 
Also, our torque integrations can be done analytically, further 
eliminating a source of error. 

The rotation of finite coaxial cylinders separated by a viscous 
fluid is also important in viscometry. One particular problem 
of interest is the end effect due to the finite length. References to 
earlier experiments on end effects can be found in, for example, 
Kobayashi et al. (1991).  A theoretical attempt was made by 
Oka (1960) who used matched eigenfunctions in three contigu- 
ous regions. Unfortunately the expression for the comer region 
is incomplete and his results are in error. Due to the fact that 
the torque is a function of three geometric parameters a full 
tabulation of end effects is not attempted in this paper. Our 
Figs. 5-8 should be extremely useful in the design of rotating 
cylinders at low Reynolds numbers. 
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Three-Dimensional Viscous 
Flows Between Concentric 
Cylinders Executing Axially 
Variable Oscillations: 
A Hybrid Spectral/Finite 
Difference Solution 
A hybrid spectral/finite difference method is developed in this paper for the analysis 
of three-dimensional unsteady viscous flows between concentric cylinders subjected 
to fully developed laminar flow and executing transverse oscillations. This method 
uses a partial spectral collocation approach, based on spectral expansions of the 
flow parameters in the transverse coordinates and time, in conjunction with a finite 
difference discretization of the axial derivatives. The finite difference discretization 
uses central differencing for the diffusion derivatives and a mixed central-upwind 
differencing for the convective derivatives, in terms of  the local mesh Reynolds num- 
ber This mixed scheme can be used with coarser as well as finer axial mesh spacings, 
enhancing the computational efficiency. The hybrid spectral/finite difference method 
efficiently reduces the problem to a block-tridiagonal matrix inversion, avoiding the 
numerical difficulties otherwise encountered in a complete three-dimensional spec- 
tral-collocation approach. This method is used to compute the unsteady fluid-dynamic 
forces, the real and imaginary parts of which are related, respectively, to the added- 
mass and viscous-damping coefficients. A parametric investigation is conducted to 
determine the influence of the Reynolds and oscillatory Reynolds (or Stokes) numbers 
on the axial variation of the real and imaginary components of the unsteady forces. 
A semi-analytical method is also developed for the validation of the hybrid spectral 
method, in the absence of previous accurate solutions or experimental results for this 
problem. Good agreement is found between these very different methods, within the 
applicability domain of the semi-analytical method. 

1 Introduction 
The analysis of three-dimensional unsteady viscous flows 

generated by the transverse oscillations of cylindrical structures 
conveying annular or axial flows is of particular interest for the 
study of flow-induced vibrations and instabilities, related to 
numerous engineering applications (as reviewed by Mulcahy 
(1980), Chen (1981), Mateescu and Pa'idoussis (1988), and Pa'i- 
doussis et al. (1990)). The fluid and cylindrical-structure interac- 
tion and the related vibrations and instabilities have been seri- 
ously studied by, among others, Au-Yang and co-workers 
(1976, 1981), Chen and co-workers (1976, 1981), Mulcahy 
(1980), Hobson (1982), Brenneman and Au-Yang (1992), and 
Mateescu, Pa~doussis, and co-workers. Thus, Mateescu and Pa'i- 
doussis (1985) contributed to the analysis of narrow annular 
unsteady flows based on potential flow theory; this theory has 
subsequently been extended by developing simplified flow mod- 
els to take into account the unsteady viscous effects in laminar 
and turbulent regimes (Mateescu and Pa'idoussis, 1987; Ma- 
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teescu et al., 1989); good agreement was found with the experi- 
mental results (Mateescu et al., 1988, 1989). 

These theoretical solutions have been used directly for the 
study of dynamics and stability of a flexible cylinder in a narrow 
coaxial cylindrical duct subjected to annular flow (Pa'fdoussis 
et al., 1990). However, despite the success of these simplified 
solutions, there is obvious need for more accurate formulations 
based on the unsteady Napier-Stokes equations, applicable to 
more realistic and complex geometric configurations. In this 
respect, two computational methods have recently been devel- 
oped and thoroughly validated, representing efficient solutions 
for unsteady confined flow with oscillating boundaries: (a) a 
spectral collocation method (Mateescu et al., 1990, 1994a), and 
(b) a time-integration method based on a finite difference formu- 
lation (Mateescu et al., 1994b). Recently, the spectral colloca- 
tion method has been used in the analysis of two-dimensional 
unsteady annular motions between eccentric, infinitely long cyl- 
inders in translational oscillations, in the absence of an axial 
flow (Mateescu et al., 1990, 1994c). 

The present analysis is devoted to the study of the three- 
dimensional unsteady annular flows between concentric cylin- 
ders conveying a fully developed laminar axial flow, when the 
inner cylinder executes axially variable transverse oscillations. 
In this case, a full-fledged spectral-collocation approach would 
lead to large fully populated matrices, which might be ill-condi- 
tioned and cause numerical difficulties. For this reason, spectral 
expansions in the transverse coordinates and time are used in 
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2 H y b r i d  Spectra l  F in i te  D i f f erence  F o r m u l a t i o n s  

2.1 Partial Spectral Formulation for Three-Dimensional 
Unsteady Flows. Consider two concentric cylinders of radii 
a and ba (where b > 1, Fig. l(a)) subjected to fully developed 
laminar annular flow, characterized far upstream by the axial 
flow velocity U*(r) = UoU(r), where U0 is the mean axial 
velocity and U(r) = 2[(b 2 - l)  in r - (r 2 - 1) In b]/[(b 2 + 1) 
× in b - (b E - 1)] represents the radial profile function of the 
axial velocity, in which r = r*/a is the nondimensional radial 
coordinate relative to the inner cylinder radius. 

The central portion of length 1" = al of the outer (or inner) 
cylinder executes, in the plane 0 = 0, axially variable transverse 
oscillations with respect to the rest of the outer and inner cylin- 
ders which are fixed, defined by 

ae(x, t) = acE(x) cos wt = ~{aeE(x)  exp(iwt)}, (1) 

where ~{ } denotes the real part, e is the nondimensional 
amplitude relative to the radius a (assumed small), w the radian 
frequency of the oscillations, and x the nondimensional axial 
coordinate (also relative to the inner radius, x = x*/a); E(x) 
denotes the axial mode of oscillations, represented, for example, 
by the eigenfunctions of a clamped-clamped beam, 

N 

E(x) = ~ [Erk(13kX) + Enk(13~X)], (2) 
k=0 

E~(flkx) = --cos (flkX) + ~k sin (flkx), 

Enk(3kX) = cosh (~kx) - ak sinh (flkx), (3) 

cosh 3kl - cos 3kl 

ak = sinh 3~l - sin 3kl ' 
(4) 

(~) 

where /3kl are the beam eigenvalues (of a clamped-clamped 
beam). 

For the unsteady viscous incompressible flow generated by 
the oscillations, the time-dependent Navier-Stokes and continu- 
ity equations may be expressed in the cylindrical coordinates 
ax, ar, and 0 in the form 

Ou + 1 [(UoU + u) Ou O(UoU + u) 
0--7 a ~x + v Or 

w Ou 1 0 ( P + p ) 7  + -  + 
r ~  p Ox J 

= j LOx2 + - r + , (5)  r ~r Or r 2 00:J 

0 
. . . . .  W "4- 
Ot a ~x + v Or r p Or J 

= a51_Ox2 + ; ~r ~r + ~ \ O02 - v - 2 N ' 
(6) 

conjunction with a finite difference approach for the discretiza- 
tion of the axial derivatives, using a mixed central-upwind dif- 
ferencing scheme. 

In the absence of previous accurate solutions or experimental 
results for this problem to be used for comparison, a semi- 
analytical method, which is an extension of an earlier one (Ma- 
teescu and Pa'~doussis, 1987; Pa'fdoussis et al., 1990), is also 
developed in this paper for validation of the hybrid spectral 
method. The semi-analytical solution is compared with previous 
results and to the hybrid spectral solution. 

(b) 

Fig. l(a) Cross-sectional view of the system under consideration; (b) 
the associated, transformed, computational domain 

ow 1[ ow ow w(o  
"~" + -a (UoU + u) ~x  + v - -  + r + ~ + --p r 

a2 L OxZ + - + - w + 2 (7) r ~r \ Or/  -~ \ 00 z - ~  ' 

where UoU(r) and P(x) represent the known steady fluid velocity 
and pressure field in the fully developed laminar flow undis- 
turbed by the oscillations, and where u, v, w, and p are the axial, 
radial, and circumferential perturbation velocity components 
and the unsteady pressure generated by the oscillations and 
superimposed on the steady flow field [hence (UoU + u), v, w 
and P(x) + p(x, r, O, t) are the total velocity components and 
pressure in the overall unsteady flow]; u is the kinematic viscos- 
ity of the fluid. 

These governing equations are subjected to the boundary 
conditions 

u = v = w = 0 (9) 

on the fixed parts of the cylinders and 

u = 0 ,  v = a d c o s 0 ,  w = - a d s i n 0  (10) 

on the oscillating central portion of the inner cylinder, where 
= de/dt = iwe(x, t). Conditions (10) become approximate 
boundary conditions, based on the assumption of small-ampli- 
tude oscillations, when they are applied at the mean position of 
the oscillating cylinder, r = 1 on a fixed grid, as in this analysis. 
By considering a truncated Taylor expansion of the fluid veloc- 
ity in the vicinity of the moving cylinder, one can obtain im- 
proved boundary conditions (of second-order accuracy, e 2) on 
the mean position of the oscillating cylinder [V . . . .  position = 

Vboundary - -  (ae" ~ ) V b o u n d a r y  ] in the form 

[ou1 
ulr=l = -eUOkOrjr= 1 cos O, vlr=l = ad cos O, 

w]r=1 = - a d  sin 0, (11) 

where Uo[aU/Or]r=l represents the velocity gradient, at the inner 
wall, of the steady flow in the absence of any oscillations. In 
these improved boundary conditions, of second-order accuracy 
in e 2, only the first condition is different from the approximate 
one. At higher frequencies, the difference between the fluid- 
dynamic forces obtained with the two sets of boundary condi- 
tions (10) and (11) is rather small, both in amplitude and phase 
angle (at least for the examples to be discussed); hence, the 
numerical results given in the following sections are obtained 
with boundary conditions (10). 

For solving this unsteady three-dimensional flow problem, 
the annular space (ar, O) at any x = constant plane is transformed 
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into a rectangular computational domain (Z, 0), shown in Fig. 
1 (b), obtained by the transformation 

r - 1  
Z =  1 - 2 - - ,  0 = 0, where h = b -  1. (12) 

h 

The Navier-Stokes and continuity equations are transformed 
accordingly. Thus, the first of the Navier-Stokes equations be- 
comes 

o-7 a 57  + ~ T x  

= ~ ~OZu 4 [02u Ou O=u]} 

a ~ lOx  ~ + ~ t o z  ~ - ' /5  5 ~  + o 5 ~ J  ' 

h ~ 
D = [2 + (1 - Z)hl ~'  (13) 

with similar expressions for the other two Navier-Stokes equa- 
tions, and the continuity equation 

- v +  = 0 .  
Ox h 

In the computational domain, the following partial spectral 
expansions are considered for the unsteady pressure and veloc- 
ity components: 

u = aweie . . . .  lIs(x)TflZ) cos 0, 
j=0 

v = aweie ''°' %(x)Tj(Z) cos 0, 
j=0 

m~ 
w = aweie i~' Y_. 7~(x)Tj(Z)  sin 0, 

j=o 

m - 2  

p = pa2w2ee i'' ~ ,  ~(x)T~(Z) cos 0, (16) 
j=O 

where T~(Z) represents Chebyshev POlynomials of order j and 
where ?l~(x), %(x) ,  7~(x)  and ~'~(x) are unspecified functions of 
x. These semi-spectral expansions are used instead of the full 
ones, so as to avoid a substantial increase in the size of the full 
matrix associated with the three-dimensional spectral colloca- 
tion approach, which might become nearly singular and produce 
numerical difficulties. 

Based on the expansions (15)-(16), the Navier-Stokes and 
continuity equations can be expressed in the form 

4 
?~'(x)Ti(Z ) + -~ llj(x)[Tj'(Z) - ~/DTf(Z) - DTj(Z)] 

j=O 

- i13['~(x) - '5' (x)]Tj(Z)} = 0, 

{ 4 
~;,(x)~(z) + ~ [~Xx)(~"(z) - ~,(z)) 

j=O 

- 2D(%(x) - 7~(x))Tj(Z)] - ReU(Z)7~'(x)~(Z) 

[ 2 ]} 
- i13 %(x)Tj(Z) + ~ ~'~(x)Tj'(Z) = 0, (18) 

m t 4 Y~ ~j '(x)rj(z ')  + -~ [%(x ) ( r / ( z )  - ~ ' ( z g )  
j=o"  t. 

- 2D(~j(x) + 7;)(x))Tj(Z)] - ReU(Z)%J(x)Tj(Z) 

- i13 % ( x )  - ,/D ~ 3 ( x ) l ~ ( Z )  = 0, (19) 

2 
=~'(x)~(z) - ~ [%(x)L'(z~ 

j=0 

-- ~ (%(X) -- % ( X ) ) L ( Z )  1 = 0, (20) 

where Re = Uoalu and t3 = wa2/u are the Reynolds number 
and the oscillatory Reynolds (or Stokes) number, and where 
~'(x) and Tf(Z) denotes the derivatives with respect to x and Z, 
and U'(Z) = (-2/h)[dUldr]r=,+h(~_zv2. This system of equations 
will be discretized using a hybrid finite difference and colloca- 
tion approach in which the collocation points are defined at 

(14) various radial levels Zs, where J E {1, m - 1}. 

2.2 Mixed Finite Differences  for the Axia l  Derivatives.  
In order to avoid numerical difficulties caused by a large size 
of fully populated matrices, encountered in a complete three- 
dimensional spectral collocation approach, the axial derivatives 
will be discretized by a finite difference approach. Hence, the 
physical domain is discretized into a number of grid points 
Pkj(&, rj), obtained at the intersection of planes of constant xk 
with cylinders of constant 0. In the computational domain, the 
corresponding grid points (XK, Zs) form a rectangular grid, where 

(15) K E {1, n} a n d J  E { l , m -  1}. 
For axial discretization, Eqs. (17)-(20) can be expressed in 

the general form 

~'(x) - ReU(Z)~'(x) + ~)(x, Z) = 0, (21) 

where the first two terms, of interest for the axial discretization, 
represent the diffusion and convection terms associated to ~(x), 
which can successively be 71i(x), ~j(x),  or 7eli(x). Equation (21) 
in general form, or the specific Eqs. (17)-(20), have to be 
discretized at the grid points x• and Zs. 

The axial discretization of the diffusion and convection terms 
will be based on a mixed central-upwind finite difference 
scheme, similar to that introduced by Spalding (1972); hence, 
these terms in Eq. (21) can be discretized as 

~"(XK) -- ReU(Zj)~ ' (Xg)  

= aK+l,s~x+t + aK-la~.~:-i -- aKa7j.x, (22) 

where 

2 - (1 + 6) ReK+i,j 

aK+I,S = AXK+i(AXK -F AXK+i )  ' 

2 + (1 - 6 )  ReK.j (23) 
aK-1.j = AxK(AxK + AxK+0 ' 

(17) aK.j = aK+l.J + a x - u ,  

UoU(Zs)aAxx  
ReK.j = , ~,K = ~(xx) ,  (24) 

/2 

and where ReK,s represents the mesh Reynolds number at the 
grid point (xx, Zj), while 6 is 0 or - 1  accordingly as ReK+u is 
smaller or larger than 2. 
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When Reg+l.S < 2, the discretizing Eq. (22) reduces, for 
= 0, to a central differencing scheme for both the diffusion and 
convection terms; this type of discretization accords well with 
the physical phenomenon and leads to well-converged numeri- 
cal solutions. However, this mesh Reynolds number require- 
ment is often too restrictive, requiring a very fine grid with a 
very small axial mesh spacing, which leads to large matrices 
to be inverted, with negative effects on computational effi- 
ciency. This fine-mesh restriction can be relaxed by considering 
ReK+Lj > 2, for which 6 = - 1  is taken in Eq. (23), in order to 
prevent the coefficient aK+,.j becoming negative. In this case, 
Eq. (22) corresponds to an upwind differencing scheme for the 
convective term and central differences for the diffusion term; 
this upwind differencing introduces an artificial dissipation 
which stabilizes the numerical scheme for higher mesh Reyn- 
olds numbers. The mixed central-upwind differencing scheme 
for the axial derivatives is used in conjunction with a collocation 
approach in the transverse direction to solve the unsteady vis- 
cous flow problem. 

2.3 Integrated Finite Difference and Collocation Method 
of Solution. The mixed finite difference discretization (22) 
for the axial derivatives and a collocation approach in the radial 
direction are used to discretize the Navier-Stokes and continuity 
equations at every grid point (XK, Zs) in the form 

[aK-l.fllj.g-I - -  (axa + bj.s)/lj.x + ax+,.filj,~+l + cJffl3).K] 
j = 0  

m - 2  

+ Z [gJ{Y,K-.'~.=--, + gj(J,K~.t~ + gI(J,K+lO])),K+I] = 0 ,  ( 2 5 )  

]=0  

[ax-t.s~5.K-, - (ax, s + b;is)7;),= 
j=O 

m - 2  

+ aK+~,j%,X+l + c J v j ,  g] + ~ = O, &.J~.K (26) 
j = 0  

m 

Z [aK-,.sTeTj.K-, -- (ax, j + b]3)%).K 
j=O 

m-2 
~g ~a 

+ ax+,.J%~'.K+, + Cj.jV).K1 + Z '~ gj, J~.g ~-- 0 ,  (27) 
j = 0  

[dj.zK-,'I~.K-, + dj.zKl.t~.x + 4.j.K+i~tj.K+i 
j=O 

+ fj, sG.K + hi.sTy.K] = 0, (28) 

where all the coefficients of the unknowns 71j.x, 7~j.K, 7~j.~, and 
~Pj.x are determined from Eq. (17)-(20). 

The above equations are subjected to the boundary conditions 
imposed at the collocation points (xK, Z = _+1), which can be 
expressed in the form 

j=O j = 0  

m 

Y. 7~.~T~(Zf~) = 0, (29) 
j = 0  

on the fixed parts of the inner cylinder (Zyo = 1) and on the 
outer cylinder (Z~ = -1 ) ,  and 

m m 

Z '~[j, KTj(Zmb) = O, Z ~/),KTj(Zmb) = E(XK), 
j = 0  j = 0  

m 

% , , ~ ( z ~ )  = -E(x,:), (30) 
j = 0  

on the moving part of the inner (Z~ = 1) cylinder. Equations 
(25)-(28) applied for K ~ { 1, N} and J ~ { 1, m - 1 } and the 
boundary conditions (29)-(30) applied for K ~ { 1, N} together 

form an algebraic system of equations, which can be expressed 
in matrix form as 

A ~  = :~, ( 3 1 )  

where 7 = [~.K, 7).X, 7~i.K, l~.x] r represents the vector of the 
unknown coefficients of the velocity components and unsteady 
pressure (with j E {0, m} and K E {1, n}), :B is the known 
right-hand side of the equations (nonzero only for the boundary 
conditions on the oscillating cylinders), and A is a block-tridia- 
gonal matrix of the system, with the diagonals C2 . . . . .  CK . . . . .  
C~, B1 . . . . .  Bx . . . . .  B, and Di . . . . .  Dx . . . . .  D,-x, where Cx, 
B~, and Dx are submatrices of order (4m + 2) associated with 
the Kth axial grid points. 

In confined flows with smooth axial variation of the flow 
parameters, as is the case in the unsteady problem under consid- 
eration, the axial grid spacing may be taken uniformly distrib- 
uted axially, i.e., AXl = . . .  = AxK = . . .  = Ax, = Ax; hence 
the submatrices simplify to B~ = B, CK = C and Dx = D for 
all K, thus substantially reducing the storage requirements for 
matrix A. 

The numerical solution for the unknown coefficients ~.K, 
~j.x, 7~j.K, and ~t~.x is obtained by using an LU decomposition 
technique. 

3 N u m e r i c a l  Resul ts  for  U n s t e a d y  Fluid  D y n a m i c  
Forces  

The unsteady fluid dynamic forces per unit length, acting on 
the oscillating cylinder at an axial location ax can be calculated, 
for small amplitude oscillations of the inner cylinder, by 

F(x, t )  = a - p  + 2 ~ r  cos0  

a r 0 0 ,  

a ~ r + ~ x  OxJ,.= 1 

where the last term in the square bracket makes no contribution 
to the overall force. 

This unsteady force can be expressed as 

F(x, t) = 7rpa3co%E(l/2)F(x) exp(iwt), (33) 

where the nondimensional fluid dynamic force,/~(x), in complex 
form, is 

f ' ( x ) = - ~  (~'~(x) + i [ 
J=0 ~ %(x)  - ~:Ax) 

]} + - -  2 q ( % ( x ) - % ( x ) )  , (34) 
hcj q=j+l 

in which the coefficients cj are defined as 

c 0 = 2 ,  c j =  l for j_> 1. (35) 

The real and imaginary parts F(x) are proportional to the added 
mass and viscous damping coefficients, C,,, and C~, respectively, 
in phase and in quadrature with the oscillatory displacement. 

Numerical computations have been performed with the hy- 
brid method of Section 2 for oscillations following the first 
axial mode, k = 1 in Eqs. (2)-(4), considering a length-to- 
radius ratio I = l*/a = 15, for Reynolds numbers and oscillatory 
Reynolds (Stokes) numbers in the range 0 to 2512 for Re, and 
500 to 10000 for ft. 

First, computations have been performed considering b = 
1.05, Re = 3,000 and/3 = 5000, for various values of the axial 
mesh spacing, Ax/1, defined for the finite difference part of the 
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Fig. 2 Variation of (a) the real and ( b ) t h e  imaginary components of the 
nondimenaional unsteady force, #'(x), with the axial mesh spacing, Ax/ / ,  for 
b = 1.05, I = 15, Re = 3000 a n d / ~  = 5000 (m = 8) at  three axial locations: 
~ e - - ,  x = 0.25 I; - - © ~ ,  x = 0.50/ ;  - - A ~ ,  x = 0.75 1 

method. The results for m = 8 are shown in Fig. 2 for the 
real and imaginary parts of the nondimensional sectional fluid 
dynamic forces at several axial locations, ax. It was found that 
by decreasing the axial mesh spacing, Ax, the results appear to 
converge for a certain Axopt~ . . . .  after which they start diverging 
with a further reduction in Ax. This type of behavior might be 
caused by truncation errors for coarse axial meshes and by 
round-off errors for very fine ones. Based on these results, a 
mesh spacing of Ax/ l  = 0.1 was selected for further calcula- 
tions, which is near the average optimum value. 

Typical axial variations of the real and imaginary parts of 
the nondimensional fluid dynamic force, P(x), calculated for l 
= 15, b = 1.25, and/3 = 5000 are shown in Fig. 3 for Re = 
0, 1252 and 2512 (in the laminar flow regime). It is found that 
~R{P(x)} is only slightly dependent on Re, as opposed to 

{/~'(x) } which is strongly influenced by it; this affects not only 
the magnitude of ~{['(x)}, but also its axial variation, which 
changes from a symmetric one with respect to the midpoint 
(x = I/2) in the absence of axial flow (Re = 0), towards an 
antisymmetfic axial variation for the higher Reynolds numbers. 

0.0 

~0 

(b) 
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-~IP(~)} 
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Fig. 3 Influence of the Reynolds number on the axial variation of the 
real and imaginary components of the nondimensional unsteady force, 
P(x), for b = 1.25, I = 15 and/ I  = 5000 (Ax/I = 0.1) for three values of the 
Reynolds number: --D--, Re = 0; - - A - - ,  Re = 1252; --0--, Re = 2512 

The influence of the oscillatory Reynolds number,/3, on the 
axial variations of the real and imaginary parts of P(x), is shown 
in Fig. 4 for b = 1.25, and Re = 1252 (computed with Ax/ l  = 
0.1 and m = 6). Both the real and imaginary parts of P(x) 
decrease with increasing /3; this effect is much stronger for 

{ F(x) }, which tends to become very small for the higher values 
of the oscillatory Reynolds number. 

4 Comparison With a Semi-analytical Method of 
Solution 

There are few theoretical solutions for three-dimensional un- 
steady annular viscous flows between oscillating cylinders, and 
they are mainly based on restrictive assumptions and simplified 
flow models (e.g., Mateescu and Pa'fdoussis, 1987; Pa'idoussis 
et al., 1990). An improvement of this theoretical solution is 
briefly presented in this section, so as to provide a meaningful 
comparison for the validation of the hybrid spectral/finite differ- 
ence solution of Section 2. 

4.1 Spectral Solution of Unsteady Potential Flows. As 
shown in Mateescu and Pffidoussis (1987) and Pa'fdoussis 
(1990), the velocity potential, ~(x, r, 0, 0, may be expressed 
a s  

ok(x, r, O, t) = ~ d~k(x, r) cos 0e i~', (36) 
k 

where, by separation of variables, the reduced potentials ~k(x, 
r) may be expressed in terms of the new coordinate Z obtained 
by transformation (12) in the form 

d?k(x, Z) = fk(x)Fk(Z). (37) 

Following the cited references, the reduced potentials can be 
separated into trigonometric (q = 1) and hyperbolic (q = 2) 
components (related to the eigenfunctions of the oscillating 
beam with fixed ends, see Eqs. (1)-(4)) in the form 

2 

~k(X, Z) : ~ fqk(X)Fqk(Z) = ~k(X, Z) + t~2k(x, L 0, (38) 
q=l  

where, in the present spectral approach, Chebyshev expansions 
are used for Fqk(Z) in the form 

d~lk(X, Z) = [Al COS (/3~X) + B, sin (/3kX)] ~ ~,kjTj(Z), (39) 
j - 0  

m 

d?2k(x, Z) = [A2 cosh (13kx) + B2 sinh (/3kx)] ~ ~2kjTj(Z). (40) 
j=o  

Since  qb(x, r, O, t) satisfies the Laplace equation, the following 
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Fig. 4 Influence of the oscillatory Reynolds (or Stokes) number on the 
ax ia l  variation of the real and imaginary components of the nondimen- 
sional unsteady force, P(x), for b = 1.25, I = 15 and  Re = 1252 ( ~ , x / I  = 
0.1) for three values of the oscillatory Reynolds number: m / ~ ,  f l  = 
500; - -A-- , /~  = 5000;  ~O- - , /~  = 10,000 

equations define the trigonometric (q = 1) and hyperbolic (q = 
2) components of the reduced potentials (bqk(X, Z): 

j=o 

- [D - (-1)qh2/3~/4]{qj, j~(Z)}  = 0, (41) 

subject to the boundary conditions 

(I)qkjTj'(l) = 1, ~ (I)qkjTj'(--1) = O ,  (42) 
j=o  j=o 

obtained after the determination of the constants Aq and Bq, 
given by 

Aq = ( -1 )q (ah /2 ) [ - iw  + Ucrk/3k], 

Bq = (ah/2)[ ( -  1)qi~Jak -- U/3k]. (43) 

The a priori unknown coefficients ~qkj are determined from 
the system of equations obtained by imposing Eq. (41) at (m - 
1) collocation points in the radial direction and the boundary 
conditions (42). 

The perturbation pressure in the unsteady potential flow, pp 
= P - P=, can now be determined from the Bernoulli-Lagrange 
equation, 

O~ + U O~b 1 
O-T ~ + 2 ( re)2 + Pp = O. (44) 

4.2 Semi-analytical Solution Based on an Approximate 
Viscous Flow Solution. As shown in Mateescu and Pai'- 
doussis (1987), the perturbation pressure for small amplitude 
oscillations may be expressed as 

P -  P= = p(x, r, O, t) = pu(x, r; O, t) + pp(x, r, O, t), (45) 

where pp(x, r, O, t) is the potential component of the perturbation 
pressure, calculated as shown in Section 4.1, and po(x, r; O, t) 
represents the remainder of the perturbation pressure, associated 
with viscous effects in a real flow. This remainder pressure and 
the associated remainder flow-field (u,, vo, wo) are calculated as 
shown in the cited references--not  presented here for brevity. 
The main difference is that the approximate viscous solution as 
determined here is based on the exact spectral solution of the 
unsteady potential flow instead of an approximate potential so- 
lution as before. 

The unsteady fluid dynamic forces are then determined by 
integrating the unsteady pressure and the circumferential shear 
stress acting on the oscillating cylinder. 

4.3 Numerical Results and Comparisons. The semi-an- 
alytical solutions for the nondimensional forces, ~{F(x)} and 
~{P(x)}, are compared first in Fig. 5(a) with the previous solu- 
tions based on the method formulated by Mateescu and Pa'f- 
doussis (1987) and Pa'fdoussis et al. (1990). These results for l 
= 15, b = 1.1, Re = 2000, and /3 = 5000 (m = 6), are in 
reasonably close agreement. 

A comparison is shown then in Fig. 5(b) between the semi- 
analytical solutions and the results obtained with the hybrid 
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Fig. 5 Ax ia l  variations of the real and imaginary components of the nondimensional 
unsteady force, ~'(x), for I = 15, and  .fl = 5000.  (a) Comparison between s e m i - a n a l y t i -  
cal  m e t h o d  ( ), and previous analytical results ( -  - - )  f o r  b = 1.1 and  Re = 2000;  
(b) Comparison between hybrid spectral method ( - - e r a )  and semi-analytical 
method ( - - ) ,  for b = 1.05 and  Re = 3000.  
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spectral/finite difference method formulated in Section 2. These 
results for l = 15, Re = 3000,/3 = 5000, and b = 1.05 are 
compared to the semi-analytical solution being derived for 
smaller, rather than larger, outer-to-inner radius ratio, b, while 
the hybrid spectral method has no restrictions in this respect. 
Reasonably good agreement is found between the two sets of 
results. 

5 Conc lus ions  

A hybrid spectral/finite difference method is developed in 
this paper for the analysis of three-dimensionai unsteady viscous 
flows between concentric cylinders subjected to a fully devel- 
oped laminar flow, and generated by axially variable oscillations 
of the central portion of one of the cylinders. This method 
uses a partial spectral collocation approach, based on spectral 
expansions of the unsteady pressure and velocity components 
in the transverse coordinates and time, in conjunction with a 
finite-difference approach for the discretization of the axial de- 
rivatives. The spectral expansions use Chebyshev polynomials 
for the radial direction in a computational domain obtained by 
a coordinate transformation. 

A mixed-type finite difference scheme is used for the convec- 
tive and diffusion axial derivatives. This mixed scheme uses 
central differences for the diffusion derivatives, but switches 
from central to upwind differencing for the convective deriva- 
tives as the axial mesh Reynolds number is increased. This 
enhances computational efficiency, by permitting the use of 
coarser, as well as finer, axial mesh spacings. 

The hybrid spectral/finite-difference method efficiently re- 
duces the unsteady problem to the inversion of a block-tridiago- 
nal matrix, avoiding the numerical difficulties and instabilities 
otherwise encountered in the inversion of a fully populated and 
possibly ill-conditioned matrix in the case of a fully fledged 
three-dimensional spectral-collocation approach. A numerical 
investigation has been conducted to determine an optimum 
value for the axial mesh spacing, which was then used in subse- 
quent computations. 

This hybrid spectral method was used to compute the un- 
steady fluid dynamic forces acting on the oscillating cylinder, 
by integrating circumferentially the unsteady pressure and shear 
stresses; the real and imaginary parts of  these forces are related 
to the added-mass and viscous-damping coefficients, which are 
required in the study of the dynamics and flow-induced vibra- 
tions and instabilities in such systems. The influence of  the 
Reynolds number and of  the oscillatory Reynolds (or Stokes) 
number on the axial variation of  the real and imaginary parts 
of  the unsteady forces has been thoroughly investigated in the 
range of  laminar flows. 

Finally, a semi-analytical method, representing an improve- 
ment over an earlier analytical method (Mateescu and Pa'i- 

doussis, 1987), has also been developed for the validation of 
the hybrid spectral method. Good agreement has been found 
between the hybrid spectral method and the semi-analytical 
method within the domain of applicability of the latter. 
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Thermohydrodynamic Analysis of 
Process-Liquid Hydrostatic 
Journal Bearings in Turbulent 
Regime, Part I: The Model and 
Perturbation Analysis 
A bulk-flow thermohydrodynamic (THD) analysis is developed for prediction of the 
static and dynamic performance characteristics of turbulent-flow, process-liquid, hy- 
drostatic journal bearings ( HJBs ). Pointwise evaluation of temperature and hence 
liquid properties is achieved through the solution of the energy equation in the fluid 
film with insulated boundaries, and justified for fluid film bearings with external 
pressurization. Fluid inertia within the film lands and at recess edges is preserved 
in the analysis. Flow turbulence is accounted through turbulence shear parameters 
based on friction factors derived from Moody's formulae. The effects of fluid com- 
pressibility and temperature variation in the bearing recesses are included. Numerical 
solution and results are presented in the second part of this work and compared with 
some limited experimental data for a liquid hydrogen (LH2) bearing. 

1 Introduction 
There is an increasing interest in the use of process liquid, 

fluid film bearings in high-performance turbomachinery. Hydro- 
static journal hearings (HJBs) are now being used in liquefied 
natural gas (LNG) pumps, where the working fluid on the bear- 
ings is the LNG delivered from the pump, and consequently, 
overhaul intervals are extended to several times those of LNG 
pumps supported on conventional ball bearings (Katayama and 
Okada, 1992). HJBs have also been selected as support ele- 
ments in future cryogenic high-speed turbomachinery such as 
the High Pressure Fuel Turbopump (HPFTP) and the High 
Pressure Oxygen Turbopump (HPOTP) of the Space Shuttle 
Main Engine (SSME). HJBs, unlike rolling-element bearings, 
have no apparent DN limit (bore diameter in mm multiplied by 
journal speed in rpm); therefore, shaft speeds can be allowed 
to increase to a level more suitable for high operating efficiency 
with a reduced machinery size and weight. This bearing type 
has other advantages over conventional rolling-element bear- 
ings, such as high radial stiffness, accuracy of positioning, good 
vibration-damping characteristics, low starting torque, and ex- 
tremely long life. 

Despite their attractive features, HJBs operating at high speeds 
and with cryogenic liquids are yet not fully understood. The 
thermophysical properties of cryogenic liquids are strongly de- 
pendent on their local state of pressure and temperature. Although 
process liquids (like LH2) offer very small viscosities, the trends 
toward higher rotational speeds and larger pressure differentials, 
as well as the implementation of intentionally roughened surfaces 
to improve beating dynamic stability (Von Pragenau, 1990), 
provide unique flow characteristics and operating conditions 
where high levels of turbulence (energy dissipation) may yield 
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significant thermal effects. Viscous dissipation due to shear mo- 
tion and pressure extrusion, and heat transfer from or to beating 
surfaces can generate significant temperature and viscosity varia- 
tions within the fluid film and affect pronouncedly the bearing 
static and dynamic force characteristics. Prediction of bearing 
performance is then no longer meaningful when based on an 
isothermal or isoviscous assumption. 

Prediction of HJB performance has been commonly based 
on analysis of the isothermal form of the Reynolds equation 
(or the Bulk-Flow equations) due to the following considera- 
tions. First, conventional HJBs operate at low journal speeds 
and in the laminar flow regime with low heat generation and 
hence small temperature variations in the fluid film. Second, 
the flow of fresh fluid into the film region causes thermal effects 
in HJBs to be less severe than in hydrodynamic bearings where 
hot lubricants recirculate in the fluid film region. Third, includ- 
ing thermal effects in HJB analysis greatly increases the analyti- 
cal complexity. Pointwise evaluation of temperature and viscos- 
ity in the fluid film (the thermohydrodynamic or THD theory) 
requires the solution of the energy equation. The boundary tem- 
peratures in the fluid film region are related to the thermal 
transport in the journal and bearing solids. The coupling of 
the heat conduction equations in the solids with the governing 
equations in the fluid film leads to a trial-and-error solution of 
the liquid/solid interface boundary temperatures. Such a nonlin- 
ear iterative problem is costly and may be very sensitive and 
prone to numerical instabilities. 

Reddecliff and Vohr (1969) initially studied HJBs for use 
in high-pressure cryogenic rocket engine turbopumps. In their 
analysis, the turbulent model provided by Elrod and Ng (1967) 
was introduced into the Reynolds equation. The inertia effects 
at the edges of the recesses were found to change the pressure 
distribution, which reduced the flow rate but did not affect the 
total bearing load capacity. The nonlinear fluid advective inertial 
terms could not be accounted for due to numerical difficulties. 
Variable fluid properties were treated as linear between those at 
the supply and discharge pressures, and steady-state predictions 
were reported to agree well with experimental results. The scat- 
ter in the measured recess pressures was attributed to measure- 
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ment inaccuracies and to variations in bearing clearance caused 
by temperature differences between the bearing and shaft. 

Artiles et al. (1982) presented a numerical solution to the 
static and dynamic performance characteristics of hydrostatic 
journal bearings. A turbulent Reynolds equation with constant 
fluid properties was solved by the column-matrix method, while 
a Newton-Raphson scheme was implemented for efficient calcu- 
lation of the recess pressures. Turbulent-to-laminar flow power- 
loss ratios were reported to be in the range of 25 to 30 for the 
Reynolds numbers considered. Even though there were neither 
energy considerations nor thermal effects in the analysis, large 
temperature rises (up to 24.5°C) in the fluid film were reported 
for LO2 bearings, while temperature rises in LH2 bearings were 
negligibly small. 

Braun et al. (1987) introduced a comprehensive THD analy- 
sis for a two-row recess LH2 hydrostatic journal bearings. On 
the fluid film region, a variable-properties Reynolds equation 
was coupled to a two-dimensional energy transport equation. 
The heat transfer to the bounding solids (shaft and bush) was 
analyzed in its three-dimensional complexity. Bulk-flow heat- 
transfer coefficients were used to represent the boundary condi- 
tions at the fluid/solid interfaces, and fluid inertia effects were 
considered only at the pocket's edges with no recess volume- 
liquid compressibility effects. Braun et al. 's analysis regarded 
the fluid flow as laminar, although large pressure differentials 
and rotational speeds were considered in the applications stud- 
ied. A small temperature increment was found in the fluid film, 
and thermal effects were shown to be minimal relative to a 
constant properties liquid model. No conclusions were made as 
to the effects of heat transfer from the fluid film to the bounding 
solids. The numerical predictions presented show circumferen- 
tial flow Reynolds numbers as large as 100,000 with a laminar 
flow model. 

San Andres ( 1990a, b) introduced a turbulent bulk-flow anal- 
ysis for prediction of the performance characteristics of orifice- 
compensated HJBs. Here bulk-flow equations with fluid inertia 
replace the conventional Reynolds equation, and include recess 
volume-fluid compressibility effects known to deteriorate the 
bearing stability characteristics due to pneumatic hammer (San 
Andres, 1991a). For example, the whirl frequency ratio, an 
indicator of bearing stability, is predicted to be larger than 0.5 
for nonzero recess-fluid compressibility. San Andres (1992a) 
extended his incompressible liquid model to a barotropic fluid 
model for analysis of cryogenic liquid HJBs. The variable fluid 
properties are considered to depend on the local pressure and 
a mean operating (uniform) temperature. The barotropic label 
applies to the fluid and not to the complex flow process in the 
fluid film bearing. Numerical results show the effects of variable 
properties to be significant for a LH2 (highly compressible) 
hydrostatic bearing, but show no significant difference between 
the two models for a LOz beating. 

Yang et al. (1993a) developed a thermohydrodynamic model 
for analysis of turbulent flow annular seals with process liquids 
and gases. Fluid inertia, flow turbulence, and actual fluid proper- 
ties for cryogens are all considered. Numerical results show 
that large temperature rises occur in LO2 seals with significant 
effects on the fluid properties and the onset of two-phase flow 
conditions at relatively small values of rotor eccentricity. Seal 
leakage and torque are lower than those from an isothermal 
solution (San Andres, 1991b). A difference up to 20 percent 
was found for the predicted direct stiffness coefficients. The 
analysis has been shown to correlate well with experimental 
data and successfully used in the industrial design of annular 
damping seals (Scharrer et al., 1992a, b) .  

Heat transfer from fluid film to the bounding surfaces of a 
cryogenic turbulent-flow annular seal has been studied both 
analytically and numerically (Yang et al., 1993b). In the full 
numerical THD analysis, the fluid flow equations in the film 
are treated by the finite difference method (FDM) while the 
three-dimensional heat conduction equation in the seal stator is 

solved by the boundary element method (BEM). The numerical 
example of a LO2 seal shows that there is substantially no 
difference in the predictions from the full THD analysis and 
the adiabatic flow approximation. The heat generated in the 
fluid is carried away mainly by fluid advection due to the large 
flow rate produced by the imposed high axial pressure gradient 
in the seal. Heat transfer from the fluid film to the stator (or 
shaft) is found to be negligible and adiabatic bounding surfaces 
are shown to be a good assumption for externally pressurized 
turbulent flows in cryogenic liquid seals. 

The unique flow characteristics of cryogenic liquid HJBs 
determine that fluid inertia, flow turbulence, actual fluid proper- 
ties, and thermal effects are important for the accurate prediction 
of the static and dynamic performance characteristics of the 
bearings. The static characteristics include the film pressure, 
fluid velocity and temperature fields, mass flow rate, fluid-film 
forces or bearing load capacity, friction torque, and power dissi- 
pation. The dynamic force characteristics refer to the stiffness 
(K),  damping (C),  and added mass (M) coefficients required 
for rotordynamic analysis. These coefficients are defined by the 
following expression for tile bearing forces: 

r xoa_ rK x KxYI[  ] 

LCrx crr AIr kMrx Mrr AY ' (1)  

where (Fxo, Fro) are the static fluid film forces at the journal 
equilibrium position (ex0, er0); and AX = Aexe l* and AY = 
Aere I~ are the components of the journal-center dynamic dis- 
placement. The dynamic-force coefficients defined by Eq. (1) 
are important measures of dynamic bearing force performance 
since they influence the critical speeds, resonant amplitude re- 
sponse, and rotordynarnic stability of a rotor-bearing system. 

A bulk-flow thermohydrodynamic (THD) analysis is intro- 
duced to determine the static and dynamic performance charac- 
teristics for turbulent flow process liquid HJBs. Pointwise evalu- 
ation of temperature and hence liquid properties is achieved 
through the solution of the energy equation in the fluid film 
with adiabatic journal and bearing surfaces. Flow turbulence is 
accounted through turbulence shear parameters based on friction 
factors derived from Moody's formulae. Fluid inertia on film 
lands and at recess edges are preserved. The effects of fluid 
compressibility and temperature variation in the recess are in- 
cluded. Cryogenic fluid properties are calculated from standard 
32-term state equations (McCarty, 1986). 

2 Mathematical Model 

The general type of bearing selected as a support element for 
cryogenic liquid turbopumps is a 360-deg hydrostatic journal 
bearing, orifice-compensated, with a variable number of feeding 
recesses or pockets machined in the surface of the bearing 
(Butner and Murphy, 1986). The flow is confined to the thin 
annular region between an inner journal of radius (R) rotating 
at an angular speed (~2) and a stationary bushing (Fig. 1 ). The 
fluid flow is characterized by high levels of turbulence due to 
the externally imposed large axial pressure drop across the bear- 
ing and/or the high journal surface speed. 

The problem of calculating the flow and load performance 
characteristics of HJBs consists basically of determining the 
pressure, temperature, and flow distribution in the bearing film 
lands subject to the condition that the flow discharging from 
each recess through the beating film lands must equal the flow 
entering that recess from the supply source through a fixed 
orifice restrictor. 

2.1 Governing Equations for Turbulent Fluid Film 
Flows. Large pressure gradients typical in low viscosity fluid 
HJBs cause high axial turbulent flow Reynolds numbers, and the 
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Fig. 1 Geometry of a hydrostatic journal bearing; (a) axial view and 
coordinate systems, (b) unwrapped bearing surface 

effect of turbulent mixing far outweights molecular diffusivity. In 
consequence, tile temperature rise produced by viscous dissipation 
tends to be distributed uniformly across the film thickness; hence, 
temperature gradients in the cross-film coordinate (z) are confined 
to turbulent flow boundary layers adjacent to the bounding (bear- 
ing and journal) surfaces (Suganami and Szelri, 1979; Di Pasquan- 
tonio and Sala, 1984). Furthermore, in the absence of regions of 
reversed flow or recirculation, the fluid velocity field presents the 
same characteristics as discussed above. 

These considerations allow the three-dimensional continuity, 
momentum, and energy equations to be integrated across the 
film thickness to determine the two-dimensional bulk-flow gov- 
erning equations for thin fluid film flows (Yang et al., 1993a): 

Continuity Equation. 

O(pH) O(pHg) O(pHV) 
- -  + - -  + - -  0 ( 2 )  

Ot Ox Oy 

Circumferential-Momentum Equation. 

• O(pHU 2) O(pHUV) OP O(pHU) + _ _  + = - H  + ~-xzl~ (3) 
Ot Ox Oy ~x  

Axial-Momentum Equation. 

O(pHV_____~) + O(pHUV) + O(pHV2) = - H  O_ffP + Tyz] H (4) 
Ot Ox Oy Oy 

Energy-Transport Equation. 

[ ~t  H O(pHUT) O(pHVT) ] 
C, O( T) + Ox + ~ y  J + Q ~  

ot 0x 

+ ef2~-xzl H - Ur.~[o H - V~-~lo M (5) 

where the circumferential and axial coordinates are denoted by 
(x) and (y). The bulk-flow primitive variables, velocities (U, 
V), pressure (P), and temperature (T),  are defined as average 
quantities across the film thickness (H). The density (p), vis- 
cosity (#), specific heat (C~,), and volumetric expansion coeffi- 
cient (fit) represent the material fluid properties. Qs denotes the 
heat flux from the fluid film to the bounding solids. 

The wall shear stress differences (7-) in the circumferential 
and axial directions are based on the bulk-flow turbulence the- 
orry in thin film flows (Hirs, 1973; Launder and Leschziner, 
1978): 

7-xzlg = - ~ k~U-  kg ; 

# 

H OP # 
7xzlU = 2-~x + ~ [UkB - (U - Ra)kz] (6) 

where the turbulent shear parameters (kx, ky) and (ks, kn) are 
local functions of the Reynolds numbers and friction factors 
based on Moody's formulae (Massey, 1983; Nelson et al., 
1987). The present turbulence model is selected due to its sim- 
plicity and ability to represent surface roughness conditions. 

The variation of temperature in the axial direction and the 
energy generated by compression work are retained in the analy- 
sis due to the strong influence of the large pressure drop across 
the bearing. These conditions differentiate the present problem 
from conventional THD analyses of viscous, incompressible 
fluids in hydrodynamic journal bearings. 

2.2  G o v e r n i n g  E q u a t i o n s  f o r  B e a r i n g  R e c e s s  F l o w s .  
The analysis of turbulent flow in a HJB recess is complicated 
and not yet fully understood. To date, only two-dimensional 
laminar flow numerical solutions are available for rectangular 
recesses (see, for example, San Andres and Velthuis, 1992b; 
Braun et al., 1993). While the actual prediction of flow fields 
in the recess may give a better description of the recess-edge 
boundary conditions, the global mass and energy conservation 
principles at the recess 'are known to be both efficient and suffi- 
ciently accurate in hydrostatic bearings with radial ports (San 
Andres, 1992a). 

Mass Conservation at a Recess. The continuity equation at 
the recess is defined by the global balance between the flow 
through the orifice restrictor of effective area (A0), the recess 
outflow into the film lands (Mr), and the temporal change of 
fluid mass within the recess volume (Vr). The fluid external 
supply pressure is Ps and drops to a value Pr at the recesses. 
The flow continuity equation at each bearing recess is expressed 
a s  

Ao~/2flr( Ps - er) 

O V  r ( OP OT) 

where 

f l ' = - - p  (8) 

are the liquid compressibility factor and volumetric expansion 
coefficient, respectively, and 

Mr = frr p n ( f J ' h ) d F  (9) 

is the mass flow rate across the recess boundary (FD into the 
film lands. 

676 / Vol. 62, SEPTEMBER 1995 Transactions of the ASME 

Downloaded 04 May 2010 to 171.66.16.28. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



~ t~PT~] m Land 

Qr, Ts 

RQ \ Rotor 'surfaue 
--~Side IVside, Tside 

Upstream 

Uu,Tu 

Side / SVside, Tside 

Downstream 

Ud, Td -p- 

Fig. 2 Conceptual description of global energy balance at a recess 

Global Energy Balance Equation at a Recess. The energy- 
transport phenomenon in a HJB recess is controlled by the 
following three mechanisms: the carryover of hot fluid from 
upstream to downstream of the recess, the mixing of cool fluid 
from the supply source into the recess volume, and the heat 
generation in the recess volume due to shear dissipation by 
journal rotation. Energy transport produced by pressure gradi- 
ents, kinetic energy changes, and heat conduction are negligible 
due to the uniform recess pressure and the large mass flow 
rate through the recess. Based on these considerations, a global 
energy balance equation at the recess is derived, reflecting the 
heat carryover and mixing effects, and the friction heat genera- 
tion (dissipation) in the recess (Fig. 2): 

O(prT,.) ~r + Cp(~ VftdTd "-1" 2 ~ Y~/sideZside) 
Cp Ot 

= Cp( E m.T. + M~T~) + r~,r~2 (lO) 

where 
r H Tot = TxzArR (11) 

is the drag torque on the recess area, ~'Ir is the total mass flow 
rate through the supply orifice, k/r is the recess volume, and 
the subscripts " u , "  " d "  and "s ide"  refer to the upstream, 
downstream, and side edges of a rectangular recess, respec- 
tively. The temperatures at the downstream and side edges of 
the recess are approximately equal to the recess temperature 
since liquid flows from the orifice to the sides at a large velocity: 

Ta = T~ido = T~ = Constant, (12) 

while the temperature at the upstream of the recess is given by 

~T~, if ( I ] .  fi) > 0; 

T, = I. Upstream values, otherwise. 
(13) 

Recess~Film Entrance Pressure Rise~Drop. For purely hy- 
drostatic operation, a uniform pressure in the recess volume is 
achieved by deepening the recesses. However, a minimum re- 

cess volume is required to avoid a typical pneumatic hammer 
instability associated to compressible fluids. Design criteria for 
uniformity of recess pressure and pneumatic hammer instability 
are given by Redecliff and Vohr (1969) and San Andres 
(1991a). 

For hybrid operation, a pressure rise is produced in the down- 
stream portion of the recess due to the journal rotation (Chaom- 
leffel and Nicholas, 1986). San Andres (1992a) considers this 
region as a one-dimensional step bearing and adopted Con- 
stantinescu et al. 's (1975) model to evaluate the pressure rise 
just in front of the downstream recess edge. The local accelera- 
tion of fluid from the deep recess to the thin film lands causes 
a sudden pressure drop at the recess edge. The pressure drop 
at the entrance to the film lands is then modeled by a simple 
Bernoulli-type relation. Details of the recess-edge pressure 
equations can be found in the analyses of Artiles et al. (1982) 
and San Andres (1992a) for incompressible and compressible 
fluids, respectively. 

3 Boundary Conditions 
The boundary conditions for the flow variables are expressed 

as 

(a) On the 360-degree extended film land, the pressure, 
velocity, and temperature fields are continuous and single-val- 
ued in the circumferential (x) direction. 

(b) At the bearing exit plane (y = L),  the fluid pressure 
takes a constant value equal to the discharge or ambient pressure 
(P,)  for unchoked conditions. The present analysis is limited 
to subsonic flow conditions over the lands of the HJB. 

(c) The axial velocity (V) and the axial gradients (d/dy) 
of all the flow variables are null at the circumferential center 
line (y = 0) of the bearing if this is axially symmetric and has 
no journal misalignment. This allows solution of the flow field 
on only half the bearing. The nonsymmetric bearing case with 
journal misalignment requires solution over the whole bearing 
plane. 

(d) The recess-edge temperatures and pressures are ob- 
tained as described in the previous sections. The velocity vector 
at the interface with the recess boundary is regarded as normal 
to the recess edges (Artiles et al., 1982). 

(e) At the fluid/journal and the fluid/bearing interfaces, 
the heat flux to the bounding surfaces Q., is assumed to be zero. 
This oversimplification is fully justified by the analysis of Yang 
et al. (1993b), where the heat transfer from fluid film to the 
bounding surfaces of a cryogenic turbulent flow annular seal is 
studied. The numerical example of a LO2 seal (high temperature 
rise in the fluid film) shows that there is substantially no differ- 
ence in the predictions from the full THD analysis and the 
adiabatic flow approximation. The heat generated in the fluid 
is carried away mainly by the axial fluid velocity (large flow 
rate) produced by the imposed high pressure gradient. This 
assertion also applies to the fluid flow in HJBs due to the similar- 
ity in geometry and operating environment. 

4 Perturbation Analysis 
The inertial coordinate system { X, Y } shown in Fig. 1 helps 

to define the position of the rotating journal. For steady-state 
operating conditions, the journal center is at the equilibrium 
position (exo, eft) ,  and, superimposed on this, the journal de- 
scribes motions of small amplitude Aex and Aer and whirl 
frequency w. The film thickness is represented by the real part 
of the following equation: 

H = Ho + el~(~xexhx + Aerhr)  (14) 

where 

H o = H i  + exohx+ evohr, ~-= ~ot, i = ~ - l ,  (15) 

h x =  cos0,  h r =  sin0, (16) 
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and H i  = c + ex cos 0 + ey sin 0 for uniform radial clearance 
or, H0* = c(O~y) is a general function of the axial coordinate 
for nonuniform clearance bearings (San Andres, 1991b). 

For small amplitude motions of the journal, all the bulk-flow 
variables (P,  U, V, T) as well as the fluid properties (p, #, fl,, 
Cp) are expressed as the superposition of zeroth and first-order 
fields representing the steady-state and dynamic motion condi- 
tions, respectively. In general, 

c~ = qbo + el~-(Aexckx + Aerqbr), 

q b = U , V , P , T , p , # , ~ , , k x ,  ky . . . . .  etc. (17) 

Substitution of the perturbation variables into the dimen- 
sionless governing equations yields the zeroth and first-order 
flow equations which are omitted here for brevity. A complete 
description of the analysis is given by San Andres (1993).  The 
bearing static and dynamic force characteristics are evaluated 
once a solution to the flow equations is obtained. Fluid film 
forces are calculated by integration of the pressure field over 
the journal surface. The components of the static equilibrium 
force are given by 

Y:f) Fit = PohiRdOdy i = X,  Y. (18) 

The Taylor series expansion of the dynamic forces (Eq. ( 1 )) 
allows the dynamic force coefficients to be calculated from 
integration of the first-order complex pressure field (Pj) over 
the journal surface, 

fo=I) K U - w2Mu + iwC~j = - P]h, RdOdy; 

i , j =  X, Y. (19) 

From the above equation, the first-order equations need to be 
solved for at least two different frequencies to obtain the added 
mass coefficients. 

The friction torque is given by integration of the wall shear 
stress at the journal surface as 

ro~ H = Txzdxdy (20)  

n is deter- where the wall shear stress at the journal surface Txz 
mined from the bulk-flow velocities as given by the third expres- 
sion on Eq. (6 ) .  

5 S u m m a r y  o f  the Ana lys i s  

The unique flow characteristics of cryogenic liquid bearings 
determine fluid inertia, flow turbulence, actual fluid properties 
and thermal effects to be important for the accurate prediction of 
bearing performance. A bulk-flow thermohydrodynamic (THD) 
analysis for determination of the static and dynamic performance 
characteristics of orifice-compensated liquid hydrogen (LH2) 
HJBs in the turbulent flow regime is introduced. Turbulence shear 
parameters in the momentum and energy transport equations are 
determined in terms of the bulk-flow velocities and friction fac- 
tors derived from Moody's formula. Pointwise evaluation of tem- 
perature and hence liquid properties is achieved through the solu- 
tion of the energy equation in the fluid film with insulated 
bounding surfaces. This simplification is justified for cryogenic 
liquid beatings with large pressure gradients. 

Equations for global mass conservation and energy transport 
are presented at the bearing recesses. Effects of fluid compress- 
ibility at the recess volume and the orifice supply line are also 
included. Fluid inertia at the recess edges is modeled by Ber- 
noulli-type relationships, while a pressure rise due to journal 
rotation in the downstream portion of the recess is considered 
as a one-dimensional step-bearing. The energy transport phe- 

nomenon in a HJB recess is controlled by the carry over of hot 
fluid from upstream to downstream of the recess, the mixing of 
fresh fluid from the supply orifice into the recess volume, and 
the heat generation in the recess volume due to shear dissipation 
by journal rotation. 

Predictions from the numerical solution are presented on the 
second part of this paper. Numerical results are compared with 
limited experimental data available for a liquid hydrogen (LH2) 
bearing. 
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Thermohydrodynamic Analysis 
of Process-Liquid Hydrostatic 
Journal Bearings in Turbulent 
Regime, Part I1: Numerical 
Solution and Results 
A finite difference scheme is implemented to solve the nonlinear differential equations 
describing the turbulent bulk-flow on the film lands of a hydrostatic journal bearing 
( HJB ). A Newton-Raphson scheme is used to update the recess pressures and to 
satisfy the mass continuity requirement at each bearing recess. Comparisons of 
numerical predictions from the thermohydrodynamic ( THD ) model with experimental 
measurements of mass flow rate, fluid temperature, and static stiffness coefficient 
from a LH2 test HJB article show very good agreement. In particular, the exit 
temperature of the bearing is lower than the supply temperature; i.e., the liquid 
temperature decreases along the bearing length. Similar values of direct stiffness and 
damping coefficients are predicted by the adiabatic THD model and other considering 
isothermal flow characteristics. However, the THD model predicts lower cross-cou- 
pled stiffness and whirl frequency ratio ( WFR < 0.5). The results show that for the 
application presented, the LH2 hydrostatic bearing is more stable than previously 
thought. 

1 Introduction 
High rotor speeds, large pressure drops, and intentionally 

roughened bearing-stator surfaces provide unique flow charac- 
teristics on cryogenic liquid hydrostatic journal bearings 
(HJBs), and determine fluid inertia, flow turbulence, actual 
fluid properties and thermal effects to be important for the accu- 
rate prediction of bearing performance. Within the range of 
practical cryogenic applications, the material properties of liq- 
uid hydrogen (LH2) depend strongly on both pressure and tem- 
perature. 

Yang et ai. (1995, Part I) introduced a bulk-flow thermohy- 
drodynamic (THD) model for the determination of performance 
characteristics in process liquid HJBs. Fluid inertia, flow turbu- 
lence, and actual fluid properties for cryogens are considered 
in the analysis. Boundary conditions at the recess/film entrances 
(recess edges) are obtained through global mass conservation 
and energy balance at each bearing recess. Fluid compressibility 
and temperature variation in the recess volume are also in- 
cluded. A perturbation method is used for calculation of the 
zeroth and first-order flow equations defining the fluid film bear- 
ing steady-state response and dynamic force coefficients, re- 
spectively. 

Part II complements the analysis of Yang et al. (1995) and 
discusses the numerical solution to the non linear governing 
equations. The solution scheme is based on efficient and accu- 
rate CFD algorithms and calculates the performance characteris- 
tics of single-phase process liquid HJBs at centered and off- 
centered journal positions. Numerical predictions for mass flow 
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rate, static stiffness, and operating eccentricity are compared 
with experimental results from a LH2 HJB article tested by 
Butner and Murphy (1986). In addition, the dynamic force 
coefficients for the same bearing are compared for two different 
bulk-flow models, namely the adiabatic THD and the isother- 
mal-variable properties models. A discussion on the thermal 
effects and their significance on the performance of the refer- 
ence HJB are detailed. 

2 Numerical Solution Procedure 

The mathematical model of a bulk-flow THD analysis of 
process liquid HJBs is given in Part I (Yang et al., 1995). The 
coupling of the nonlinear bulk-flow equations at the film lands 
with the mass and energy conservation equations for each recess 
is a complicated problem which can not be solved analytically. 
A finite difference scheme is implemented to solve the govern- 
ing equations on the film lands. The procedure is based on the 
forward marching scheme presented by Launder and Leschziner 
(1978) and uses the SIMPLEC algorithm of Van Doormaal and 
Raithby (1984). The SIMPLEC algorithm is well known in the 
literature, and details on its superior convergence rate, grid 
refinement sensitivity, and accuracy can be found elsewhere 
(Van Doormaal and Raithby, 1984, 1985; Jang et al., 1986). 
The procedure has been adapted by San Andres (1992) to solve 
isothermal fluid film bearing problems, and extended here for 
the thermohydrodynamic analysis. The flow domain is discret- 
ized into a series of staggered rectangular control volumes for 
the primitive variables (Patankar, 1980). The velocities are 
located at points which lie at interfaces midway between the 
nodes where the pressure is determined. The discrete tempera- 
ture field shares the same control volumes as the pressure field. 
The governing equations are integrated on the finite size control 
volumes to give sets of nonlinear algebraic difference equations 
with local mass flow conservation for each primitive variable. 

The pressure, temperature, and velocity fields on the bearing 
film lands are determined so that the flow discharging from 
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each recess through the film lands must equal the flow entering 
that recess from supply pressure through the orifice restrictor. 
The Newton-Raphson scheme is used to update the recess pres- 
sure and to satisfy the mass continuity requirement at the bear- 
ing recesses. For bearing operation at the concentric position, 
the numerical scheme is at its peak efficiency. Under this condi- 
tion, the flow fields for only one recess need to be calculated 
due to symmetry and continuity. Flow fields for the other re- 
cesses are then obtained by proper rotations (San Andres, 
1990). 

Extensive numerical calculations for HJBs with different 
working fluids show that the numerical algorithm is stable and 
efficient. Another feature of the algorithm is the small number 
of grid points required to get grid independent results. In fact, 
less than two percent difference in the bearing static and dy- 
namic performance characteristics is detected when comparing 
the results from a 67 by 16 grid (number of circumferential 
points x axial points) with those from a 85 by 26 grid for the six- 
recess LH2 HJB studied in this paper. Details of the numerical 
solution procedure are provided by Yang (1992). 

3 Results and Discussion 
Experimental results for the static and dynamic performance 

parameters of turbulent flow HJBs are given by Kurtin et al. 
(1993) and Franchek et al. (1993). Water heated to 55°C is 
used as the lubricant to achieve comparatively high Reynolds 
numbers in the test bearings without using cryogenic liquids. 
The measurements are performed for HJBs of different geome- 
tries and at journal speeds ranging from 10,200 to 24,600 rpm 
and supply pressures from 4 to 7 MPa. Extensive comparisons 
show a good correlation between the experimental results and 
the numerical predictions based on the variable properties, bulk- 
flow model of San Andres (1990, 1992), and also with the 
present thermohydrodynamic model (Yang, 1992). 

Comparisons of numerical predictions with other flow models 
existing in the literature are given elsewhere. San Andres 
( 1991) presents results for static and dynamic force characteris- 
tics on a water HJB and compares calculations with those ob- 
tained from the analysis of Artiles et al. (1982). The correlation 
shows the model of Artiles et al. to be in error with force 
coefficients offering a nonlinear jump-like response as the jour- 
nal rotational speed increases. Numerical comparisons with the 
advanced thermal analysis of Braun et al. (1987) are totally 
impractical. The numerical predictions presented by Braun et 
al. refer to a HJB with a circumferential flow Reynolds number 
as large as 100,000, with the flow being considered as laminar 
and inertialess. 

Numerical predictions from the present THD model are here 
compared with limited experimental data available from a LH2 
HJB article tested by Butner and Murphy (1986). Dynamic 
force coefficients are calculated for an adiabatic THD condition 
and compared with predictions from the isothermal model of 
San Andres (1992). The experimental measurements include 
mass flow rate ( ~ ) ,  exit temperature (T~), and a stiffness coef- 
ficient ( K x x )  extracted from a statically applied load and mea- 

Table 1 Characteristics of LH2 bearing (Butner and Mur- 
phy, 1986) 

Bearing characteristics Dimension 

Diameter (D) 
Length (L) 
No. of recesses (NFo0) 
Orifice diameter (do) 
Rectangular recess (A,. = b × l) 

Recess area ratio (NrecAr/(TrDL)) 
Recess depth (Hr) 
Nominal clearance (at zero speed) (c,) 

75.04 mm (2.954 in.) 
35.0 mm (1.38 in.) 
6 
1.27 mm (0.05 in.) 
8.89 × 11.41 mm 2 

(0.35 x 0.449 in)) 
0.1 
0.2286 mm (0.009 in.) 
0.05334 mm (0.0021 in.) 

Table 2 Operating conditions of LH2 bearing (fixed radial 
load) (Butner and Murphy, 1986) 

Speed P~ P, Ts Load  Clearance 
(cpm) (MPa) (MPa) (K) (N) c(mm) 

0 16.27 2.358 46.7 1801 0.05334 
12800 16.i4 2.393 45.0 2 0 0 6  0.05080 
25000 16.14 2.468 45.6 2 0 6 4  0.04570 
36400 16.14 2.393 46.1 2 0 4 6  0.03810 

sured journal eccentricity. The objectives of the experimental 
program of Butner and Murphy were to test hybrid bearings 
designed to replace ball bearings in the SSME high pressure 
fuel turbopump (HPFTP), and to provide reliable empirical 
data to anchor computational models used in hydrostatic bearing 
design. The hydrostatic bearings were designed with emphasis 
on maximizing stiffness and damping and minimizing friction 
torque and flow rate. Table 1 presents the geometry for the six- 
recess test hydrostatic bearing. The bearing and journal surfaces 
are regarded as perfectly smooth since no information is avail- 
able on this aspect. The fixed radial load and concentric opera- 
tion test conditions are given in Tables 2 and 3, respectively. 
The bearing was tested at different speeds to 36,400 cpm, a 
pressure supply (PD of 16.3 MPa, two pressure drops (AP = 
Ps - P~) equal to 6.9 and 13.8 MPa, and a supply temperature 
around T,  = 46 K typical of a cryogenic turbopump environ- 
ment. 

In the experimental procedure and for bearing eccentric oper- 
ation (Table 2), a fixed radial load (W ,~ 2000N) was applied 
after a steady-state speed and supply pressure conditions were 
achieved. The measured eccentricity ratio (e = e / c )  ranges 
from 0.1271 to 0.1675 for the design pressure drop of 13.8 
MPa. The static stiffness was obtained by dividing the fixed 
radial load by the corresponding static displacement of the jour- 
nal. The static displacement of the journal under the fixed load 
was too large (e = 0.433) for the half design pressure drop 
(AP = 6.9 MPa). At such large journal displacement or eccen- 
tricity ratio, the numerical predictions show that some of the 
flows through the bearing orifices are choked (sonic speed is 
reached). The present model can not handle choked flows, and 
therefore, the half design pressure drop case (AP = 6.9 MPa) 
is not presented here. A close examination of the experimental 
results confirms that the orifice flow in the bearing recess oppo- 
site to the load direction is choked. This situation is not desirable 
in a LH2 HJB since it will certainly cause a pneumatic hammer 
instability under dynamic operation. The measurements at 
12,000 cpm and e = 0.433 show a recess pressure of 3.692 
MPa with an orifice speed of 635 m/s while the fluid sonic 
speed is equal to 611 m/s. 

It is of importance to observe the effect of pressure on the 
material properties of LH2. At a supply pressure Ps = 16.27 
MPa and temperature T,  = 46.7 K these are 

p ,  = 65.25 (kg/m3), # ,  = 9 . 5 5  X 10 -6 (N-s/m 2) 

Cp, = 12720 (J/kg K), /3,, = 1.18 × 10 -2 ( I /K) ,  

Table 3 Operating conditions of LH2 bearing (concentric 
case) (Butner and Murphy, 1986) 

Speed Ps Pa Ts c 
(cpm) (MPa) (MPa) (K) (mm) 

10950 16.18 2.406 46.1 0.05091 
14040 16.18 2.413 46.1 0.05070 
22450 16.19 2.406 46.7 0.04758 
26080 16.18 2.413 46.7 0.04565 
32520 16.20 2.399 47.2 0.04169 
36270 16.18 2.406 47.8 0.03821 

680 / Vol. 62, SEPTEMBER 1995 Transactions of the ASME 

Downloaded 04 May 2010 to 171.66.16.28. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Table 4 Empirical parameters for LH2 bearing 5oo 

Cd a G, &, G 
0.90 0.50 0.50 0.50 0.50 ~ 4oo 

while at a discharge pressure P, = 2.358 MPa and supply tem- 
perature T ,  = 46.7 K, the fluid properties are 

p, = 16.09 (kg/m3), #, = 2.96 × 10 .6 (N-s/m 2) 

Cr, = 17760 (J/kg K),  /3,, = 4.60 x 10 -2 ( I / K ) .  

The ratio of properties between discharge to supply condi- 
tions is equal to 0.25 for density and 0.31 for viscosity. Note 
that the fluid operating conditions are well above the critical 
temperature and pressure for LH2 given as 32.94 K and 1.284 
MPa, respectively. The compressibility factor (tip) at the recess 
pressure (Pr ~ 0.5P,) is about 5 × 10 -8 m2/N (1/2,900 psi) 
demonstrating the large compressibility of the liquid in the re- 
cess. 

The circumferential flow (Re~) and axial flow (Re,)  Reyn- 
olds numbers based on the top journal speed (36,000 cpm) and 
the largest mass flow rate are equal to 

Re~ = p , R f ~ c , / # ,  = 3.71 × 104 

Re, = p,Vc , / i z  , =/~//(27rD/z,) ~ 6.11 × 104 

Re, = p,wc~/iz  , = 37.65. 

Note that the axial flow Reynolds number is higher than Rec 
even though the rotational speed is rather large. For LH2 HJBs, 
a high pressure drop across the bearing along with the low 
viscosity of the working fluid causes an axially dominant flow 
which is turbulent even at zero rotational speed. The squeeze- 
film-flow Reynolds number (Re,) with synchronous whirl fre- 
quency (uJ = f~) is much larger than unity and demonstrates that 
fluid inertia effects are not negligible in this bearing application. 

The empirical parameters for the numerical calculations are 
given in Table 4. The orifice discharge coefficient (Ca) in Table 
4 is determined as the average of the experimentally calculated 
Ca's for a hydrostatic water bearing (Franchek et al., 1993; 
Yang, 1992), and very close to the value reported by Butner 
and Murphy (1986) from their measurements. The ( parameters 
refer to the entrance loss (nonisentropic) coefficients in the 
axial (y) and circumferential (x) directions, (u) upstream and 
downstream (d) ,  of the recess edges, respectively. These empir- 
ical parameters and the fluid entrance swirl ratio ( a )  are deter- 
mined by matching the measured flow rate with a calculated 
one for the case of 36,400 cpm. The resulting parameters are 
then used for all other cases. 

3.1 Static Performance Characteristics. 

Static Stiffness. Figure 1 shows the theoretical and experi- 
mental static stiffness as a function of rotational speed. This 
stiffness as identified from the load versus journal displacement 
curve increases with increasing rotational speed mainly due to 
the reduction of the bearing radial clearance from centrifugal 
growth of the rotating journal. The exception corresponds to 
the measured data at zero rotational speed. Numerical predic- 
tions from both the adiabatic THD and the isothermal models 
correlate well with the experimental data. The maximum error 
between the theoretical and experimental results is 10.3 percent. 
Note that the discrepancy at zero speed (purely hydrostatic 
operation) is much higher (22.2 percent), but the measured 
stiffness may be in error since it is larger than the experimental 
value at 12,800 cpm which has a Smaller operating clearance. 

Static Load Capacity. Figure 2 shows the journal eccentric- 
ity ratio under a fixed radial load (~2000N) as a function of 
increasing rotational speed. The data at zero speed are excluded 
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Fig. 1 Static stiffness (Kxx) versus rotational speed (fixed l o a d ) ;  (LH= 
HJB tested by Butner and Murphy, 1986) 

since the experimental radial load for purely hydrostatic opera- 
tion is different (~1800N).  The eccentricity ratio decreases 
with rotational speed, demonstrating that a higher speed pro- 
vides slightly larger load capacity which is consistent with the 
behavior of the static stiffness in Fig. 1. The predictions from 
the adiabatic THD model are better than the isothermal model. 
The maximum error between the test and prediction is 2.6 per- 
cent for the THD model, and eight percent for the constant 
temperature model. 

The measurement of dynamic force coefficients for LH2 HJBs 
was not successful due to signal interference by casing reso- 
nances as reported by Butner and Murphy (1986). However, 
the test program did provide valuable static performance charac- 
teristics like flow rates and discharge temperatures for concen- 
tric operations (Table 3). 

Mass Flow Rate. Figure 3 shows the mass flow rate to 
decrease with journal speed due to a reduction of the operating 
bearing radial clearance. The contribution of the hydrodynamic 
effect to the reduction of the mass flow rate with speed is 
negligible since the viscosity of LH2 is very small. The numeri- 
cal predictions from both the adiabatic THD and the isothermal 
models correlate very well with the experimental measurements. 

Exit Temperature. Figure 4 shows a comparison between 
the measured exit temperature and numerical predictions as the 
journal speed increases. The supply fluid temperatures obtained 
from the test data are also presented in the figure to demonstrate 
the temperature difference across the bearing length. Note par- 
ticularly that the exit temperatures are lower than the supply 
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Fig. 2 Eccentricity ratio (~) versus rotational speed (fixed load); (LH= 
HJB tested by Burner and Murphy, 1988) 
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Fig. 3 Mass flow rate (M) versus rotational speed (e = 0 ) ;  (LH2 H J B  
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Direct stiffness (Kxx) versus rotational speed (e = O); (bearing 
parameters presented in Tables 1 to 3) 

temperatures ( A T  = Tex i t  - T s ~ - 5  K), which show that the 
liquid temperature decreases instead of increasing along the 
bearing length. This phenomenon unusual in a liquid bearing is 
accurately predicted by the THD model and can be explained 
as follows. 

Half of a symmetric HJB (from the circumferential center 
plane (y = 0) to the discharge plane (y = L/2)) behaves approx- 
imately like an annular pressure seal. Therefore, the examina- 
tion of temperature variations in an annular seal will, at least 
conceptually, be helpful in understanding those of a HJB. For 
an adiabatic flow in a centered pressure annular seal (or a HJB), 
the temperature difference across the seal length (or half of the 
bearing length) can be approximated as (Yang, 1993): 

AT = Texit- T, 

TarS2 AP p a ( U  2 -F V 2 ) l o  L 
- . + ( 1  - f i , A L )  - -  ( l )  

Cp~M paCp~ 2pACp~ 

where 

{ P~ - P~, for annular pressure seals; 
A P  = (2) 

P~ - Pa, for hydrostatic bearings 

and the subscript " A "  represents the average value across the 
seal/bearing length. 

The first term on the right-hand side of Eq. (1) is generated 
from viscous dissipation by shear friction and is always positive. 
The second term shows the pressure extrusion which is zero 
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Fig. 4 Exit temperature (T..~t) versus rotational speed (E = 0); (LH2 HJB 
tested by Butner and Murphy, 1986) 

for ideal gases (IF,AT, = 1 ). The last term is the kinetic energy 
variation which is generally negative for compressible fluid 
flows in annular pressure seals or HJBs, since by mass conserva- 
tion the discharge velocity is larger than the inlet one. 

For viscous liquids of low compressibility, such as oils, water, 
and other conventional lubricants, the viscous dissipation is 
large, the thermal expansion coefficient is small (fl,AT, < 1), 
and the kinetic energy variation is negligible, which always 
results in a temperature rise across the seal/bearing length by 
Eq. (1).  

For an ideal gas, Eq. ( 1 ) usually gives a temperature decrease 
along the seal/bearing length due to the large kinetic energy 
variation, small viscous dissipation, and null pressure extrusion 
work. However, for seals/bearings with roughened surfaces (in- 
cluding labyrinth seals), the gas temperature could increase in 
the seals/bearings due to the high viscous dissipation and re- 
duced mass flow rate. 

Even though liquid hydrogen is highly compressible, its be- 
havior is different from an ideal gas. The properties of an ideal 
gas, like density and viscosity, are less sensitive to absolute 
temperature variation than those of liquid hydrogen. Depending 
on the operating condition (supply temperature and pressure, 
sump pressure, and rotational speed), the rate of temperature 
growth across the seal/bearing length could be positive or nega- 
tive. Usually, the fluid supply temperature is the control parame- 
ter. A higher supply temperature offers a lower fluid viscosity 
and a higher thermal expansion coefficient (fl,AT, > 1) leading 
to a temperature decrease across the seal/bearing length, which 
corresponds to the present bearing test article. 

3.1 Dynamic Performance Characteristics.  The rele- 
vant experimental data from Butner and Murphy (1986) did 
not provide rotordynamic force coefficients for the bearing con- 
figuration tested. The importance of the proper identification of 
force coefficients can be hardly overlooked. This is an area 
where detailed testing is needed with cryogens or appropriate 
surrogate fluids. Undaunted by the lack of experimental results, 
the following figures present numerical predictions for the dy- 
namic force coefficients using the adiabatic THD model (solid 
symbols)  and the isothermal model (hollow symbols). Note 
that at the centered position (e = 0), the dynamic coefficient 
matrices (Eq. (1),  Yang et al., 1995) are 

¢bxx=~brr, qbxr=-qSrx,  where & = K , C ,  or M. (3) 

Direct Stiffness Coefficient. Figure 5 shows the direct stiff- 
ness coefficients (Kxx or Kyr) as a function of rotational speed. 
The increase of the direct stiffness coefficients with rotational 
speed is caused by the reduction of the radial clearance and 
it is also illustrated in Fig. 1 where the bearing is operating 
eccentrically. The isothermal model predicts a higher direct 
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stiffness except at the highest speed (36,270 cpm) where the 
adiabatic thermal model shows a more pronounced hydrody- 
namic effect due to the temperature decrease in the bearing 
and hence the larger fluid viscosity. The maximum difference 
between the two models is 6.4 percent. 

Cross-Coupled Stiffness. Figure 6 illustrates the cross-cou- 
pled stiffness coefficients (Kxr or -Krx) versus rotational 
speed. The cross-coupled stiffness coefficients increase rapidly 
with increasing rotational speed. The magnitude of the cross- 
coupled stiffness coefficients is much smaller than the direct 
ones showing that the hydrodynamic force component in LH2 
HJBs is small. However, as has been shown before, the bearing 
stability is a combined effect of the dynamic coefficients, espe- 
cially the cross-coupled stiffness and the direct damping. The 
THD model predicts lower cross-coupled stiffness coefficients 
and hence smaller destabilizing forces in the bearing with a 
maximum discrepancy of 49.3 percent between the two models. 
This is surprising since the lower fluid temperature and hence 
larger viscosity predicted by the THD model should provide a 
higher cross-coupled stiffness (San Andres, 1992). This result 
might be explained by the fact that, unlike laminar flows where 
a rise in viscosity leads directly to a gain of shear force, in a 
turbulent flow this gain is overshadowed by the simultaneous 
decrease in the Reynolds number and the turbulent shear gradi- 
ents at the bearing surfaces. 

Direct Damping. Figure 7 shows the direct damping coef- 
ficients (Cxx or Crr) as a function of rotational speed. The direct 
damping coefficients increase with rotational speed. The small 
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Fig. 7 Direct damping (Cxx) versus rotational speed (e = 0); (bearing 
parameters presented in Tables 1 to 3) 

viscosity of LH2 not only generates small cross-coupled stiff- 
ness, but also provides low direct damping when compared to 
a more viscous liquid such as liquid oxygen (LO2). Again, 
the THD model predicts smaller direct damping coefficients. 
However, the difference for direct damping between the two 
models (maximum difference: 13 percent) are smaller than that 
for the cross-coupled stiffness. 

Other dynamic force coefficients, such as the cross-coupled 
damping and the added mass, are very small for this LH2 bearing 
geometry and will not influence the bearing dynamic perfor- 
mance. This condition is well known to be valid for light-density 
liquid and gas bearings and seals. 

Whirl Frequency Ratio. The whirl frequency ratio (WFR) 
is an indicator of bearing stability as it relates in a single expres- 
sion the effect of destabilizing cross-coupled forces and stabiliz- 
ing viscous damping forces. A low WFR indicates enhanced 
ability of a fluid film bearing to safely operate at higher running 
speeds relative to the first critical speed of the rotor-bearing 
system. For concentric operation, Fig. 8 shows the whirl fre- 
quency ratio (WFR) to increase with the journal rotational 
speed. The adiabatic THD model predicts lower WFR's  than 
the isothermal model, and asymptotically appears to approach 
the maximum value of 0.50 at the highest speed (36,270 cpm). 
The largest difference between the two models is 31.6 percent. 

For an incompressible liquid cylindrical bearing with smooth 
surfaces, the WFR should approach 0.50 at the concentric posi- 
tion (Rowe, 1980). This has been verified by the experimental 
measurements on hydrostatic water bearings (Franchek et al., 
1993). However, the isothermal model of San Andres (1992) 
also shows that the stability indicator in a HJB is larger than 
0.50 for compressible liquids. In general, a higher compressibil- 
ity ratio (/3pr) determines a higher WFR. This conclusion can 
not be drawn from the results predicted by the THD model, and 
unfortunately, no experimental data on the stability of LH2 HJBs 
is available to date. 

4 C o n c l u s i o n s  a n d  R e c o m m e n d a t i o n s  

A bulk-flow thermohydrodynamic (THD) analysis is devel- 
oped for calculation of the static and dynamic performance 
characteristics of turbulent flow, process liquid hydrostatic jour- 
nal bearings (HJBs). A finite difference scheme is implemented 
to solve the governing equations on the film lands, while the 
Newton-Raphson scheme, is used to update the recess pressures 
"and satisfy the mass continuity requirement at each recess. 

Comparisons of numerical predictions from the THD model 
with experimental measurements of mass flow rate, fluid tem- 
perature, and load stiffness coefficient from a LH2 HJB tested 
by Butner and Murphy (1986) show very good agreement. In 
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particular, the exit temperature of the LH2 HJBs is lower than 
the supply temperature; i.e., the liquid temperature decreases 
along the bearing length. This phenomenon unusual in a conven- 
tional liquid bearing is predicted correctly by the THD model. 
Both the THD model and an isothermal model predict well the 
mass flow rate and the stiffness coefficient of the LH2 HJBs, 
while the static load capacity is predicted better by the THD 
model. The orifice-discharge coefficient (Cd) is the major uncer- 
tain parameter in the calculation of performance characteristics 
in orifice-compensated HJBs. For the LH2 bearing configuration 
studied, choked flows through the orifice restrictors are not 
unlikely to occur at journal eccentric operation. 

For concentric journal operating conditions, numerical pre- 
dictions of dynamic force coefficients for the test LH~ HJB are 
presented. No experimental data is yet available for the dynamic 
force coefficients. The adiabatic THD and isothermal flow mod- 
els predict approximately the same direct stiffness (maximum 
difference: 6.4 percent) and damping coefficients (maximum 
difference: 13 percent), while the THD model predicts much 
lower cross-coupled stiffness (maximum difference: 49.3 per- 
cent) and whirl frequency ratio (WFR) (maximum difference: 
31.6 percent), and thus, it shows a bearing with better dynamic 
stability characteristics. 

The analysis shows that the variation of temperature (increase 
or decrease) in a LH2 HJB is largely dependent on the operating 
conditions such as supply temperature and pressure, sump pres- 
sure, and journal rotational speed. The fluid inlet temperature 
to the bearing is one of the control parameters. A low supply 
temperature (lower than the critical temperature: Ts < 32.9 K) 
will make LH2 behave more like a liquid rather than a gas. 
Larger supply temperatures may produce choked flows or sig- 
nificant temperature gradients within the bearing. Also, a low 
supply temperature will keep the state of LH2 away from the 
saturation region and hence avoid two-phase flow conditions. 
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Analysis of Linear 
Nonconservative Vibrations 
The coefficients of  a linear nonconservative system are arbitrary matrices lacking the 
usual properties of  symmetry and definiteness. Classical modal analysis is extended in 
this paper so as to apply to systems with nonsymmetric coefficients: The extension 
utilizes equivalence transformations and does not require conversion of the equations 
of motion to first-order forms. Compared with the state-space approach, the general- 
ized modal analysis can offer substantial reduction in computational effort and ample 
physical insight. 

1 I n t r o d u c t i o n  
The equation of motion of an n-degree-of-freedom linear 

nonconservative system can be written as 

Agj + B 0 + Cq = f ( t ) ,  (1) 

where A, B, and C are arbitrary square matrices of order n. 
These coefficient matrices are real, but they need not possess 
any of the familiar properties of symmetry or definiteness. The 
Lagrangian coordinate q and the generalized exci tat ionf( t)  are 
n-dimensional vectors. In traditional applications, equations of 
the above type arise mostly in the area of vehicle dynamics. 
The use of control devices in structures in recent years, however, 
has permitted linear nonconservative systems to manifest on a 
widespread scale. Development of a fast method for the analysis 
of these systems is thus much deserving. 

To be sure, it would be preferable if classical modal analysis 
could somehow be modified to treat linear nonconservative sys- 
tems. That might indeed be assumed in some earlier investiga- 
tions. A literature survey in the testing of aircraft flutter and in 
the stressing of ship hulls, for example, reveals rather occasional 
use of terms such as logarithmic decrements, modes, or natural 
frequencies. But the meanings of these terms are not clear. 
When does a linear nonconservative system possess classical 
normal modes? What are the natural frequencies of a nonconser- 
vative system? A theoretical basis, on which these concepts can 
be properly explored, is much desired. 

In theory, it is always possible to investigate a linear noncon- 
servative system with the Hamiltonian approach, whereby the 
second-order Eq. ( 1 ) is recast into a first-order system of dimen- 
sion 2n. The state-space representation is one such approach. 
After conversion into a first-order form, a large variety of nu- 
merical techniques are then available for subsequent analysis. 
But the Hamiltonian method has never appealed to engineers. 
An inordinate amount of computational effort is usually given as 
a reason. More importantly, there is serious absence of physical 
insight in tackling a first-order equation recast from the Lagran- 
gian formulation. The reluctance to employ Hamiltonian tech- 
niques has led to a predictable observation: engineers routinely 
invoke a whole array of rather bold approximations to continue 
to base the analysis of linear nonconservative systems upon the 
Lagrangian coordinate q. 
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MECHANICS. 

Discussion on this paper should be addressed to the Technical Editor, Prof. 
Lewis T. Wheeler, Department of Mechanical Engineering, University of Houston, 
Houston, TX 77204-4792, and will be accepted until four months after final 
publication of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS. 

Manuscript received by the ASME Applied Mechanics Division, Aug. 23, 1993; 
final revision, July 18, 1994. Associate Technical Editor: P. D. Spanos. 

Over the years, three systematic techniques have nonetheless 
emerged for the analysis of linear nonconservative vibrations 
in Lagrangian coordinates. The first technique, pioneered by 
Huseyin and Leipholz (1973) as well as Inman (1983), con- 
cerns the simultaneous reduction of A, B, and C to symmetric 
matrices by a common similarity transformation. Necessary and 
sufficient conditions for the existence of symmetrizing transfor- 
mations have been given. The second technique involves simul- 
taneous reduction of the coefficient matrices to diagonal forms. 
Many authors have considered this method, which has direct 
relevance to classical modal superposition. One simply recalls 
that modal analysis of a symmetric and positive definite system 
is a process of diagonalizing two matrices at the same time. 
When simultaneous diagonalization applies, a linear nonconser- 
vative system is completely decoupled. As a result, the system 
can be regarded as composing of n-independent single-degree- 
of-freedom systems. Using an idea related to diagonalization, 
a remarkable study of linear vibrations was reported by Fawzy 
and Bishop (1976). The third approach concerns the simultane- 
ous reduction of A, B, and C to upper triangular matrices by 
a common similarity transformation. Necessary and sufficient 
conditions for the existence of triangularizing transformations 
have recently been provided by Caughey and Ma (1993). The 
above three techniques have certainly contributed to the theoret- 
ical basis of linear nonconservative vibrations. On a practical 
side, however, the situation is less satisfactory. An examination 
of the restrictions involved in these methods reveals that only 
a small subclass of linear nonconservative systems can indeed 
be treated. 

Were system (1) symmetric and definite, the coefficient of 
acceleration would be a positive definite mass matrix M, and 
the coefficients of velocity and displacement would respectively 
be positive semidefinite damping and stiffness matrices D and 
K. In this case, Eq. (1) would take the familiar form 

Mil" + Dot + Kq = f ( t ) .  (2) 

The difference between the matrices B and /~ is sometimes 
accounted for by gyroscopic forces, and that between C and K 
by circulatory forces (MUller and Schiehlen, 1985). Hence B 
= 0 implies an undamped nongyroscopic system, and so on. 
While this type of terminology may not be applicable to con- 
trolled linear systems, it will be convenient to adhere to such 
terminology. The various ways in which control gains can be 
embedded in the coefficients and the excitation of system (1) 
are discussed by Soong (1990). Applications in which A is not 
symmetric are given, for example, by Schmitz (1973) as well 
as Soom and Kim (1983). 

The purpose of this article is to expound a fast method for the 
analysis of linear nonconservative vibrations. This constructive 
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method utilizes equivalence transformations in Lagrangian co- 
ordinates, and does not involve conversion of the equations of 
motion to first-order forms. As will be evident, the method 
represents a direct extension of classical modal analysis. The 
organization of this article is as follows. In Section 2, it is shown 
that an undamped nongyroscopic system can be completely 
decoupled by an equivalence transformation. The meanings of 
natural frequencies and normal modes will be clarified. Equiva- 
lence transformation is applied to a general nonconservative 
system in Section 3. There, comparison is made with classical 
modal analysis of viscously damped systems. Two illustrative 
examples are given in Section 4, in which practical implications 
of the method are also discussed. A summary of findings is 
provided in Section 5. The terms, l inear vibrations and l inear 
nonconservative systems, will be used interchangeably in expo- 
sition. 

2 Undamped Nongyroscopic Vibrations 
Consider an undamped nongyroscopic linear system, for 

which B = 0. The equation of motion is 

Ai] + Cq = f ( t ) .  (3) 

This type of systems was elucidated by Huseyin (1978), with 
particular emphasis on the stability of two subclasses termed 
pseudoconservative and circulatory systems. Pfltiger's column 
was one of the many illuminating examples discussed at length. 
The above system can be decoupled if and only if there exist 
two nonsingular matrices U and V such that V A U ,  V C U  are 
diagonal. Two square matrices P and Q, related by P = VQU, 
are said to be connected by an equivalence transformation. An 
equivalence transformation between P and Q preserves the rank 
of the matrices. If V = U -1 , the equivalence transformation is 
called a similarity transformation. In the event that V = U r, 
the equivalence transformation is a congruence transformation. 
The classical modal transformation is an example of congruence 
transformation. A congruence transformation is also a similarity 
transformation if U is an orthogonal matrix. Equivalence trans- 
formations that are neither similarity nor congruence transfor- 
mations are rarely used in structural analysis. Nevertheless, 
equivalence transformations are the most general nonsingular 
linear transformation, and it will be shown that A and C can be 
diagonalized simultaneously by an equivalence transformation 
in practically every situation. 

Let u be a column vector of order n and c~ be a scalar constant. 
If 

q = ue ~' (4) 

is a homogeneous or complementary solution to Eq. (3),  the 
generalized eigenvalue problem 

Cu = kAu  (5) 

must be satisfied, where h = -c~ 2. Eigenvalue problems of this 
kind were traditionally addressed in the abstract theory of matrix 
pencils. Emphasis was usually placed on symmetric and definite 
pencils. As a consequence, results applicable to the above eigen- 
value problem are scattered and rather incomplete. Most con- 
structive methods for the eigenvalue problem (5) have been 
summarized by Golub and Van Loan (1989). In what follows, 
an extension based upon the presentation of Zurmtihl and Falk 
(1984) will be made. Associated with eigenvalue problem (5) 
is the adjoint eigenvalue problem 

Cry = kArv .  (6) 

As Eqs. (5) and (6) lead to the same characteristic determinant, 
the corresponding eigenvalues are identical. But that says noth- 
ing about the number of eigenvalues available. 

At this point, the two assumptions underlying this investiga- 
tion must be reviewed. First, it is required that A is nonsingular. 

This is a common assumption made in earlier investigations 
of nonconservative systems. Technically speaking, there is no 
practical loss of generality in accommodating this assumption. 
Should the coefficient matrix A be singular, at least one compo- 
nent of the acceleration can be removed from the formulation. 
A linear nonconservative system is termed degenerate if its 
coefficient of acceleration A is singular. The eigenvalue problem 
(5) possesses n eigenvalues if and only if A is nonsingular. 
Thus, the implicit assumption that a system is not degenerate 
ensures the existence of a full set of eigenvalues. The second 
requirement presumes independence of the eigenvectors associ- 
ated with eigenvalue problem (5).  An eigenvalue problem is 
termed defective if it does not possess a full complement of 
independent eigenvectors. Experience indicates that an eigen- 
value problem (5) possessing physical significance is invariably 
not defective. And the assumption that there is a full comple- 
ment of independent eigenvectors can be made without fail in 
almost every application. A sufficient condition under which 
problem (5) is not defective is that the eigenvalues be distinct. 
However, this is only a sufficient and not a necessary condition. 
In addition, the eigenvalue problem (5) is not defective if and 
only if its adjoint problem (6) is not defective. Henceforth, 
without practical loss of generality, it will be assumed that a 
linear nonconservative system is not degenerate or defective. 

Corresponding to each eigenvalue h~, an eigenvector u~ can 
be found such that 

Cur = ~iAui .  (7) 

Likewise, a solution to the adjoint eigenvalue problem associ- 
ated with the eigenvalue hj is expressed by 

Crvj = hjA Tvj. (8) 

Note that each column vector u~ or vj is undetermined to the 
extent of an arbitrary multiplicative constant. Transpose the 
above equation to obtain 

v f C  = h jv fA .  (9) 

Premultiply Eq. (7) by vf and postmultiply Eq. (9) by u~. It 
follows by subtraction that 

(hi -- kj )v fAui  = 0. (10) 

Provided k~ ~ kj, the eigenvectors ui and vj are orthogonal, with 
A playing the l:ole of a weighting matrix. Thus, the two sets of 
column vectors U~ and vj are biorthogonal with respect to A if 
the corresponding eigenvalues are distinct. Extension to include 
repeated eigenvalues becomes necessary at this stage. 

Suppose kk is a repeated eigenvalue of multiplicity m. Since 
the linear system under consideration is not defective, there 
are m-independent ordinary eigenvectors uk and m independent 
adjoint eigenvectors vk associated with kk. These m ordinary 
eigenvectors uk are biorthogonal to the other n - m adjoint 
eigenvectors not connected with kk but, in general, are not bior- 
thogonal to Vk. One can biorthogonalize these two sets of eigen- 
vectors by taking them in certain linear combinations, in much 
the same fashion as an orthogonalization process. The slight 
difference in procedure may be briefly explained as follows. 
Let G and H be m-dimensional linear subspaces spanned respec- 
tively by uk and Vk. Choose any vector u~ in G. Generate a 
vector v~ in H orthogonal to u~ with respect to A. This completes 
the first step. Next, construct a vector Uk 2 in G which is orthogo- 
nal to v~. Generate a vector v~ in H orthogonal to u~ and u~. 
This completes the second step. Clearly, the procedure is induc- 
tive. In the ith step, u~ is constructed in G such that it is orthogo- 
nal to v~, v~ . . . . .  v~ -~ with respect to A. In addition, v~ is 
generated in H such that it is orthogonal to u~, uk 2 . . . . .  u~. 
After m steps, two sets of biorthogonal eigenvectors u~, v~ (i 
= 1, 2 . . . . .  m) are obtained. However, biorthogonalization 
need not generate unique resultant vectors. An analogous situa- 
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tion arises in classical modal analysis of symmetric and definite 
systems. There, positive definiteness of the mass matrix M en- 
sures the system is not inertially degenerate, and symmetry of 
M and K ensures the system is not defective. In the case of 
repeated frequencies, the modal matrix can only be obtained by 
orthogonalizing the independent eigenvectors associated with 
each repeated frequency (Meirovitch, 1967). Orthogonalization 
need not produce unique resultant vectors. Should there be a 
repeated frequency, the modal matrix is not unique. But one 
modal matrix can be obtained from another through an orthogo- 
nal transformation. 

Based on the above clarification, a biorthogonality relation 
between the eigenvectors u; and vj holds whether or not there 
are repeated eigenvalues. Normalization of these eigenvectors 
leads to 

v fAui  = 6q, i, j = 1, 2 . . . . .  n. (11) 

Note that each eigenvector u~ and its adjoint eigenvector v~ are 
still determined within an arbitrary multiplicative constant. If 
the multiplier for u~ is a~ and that for v~ is b~, the above equation 
determines only the product a~b~. In other words, the choice of 
either a~ or b; separately is still arbitrary. The above relation 
implies, in addition, that 

vfCui = hi6 o, i , j  = 1 ,2  . . . . .  n. (12) 

Define the following square matrices of order n by 

U : [81,  u2 . . . . .  Un], ( 1 3 )  

V = [vl, v2 . . . . .  v,,] r, (14) 

A = diag [kl, k2 . . . . .  k,] .  (15) 

The biorthogonality relations (11) and (12) can now be ex- 
pressed in a compact form: 

V A U  = I, (16) 

V C U  = A. (17) 

Let q = Up. Equation (3) may be simplified to 

1~ + hp  = Vf ( t ) ,  (18) 

which represents a completely decoupled system. Needless to 
emphasize, the solution of a decoupled system is immediate. 
The following statement has been established. 

Theorem 1. An undamped nongyrosc0pic system that is 
not degenerate or defective can always be decoupled by equiva- 
lence transformation. 

The decoupling equivalence transformation is defined by two 
adjoint eigenvalue problems (5)  and (6).  It will be proved in 
a subsequent section that any other equivalence transformation 
that decouples system (3) must be derivable from these eigen- 
value problems. As explained earlier, the decoupling transfor- 
mation is uniquely determined within arbitrary multiplicative 
constants in the eigenvectors Ug and vj if the associated eigenval- 
ues are distinct. The complex eigenvectors u; and vj may be 
termed modes and adjoint modes, respectively. In the case of 
repeated eigenvalues, the decoupling transformation is not 
unique. 

For a symmetric and definite system, Eq. (5) takes the form 

Ku = kMu, (19) 

leading to classical normal modes and natural frequencies. Due 
to symmetry of M and K, Eqs. (5) and (6) are identical and 
solution of only one of them is sufficient. The modes and adjoint 
modes are equal and V = U r. Thus, the decoupling equivalence 
transformation reduces to classical modal transformation if  the 
coefficient matrices possess symmetry and definiteness. The 
method of equivalence transformation represents a direct exten- 

sion of classical modal analysis, and the lack of  symmetry in a 
system only approximately doubles the computational effort. 

The meanings of natural frequencies and normal modes of 
a nonconservative system can now be clarified. According to 
Theorem 1, it is legitimate to write the equation of an undamped 
nongyroscopic system in the form (18). For free vibration, in 
wh ich f ( t )  = 0, the coordinate p admits a harmonic solution if 
and only if h i > 0 (i = 1, 2 . . . . .  n). Let k~ = w~, where 
each ~v~ is real and positive. A component Pi of the vector p 
then has the solution 

pi = c i c o s ( o v [ -  ~bi), i =  1 ,2  . . . . .  n. (20) 

The real constants c~ and ~bi can be identified as amplitude and 
phase angle. Bearing in mind that q = Up, one obtains 

q = ~ CiU i COS (t.z,'it - -  t ~ i ) .  (21) 
i=1 

In an undamped nongyroscopic system, the eigenvectors u~ are 
generally complex. However, for each real eigenvalue k~ of the 
eigenvalue problem (5),  the corresponding eigenvector u~ can 
be chosen to be real. Thus Eq. (21) implies that in harmonic 
motion with a specified natural frequency ~vi, all components 
also vibrate with identical phase angle ~bi. Amplitudes of vibra- 
tion of the components are proportional to the magnitudes of 
elements in u~. For this reason, each eigenvector u~ determines 
a mode shape, in analogy to classical modal vibration. The 
general response in free vibration is then the superposition of 
n harmonic motions of this kind. Validity of the following state- 
ment has therefore been demonstrated. 

Theorem 2. All components of an undamped nongyro- 
scopic system can perform harmonic vibration with identical 
frequency and phase angle if the associated eigenvalue problem 
(5) possesses positive eigenvalues. 

The natural frequencies of free vibration are simply the square 
roots of these positive eigenvalues. From a strictly mathematical 
viewpoint, the modes u~ are still not the same as classical normal 
modes when the corresponding eigenvalues are all positive. 
Classical normal modes of a symmetric and definite system are 
orthogonal to each other with respect to the coefficient matrices 
M and K. By contrast, the modes u~ and adjoint modes vj of a 
nonconservative system are biorthogonal with respect to the 
coefficient matrices A and C. The eigenvalue problem (5) is 
self-adjoint if and only if ui = vi (i = 1, 2 . . . . .  n), with 
equality determined within an arbitrary multiplicative constant. 
As a consequence, a linear nonconservative system possesses 
classical normal modes when the associated eigenvalue problem 
(5) is self-adjoint with positive eigenvalues. These restrictions 
are only slightly more general than requiring the system to be 
symmetric and positive definite. In other words, the use of two 
sets of adjoint modes u~ and vj is indeed necessary for treating 
nonconservative systems. 

3 General  Noneonservat ive  Vibrations 
In classical modal analysis of a viscously damped symmetric 

system, the modal matrix diagonalizes the mass matrix M and 
stiffness matrix K but, in general, will not diagonalize the damp- 
ing matrix D. Caughey and O'Kelly (1965) showed that D can 
be diagonalized by the modal matrix if and only if M-~D and 
M - I K  commute in multiplication. In other words, 

D M - I K  = K M - I D  (22) 

is a necessary and sufficient condition for the modal transforma- 
tion to completely decouple a damped symmetric and definite 
system. Condition (22) is not usually satisfied. A common pro- 
cedure in this case is to ignore the off-diagonal elements in the 
transformed damping matrix, especially when these elements 
are small. This procedure is termed the decoupling approxima- 
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tion in damping, which allows modal transformation to decouple 
an entire system. In addition, an iterative scheme can be used 
to improve the accuracy of approximate solution if the off- 
diagonal elements in the transformed damping matrix are not 
small. A discussion of this aspect was given by Udwadia and 
Esfandiari (1990) as well as Hwang and Ma ( 1993 ). Practically 
speaking, there is no objection to using the decoupling approxi- 
mation in damping. But, as reviewed by Park et al. (1994), 
rigorous analysis of errors committed by such an approximation 
has not been reported in the open literature. 

A similar situation arises in the analysis of linear nonconser- 
vative vibrations. Referring to Eq. ( 1 ), an equivalence transfor- 
mation diagonalizes A and C. As before, let this equivalence 
transformation be defined by the two nonsingular matrices U 
and V. Recall q = Up. Equation (1) may be expressed in the 
form 

p + VBUp + Ap = Vf ( t ) .  (23) 

The transformed coefficient matrix of velocity V B U  is in gen- 
eral not diagonal. That means the entire nonconservative system 
is not decoupled by equivalence transformation. Clearly, an 
extension to the decoupling approximation in damping may 
be proposed. The decoupling approximation in damping and 
gyroscopy states that off-diagonal elements in V B U  can be 
ignored if they are small. This would allow equivalence trans- 
formations to completely decouple the subclass of lightly 
damped and lightly gyroscopic systems. Intuitively, the errors 
of approximation should be small if the off-diagonal elements 
in V B U  are small. In addition, an iterative scheme, similar to 
the one for symmetric and definite systems, may be applied to 
improve the accuracy of approximate solution if the off-diago- 
nal elements in V B U  are not small. These approximate tech- 
niques have immense practical implications. However, as in 
classical modal analysis, these are also points of speculation. 
To continue to dwell upon them would merely be distracting. 

It is possible to further refine the method of equivalence 
transformation. The coefficient matrices A and C in nonconser- 
vative vibrations need not have the same divine rights as the 
symmetric matrices M and K. Sometimes it is more convenient 
to apply an equivalence transformation to diagonalize A and B 
instead. Afterwards, the entire system may be decoupled 
through approximating the transformed coefficient matrix of 
displacement by a diagonal matrix. This digression will not be 
pursued. Henceforth, it will be assumed that an equivalence 
transformation is chosen primarily to diagonalize A and C, in 
a fashion expounded earlier. An upshot at this stage is the 
following statement. 

Theorem 3. The linear nonconservative system ( 1 ) can be 
decoupled by an equivalence transformation if and only if the 
matrices A- IB  and A-~C commute in multiplication. 

In other words, this extension of criterion (22) asserts that 

BA 1C = CA-1B (24) 

is a necessary and sufficient condition for an equivalence trans- 
formation to completely decouple linear nonconservative vibra- 
tions. To prove the above statement, it will be easier if condition 
(24) is first recast in a more transparent form. From Eq. (16), 
observe that 

A -~ = UV. (25) 

Condition (24) is therefore equivalent to 

B U V C  = CUVB. (26) 

Premultiply the above equation by V and postmultiply by U. 
This gives 

VBUVCU = VCUVBU. (27) 

Let S = VBU. It follows, on substitution of Eq. (17) into Eq. 
(27), that 

SA = AS. (28) 

Conditions (24) and (28) are equivalent, satisfaction of one 
implies satisfaction of the other. 

If the equivalence transformation defined by U and V decou- 
ples system ( 1 ), the matrix V B U  must be diagonal. Since diago- 
nal matrices commute in multiplication, condition (28) is satis- 
fied. Condition (24) is therefore also satisfied. 

On the other hand, assume that condition (24) is valid. Upon 
expansion, condition (28) is equivalent to 

his U = Xis o, i, j = 1 ,2  . . . . .  n, (29) 

where slj is the ijth element of S. If all eigenvalues hi are 
distinct, the above equation implies that s o. = 0 when i * j .  
That means S is diagonal, and the equivalence transformation 
which diagonalizes A and C decouples the entire system. If 
some eigenvalues are repeated, then there are only k distinct 
eigenvalues, with k < n. In this case, Eq. (29) implies that S 
is a block diagonal matrix: 

S = diag [S,, $2 . . . . .  Ski. (30) 

Each St is itself a square matrix whose order coincides with the 
multiplicity of the eigenvalue with which it associates. Remem- 
ber that the equivalence transformation which diagonalizes A 
and C is not unique when there are repeated eigenvalues. In 
constructing this equivalence transformation through a biortho- 
gonalization process, one can select the modes and adjoint 
modes so as to render each S~ diagonal. This completes the 
demonstration that condition (24) is both necessary and suffi- 
cient for system ( 1 ) to be decoupled by an equivalence transfor- 
mation. 

Confining to symmetric and definite systems, the above dem- 
onstration still applies if M, D, and K take the place of A, B, 
and C. And the necessity and sufficiency of condition (22) are 
established. In fact, the case of repeated eigenvalues, which was 
not specifically addressed by Caughey and O'Kelly ( 1965 ), can 
now be given an elegant presentation. Bearing in mind that V 
= U r for a symmetric and definite system, it is observed that 
S = U r D U  must be symmetric. That means each matrix block 
S~ in Eq. (30) is symmetric. If S is not already diagonal, there 
exists a block orthogonal matrix 

W = diag [W1, W2 . . . . .  Wk] (31) 

possessing the same block structure as S such that W ~Wt = I 
(i = 1, 2 . . . . .  n), and each W ~S~W~ is diagonal (Horn and 
Johnson, 1985). Both U and UW possess the properties of a 
modal matrix. Let U W  be selected as the modal matrix. Then 
( U W ) r M ( U W )  = I, ( u w ) r K ( U W )  = A, and ( u w ) r D ( U W )  
is diagonal. This presentation illustrates an additional point: a 
proper choice of  modal matrix, effected by orthogonal transfor- 
mation, may be required when there is a repeated eigenvalue. 
The last point was only explained in the past through a geomet- 
ric interpretation of the symmetric eigenvalue problem (19). 

Finally, assume that one is solely interested in employing 
similarity transformations to decouple system ( 1 ). As explained 
by Canghey and Ma (1993), satisfaction of condition (24) will 
allow a similarity transformation to diagonalize A -~B and A-1C 
simultaneously, provided each of the two matrices is diagonaliz- 
able by similarity transformation. 

4 Discussion and Examples 
The exposition of simultaneous reduction of matrices to sym- 

metric forms by Inman (1983) provides an inspiring account 
of linear nonconservative vibrations. This article also draws 
upon a remarkable study by Fawzy and Bishop (1976). There, 
under more restrictive assumptions, the authors attempted to 
derive orthogonality relations involving all three matrices A, B, 
and C. As a result, their orthogonality relations contained the 
eigenvalues and became rather impractical. In view of Theorem 
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3, an equivalence transformation cannot be constructed to diago- 
nalize A, B, and C in every case. 

There are three practical implications of the method devel- 
oped herein. First, this constructive method represents a direct 
extension of classical modal analysis and only approximately 
doubles the computational effort required of modal transforma- 
tion. While the method is exact for an undamped nongyroscopic 
system, it is necessary to use some type of decoupling approxi- 
mation for a general nonconservative system. Extensive simula- 
tions have indicated that the method is substantially more effi- 
cient than the Hamiltonian approach. Reduction in computa- 
tional effort, particularly in the case of large-scale systems, is 
indeed very attractive. Second, this method appears to possess 
ample physical insight, more of which has yet to be uncovered. 
For instance, in the course of establishing Theorem 2, it has 
been pointed out that the eigenvectors u~ determine the mode 
shapes. Third, the method of equivalence transformations may 
be used to streamline computational algorithms based upon the 
method of weighted residuals. Many numerical techniques in 
this family of algorithms generate the same type of equations as 
( 1 ). As an example, the collocation method leads to equations 
resembling that of an undamped nongyroscopic system. These 
numerical techniques may be greatly streamlined by utilizing 
equivalence transformations. 

A last and yet theoretically important point is worth empha- 
sizing: any other equivalence transformation that decouples the 
undamped nongyroscopic system (3) must be derivable from 
the adjoint eigenvalue problems (5) and (6). In essence, a 
general theory of decoupling by equivalence transformations 
has been presented. Suppose an equivalence transformation, 
defined by two nonsingular matrices X and Y, diagonalizes A 
and C simultaneously. Without loss of generality, assume that 
elements in X and Y have been scaled so that 

YAX = I ,  (32) 
YCX = Z, (33) 

where Z = diag [z~, zz . . . . .  z,,]. Eliminate Y from the above 
equations to obtain 

CX = AXZ. (34) 
If x~ is the ith column of X, then 

Cxi = ziAxi. (35) 
Hence zi and x1 represent a solution to the eigenvalue problem 
(5). Likewise, it can be shown that the i th row of Y is a solution 
to the adjoint eigenvalue problem (6) associated with zg. It is 
now clear that a general theory of diagonalization by equiva- 
lence transformations has indeed been given. Equivalence trans- 
formations are already the most general nonsingular linear trans- 
formations. It can therefore be stated that no nonsingular linear 
transformation will ever diagonalize A, B, and C simultaneously 
every time. Further research to find universal decoupling trans- 
formations will not be necessary. Equation (23) is the simplest 
representation of a linear nonconservative system in Lagrangian 
coordinate. 

Two illustrative examples will be presented. These examples 
also address some interesting features not previously mentioned. 
The first example has been used by Meirovitch (1967) in de- 
scription of the collocation method and the second by Caughey 
and Ma (1993) in simultaneous reduction of matrices to triangu- 
lar forms. 

Example 1. An undamped nongyroscopic system, whose 
equation of motion has the form (3), is defined by 

r 0.5740 1.3858 1.3858- 
A = | 0.7070 0.7070 -0.7070 , (36) 

1_ 0.4620 -0.1914 -0.1914 

1.3748 10.9440 25.2975 1 
c = 1.2625 2.8770 -17.41951 . (37) 

0.7455 -4.1244 0.8625 3 

Solution of two adjoint eigenvalue problems (5) and (6) yields, 
after normalization, 

I 1.0000 1.0000 0.5064] 
U = -0.0272 -1.5441 -0.6217 / , (38) 

-0.0044 0.0465 1.0000 3 

r 0.3310 0.5397 0.9648] 
v = | _ 0 . 3 0 4 3  _0:1872 0.6211 / . 

L 0.4511 -0.6962 0.5164. I 
(39) 

With this equivalence transformation, the system is decoupled 
and can be expressed in the form (18), where 

A = diag [1.8241, 9.5561, 23.5486]. (40) 

The natural frequencies are simply the square roots of the posi- 
tive eigenvalues and are 1.35, 3.09 and 4.85 radians per second. 
Furthermore, the modes ui make up the columns of U. At each 
natural frequency, all components of the system can perform 
harmonic vibration with identical phase angle. Amplitudes of 
vibration of the components are proportional to the magnitudes 
of elements in ui. However, this system still does not possess 
classical normal modes because the eigenvectors u~ are not 
orthogonal to each other with respect to A. The adjoint modes 
vj constitute the rows of V. In addition to complementing bior- 
thogonality relations, the role of the adjoint modes is to modify 
the generalized excitation f ( t ) .  

The coefficient matrices A and C do not commute in multipli- 
cation. For this reason, they cannot be diagonalized at the same 
time by similarity transformation (Horn and Johnson, 1985). 
In addition, it can be verified that A and C cannot be reduced 
simultaneously to symmetric forms by similarity transforma- 
tion. However, as discussed by Meirovitch (1967), the system 
under consideration can be decoupled by first reducing it to a 
simple eigenvalue problem associated with the matrix C-IA. 
Suppose a similarity transformation, defined by a matrix P, is 
subsequently used to diagonalize C-tA.  In recasting the equa- 
tion of motion, it would become necessary to determine the 
modified excitation P- tC-~ f ( t ) .  Therefore, implicit or explicit 
computation of both C J and P-1 as well as their product would 
be required. It appears that the method of equivalence transfor- 
mation is more compact and abundant in insight. Clearly, solu- 
tion by equivalence transformation in this example is substan- 
tially more efficient than the state-space approach, which in- 
volves conversion of the equation of motion into a first-order 
form. Computational algorithms that incorporate equivalence 
transformation will generally economize on both core memory 
and computing time. 

Example 2. A nonconservative system of the form (1) is 
defined by 

[~  -10 ] [  ] [ 1 / i 2 ~ t  + 1 ~][ql]t~2 + [10 - 1 ] [ q ~ ] 0  q2 

= r,<,,] (41) 
L f2(t) J 

This system can be reduced to the form (23) by using an equiva- 
lence transformation involving 

U =  i ' - 1  I ' 

Recall q = Up. The transformation leads to 

[: + [; 

= [ f2(t) 1 .  (43) 
f2(t) - fl (t) 
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System (41) has been completely decoupled and, on expansion, 
gives the more transparent scalar equations: 

fli + Pl =f2( t ) ,  (44) 

/~/2 + P2 =3~(t) - ~ ( t ) .  (45) 

According to Theorem 3, condition (24) must be satisfied. This 
can be verified by a simple calculation. Although the coefficient 
matrices A, B, and C in Eq. (41) can be diagonalized by equiva- 
lence transformation, they cannot be diagonalized by similarity 
transformation. Among other things, A itself is not diagonaliz- 
able by similarity transformation because there is only one ei- 
genvector [1, 1] r associated with the repeated eigenvalue 1. 
In addition, the coefficient matrices A, B, and C cannot be 
simultaneously reduced to symmetric forms because A itself is 
not similar to a real symmetric matrix. If one insists on using 
similarity transformations, two observations can be made. First, 
the matrices A, B, and C generate a solvable Lie algebra. As 
explained by Caughey and Ma (1993), these three matrices can 
be reduced to upper triangular forms by a common similarity 
transformation. Second, each of the two matrices 

A - 1 B  = 1 ' A - I C =  1 (46) 

is diagonalizable by similarity transformation. They can be diag- 
onalized by a common similarity transformation since they com- 
mute in multiplication. The diagonalizing similarity transforma- 
tion is defined by ~,, 

[°11  47, P =  1 1 " 

In most applications, the computation o f A - I B  and A- IC is not 
advisable. There is no guarantee that these two matrices can be 
further reduced. An equivalence transformation should simply 
be applied to diagonalize the coefficient matrices ,4 and C. 
Afterwards, one can examine the transformed coefficient matrix 
of velocity V B U  to determine if the use of decoupling approxi- 
mation would require a corrective scheme. From this discussion, 
the power and generality of equivalence transformation over 
similarity transformation are clear. 

5 Conclusions 
Classical modal analysis has been extended so as to apply to 

linear nonconservative vibrations. The extension utilizes equiv- 
alence transformations in Lagrangian coordinates, and does not 
require conversion of the equations of motion to first-order 
forms. It is assumed, without practical loss of generality, that 
a linear nonconservative system is not degenerate or defective. 
That means the coefficient of acceleration A is nonsingular, and 
the eigenvalue problem (5) possesses a full complement of 
independent eigenvectors. The major results, summarized in the 
following, are applicable for any generalized excitationf(t). 

( 1 ) An undamped nongyroscopic system that is not degen- 
erate or defective can always be decoupled by equivalence trans- 
formation. Compared with classical modal transformation, the 
lack of symmetry in a system only approximately doubles the 
computational effort. 

(2) In free vibration, all components of an undamped non- 
gyroscopic system can perform harmonic vibration with identi- 
cal frequency and phase angle if the associated eigenvalue prob- 
lem (5) possesses positive eigenvalues. The natural frequencies 
are simply the square roots of these positive eigenvalues, and 
the mode shapes can be determined from the corresponding 
eigenvectors. 

(3) The linear nonconservative system (1) can be decou- 
pied by equivalence transformation if and only if the matrices 
A - l B and A -1C commute in multiplication. Similar to classical 

modal analysis of a viscously damped symmetric system, it is 
often necessary to draw upon the decoupling approximation in 
damping and gyroscopy for fast solution. 

(4) Any decoupling equivalence transformation must be 
derivable from the adjoint eigenvalue problems (5) and (6). 
No nonsingular linear transformation will ever diagonalize A, 
B, and C simultaneously in every case. Equation (23) is the 
simplest representation of a linear nonconservative system in 
Lagrangian coordinate. 

Compared with the state-space approach, the method ex- 
pounded herein offers substantial reduction in computational 
effort and ample physical insight. The method of equivalence 
transformations is applicable to nonsymmetric systems of any 
order, just as classical modal analysis is applicable to symmetric 
systems of arbitrary order. The tremendous power of equiva- 
lence transformation reflects its role as mathematically the most 
general nonsingular linear transformation. In addition, many 
numerical techniques involve equations resembling those of lin- 
ear nonconservative vibrations. These numerical algorithms will 
generally economize on both core memory and computing time 
if the method of equivalence transformation is incorporated. 
Among other things, it is hoped that the present paper would 
point to directions along which further research efforts can be 
profitably made. It appears feasible, for example, to examine 
stability and other qualitative features of a nonconservative sys- 
tem with equivalence transformations. Analysis of errors com- 
mitted by the decoupling approximation in damping and gy- 
roscopy is also worthwhile in a subsequent course of investiga- 
tion. 
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On the Inverse Problem of 
Rectangular Plates Subjected to 
Elastic Impact, Part I: Method 
Development and Numerical 
Verification 
A method to identify both the impact location and the transverse impact force history 
from the strain responses at certain points on a rectangular plate is presented. The 
governing equations of the plate were obtained by applying the Reissner-Mindlin 
plate theory and the Rayleigh-Ritz method. The strain response was related to the 
impact force by solving the above equations using the eigenmode expansion method. 
A mutuality relationship among any pairs of strain responses was used to find the 
impact location without knowing in advance the impact force history. The force 
history was subsequently determined after the impact location was identified. The 
conjugate gradient method was adopted to search for the optimal impact location as 
well as the force history. Numerical verification was performed using randomly 
generated impact locations and force histories to simulate impact events. The excellent 
agreement showed the effectiveness and the validity of the proposed method. 

1 Introduction 

The dynamic response of a structure subjected to impact is 
among the most important phenomena of concern in both the 
analysis and the design stages. For the purpose of evaluation, 
various loading conditions are usually assumed to simulate ser- 
vice situations. However, what is important in practical applica- 
tions also relies upon a thorough understanding of the true 
loading history for a structure under impact in a real service 
situation. Since it is still impractical to directly sense the impact 
force as well as the impact location, the development to find 
another versatile technique is, thus, valuable. 

As one of the possible tools used to attack the above problem, 
the technique to determine the impact force from the impact 
responses of a structure has been proposed by many researchers. 
For example, Doyle (1984a, b, 1987a, b) presented his method 
in a series of papers to determine the impact force for beam 
and plate types of structures subjected to transverse impact. 
Strain gages were used in his experiments to sense the strain 
responses at selected locations on the specimens. The relation- 
ship between any measured strain response and the applied force 
was established based on the classical beam theory (1984a), 
the Timoshenko beam theory (1984b), and the classical plate 
theory (1987a, b). Techniques in time domain (1984a) and 
in frequency domain (1984b, 1987a, b) were then applied to 
reconstruct the force history. The location at which the force 
was applied had to be given in advance in his papers. Chang 
and Sun (1989) proposed a method to recover the dynamic 
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impact force by using an experimentally generated Green's 
function along with signal deconvolution. The benefit of their 
method was that the material, shape, and boundaries of the 
structure were all accounted for by the experimental Green's 
functions. Therefore, no governing equations of the structure 
were needed. This method was recently further improved to 
explicitly eliminate the Green's function in the deconvolution 
process (Wu et al., 1995). 

Michaels and Pao (1985, 1986) applied a double iterative 
scheme to solve an inverse source problem for an oblique impact 
force on an elastic plate when the impact duration was in the 
order of 10 #s so that wave motions very much governed the 
plate response. A minimum of two receivers were required to 
sense the wave motions and to recover the oblique force in the 
time domain. Meanwhile, a modified processing algorithm was 
developed by Chang and Sachse (1985), who utilized the sig- 
nals at a single receiver point to reconstruct an extended source 
in a plate. In Michaels and Pao (1985, 1986), numerical and 
experimental verifications were performed, respectively, to vali- 
date the proposed method, whereas only numerical results were 
presented in Chang and Sachse (1985). Recently, Zhu and Lu 
(1991) offered a time-domain method for identifying dynamic 
loads on a continuous system. The dynamic response at a certain 
point was expressed by means of the modal superposition 
method. An integral equation was then established to relate 
the response to the dynamic load, and the problem of load 
identification was turned into solving a Volterra integral equa- 
tion of the first kind. An important factor in their work, and 
also in Michaels and Pao (1985, 1986) as well as Chang and 
Sachse (1985), was based on the assumption that the dynamic 
load was separable in time and spatial space. Discretization of 
the above integral equation by some interpolation functions 
could then be possible and led to the solution of the source 
identification problem. 

What is of concern in this paper is to develop a method to 
identify both the impact location and the force history from the 
recorded strain responses at certain points on a rectangular plate. 
These problems were not solved in the aforementioned papers. 
Although in the field of acoustic emission and seismology a 
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useful technique to detect the source location is the arrrival- 
time difference method (Pao, 1978), this technique is much 
dependent upon accuracy in determining the absolute or the 
relative arrival instants of the recorded primary waves. Since 
the received response signals in a service situation are frequently 
so noise-contaminated that the absolute or relative arrival in- 
stants are difficult to accurately determine, some uncertainties 
may thus occur. In order to overcome these problems, we de- 
velop a mutuality relationship among any pairs of strain re- 
sponses to find the source location without knowing in advance 
the impact force history. The force history is then determined 
after the impact location is identified. In this paper, optimization 
methods are employed to search for both the impact location 
and the force history. Numerical verifications using randomly 
generated impact locations and force histories to simulate im- 
pact events are performed to verify the proposed method. 

In Part 2 of this investigation, the method is further verified 
by conducting impact experiments on a rectangular aluminum 
plate. Also, in addition to the identification of both the impact 
location and the force history, a method is developed to deter- 
mine the mass as well as the initial velocity of a striking object 
by which the impact is induced. Lastly, the inverse problem 
using incomplete response signals as the given data is investi- 
gated. 

2 E q u a t i o n s  of  M o t i o n  

Only isotropic plates were considered in this study. The gov- 
erning equations of motion of the rectangular plate were derived 
by applying the Reissner-Mindlin plate theory and the Rayleigh- 
Ritz method (cf., Cairns and Lagace, 1989; Qian and Swanson, 
1990). Three independent variables for the displacements are 
presented by series of products of beam functions as 

u,(x ,  y, z, t) = z~(x,  y, t) = z ~ ~ ~u( t ){[ (x)r l j (y )  
i j 

u2(x, y, z, t) = z~ (x ,  y, t) = z ~ ~ f l i j ( t ) { i ( X ) ~ J ( y )  

i y 

u3(x, y, Z, t) = w(x ,  y, t) = ~ ~ wu(t){~(x)rlj(y) (1) 
i j 

where u~, u2, and u3 are the displacement components in the x, 
y, and z directions, respectively; {~ (x) and rli(Y) are the normal 
modes of beams under appropriate boundary conditions (Blev- 
ins, 1979); c~ 0,/3 U, and w~j are the corresponding modal ampli- 
tudes; and ( ) '  denotes a spatial derivative. 

Throughout the study in this paper, only thin plates are con- 
sidered. Thus, the rotary inertia effects is considered to be negli- 
gible and the kinetic energy of the plate is given by 

ph f r = T :  o (2) 

where p, h, a and b are density, thickness, and in-plane dimen- 
sions in the x and y directions of the plate, respectively; and 
( " ) denotes a derivative with respect to time. The potential 
energy of the plate, which is expressed as the strain energy 
minus the work done by the load applied in the normal direction 
of the plate, can be expressed as 

1 b Dj + 
V = ~  \ O x /  \ O y /  J 

+ OyJJ 

{( (o °wrt "~-2S0 D 4 ~ff--~-OW~2'-} - '-}- dxdy 
Oy ] Ox / 

Note that 

- p (x, y, t )w(x ,  y, t)dxdy. (3) 

Eh 3 uEh 3 
Di = 12(1 - u 2) ' D 2 -  12(1 - u 2) 

Eh 3 Eh 
D 3 = , D 4  - -  _ _  

24(1 + u) 2(1 + u) 

where E and u are Young's modulus and Poisson's ratio, respec- 
tively, and K is the shearing correction factor. In this study K 
was taken as ~. The Lagrangian L, by definition, is given by T 
- V. Consequently, using the Hamilton's principle of 

6 Ldt = 0 (4) 
I 

three sets of equations of motion of the plate with unknowns 
c~i~,/31j, and w U can be obtained. They are in the form of 

[° o ° l,ro,  + M=J l~/2j [ K,, 

where { qx } is a column vector containing a 0 and t o ,  and { q2 } 
is a column vector composed of wij. The mass matrix [M=] is 
a diagonal matrix due to the orthogonality characteristics of the 
beam functions. On the other hand, the components of the stiff- 
ness matrix, [Ku], are obtained by integrating the corresponding 
assumed functions and their derivatives over the plate surface. 
These integrations can be performed exactly for the functions 
shown in Eq. ( 1 ). A static condensation scheme is then applied 
to Eq. (5) and results in 

[M22]{#2} + [K*2]{q2} = {P2} (6) 

{ql } = - [Ku]-I[Klz]  {q2} (7) 

and 

[K2"2] = [K22] - [Ki2lr[Ku]- '[Ki2] 

where ( ) r means transpose of the associated matrix. By as- 
suming the time-varying forcing function, p(x ,  y, t),  to be 
applied transversely at (x0, Yo) of the plate, the corresponding 
vector, {P2}, on the right-hand side of Eq. (6),  can be ex- 
pressed by 

{P21 r = p ( t ) {~0h ,  ~1~2 . . . . .  ~2~'~1 . . . .  }(x0,y0) 

= p ( t ) { Y } .  (8) 

With the above derivation, the dynamic equations of the plate 
have been obtained in their final form as in Eqs. (6) and (7).  

There are many techniques available to solve Eq. (6) for 
{q2}. Among these, the eigenmode expansion method (cf., 
Craig, 1981) can be used to relate the response to the applied 
load in an explicit form, and is employed in this study. As 
shown in the following paragraph, this explicit expression is 
convenient for the implementation of an inverse problem. Let 
Eq. (6) be of rank L, and w~, tJ2 . . . . .  t~L and { el }, { e2 } . . . . .  
{ eL } be, respectively, the eigenvalues and eigenvectors of the 
associated homogeneous equations; the unknown vector { q2 } 
can be expressed by linear superposition of { ej } 's as 
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L 
{q2} = ]~ aj{ey} = [X]{a} .  (9)  

j=l 

In the above equation, each a s is a function of time and can be 
obtained by solving each of the uncoupled equations as follows: 

m j g t ) + k j a j = p ( t ) ( { e j } r { Y } ) ,  j =  1 ,2  . . . . .  L (10) 

where 

mj = { ej} r[M22]{ ej} 

kj = my~].  

Under the trivial initial conditions, Eq. ( 1 O) can easily be solved 
to obtain 

fl ay(t) = {eyIT{y} p ( t  --  T ) S j ( 7 " ) d T  (11) 
my 

where 

sin (wyt) if ~oy * 0 
sy( t ) = ovy 

t if w y = 0 .  

Thus, the modal amplitude wo., contained in vector { q2 }, can 
be obtained by using Eq. (9),  and the values of a 0 and/3 0 can 
be determined by substituting the results into Eq. (7). Conse- 
quently, the dynamic response of the plate can be expressed in 
terms of these modal amplitudes. For example, the strain re- 
sponse at a certain point, (x~, y~), on the surface of z = - h / 2  
can be expressed in the form of a convolution integral: 

£;;(X1, Yl, h/2, t) 

f0 = p( t  - r)G(;)(xl ,  Yl, 7-; Xo,  yo)dv (12) 

where ~ represents x or y. The Green's function, G(~)(x~, Yl, 
~-; x0, Y0), which means the transient strain response at (Xl, y~) 
by a unit impulse force applied at (Xo, Yo) through an elapsed 
time of length T, is in the form of 

G(;)(x~, Yl, t; Xo, Yo) 

= h  ~ ({F;}r[KH]-J[Kt2]{e:} ) ({e j}r{Y})sy( t )  (13) 
2y=l my 

Also, 

{rx} r = {~{"r/,, ~['r/2 ..... ~I'f/iv2, 

t/ it 
~2~1 . . . . .  ~NiT~N2, O, 0 . . . . .  0}(Xl,Yl) 

{ l a y }  T = {0,  0 . . . . .  0, ¢1~[' ,  

Note that N~ and N2 are the number of beam functions employed 
in the x and y directions, respectively; { F;} contains 2N~N2 
components; and L is equal to NiN2. 

Thus, giving the forcing function and the location where the 
force is applied in Eq. (12), one can find the strain response 
at any position of the plate. This is called the forward problem. 
On the other hand, the inverse problem investigated in this 
paper is to use the impact-induced strain responses at certain 
points on the plate to recover the impact location as well as the 
force history. Assuming that there are a total of N (->2) strain 
responses recorded at (Xl, Yl), (x2, Y2) . . . . .  (XN, y~), then N 
equations, each in the form ofEq. (12), can be established. The 
aforementioned problem is, thus, equivalent to solving these 
equations for the forcing function, p( t ) ,  and the location, (x0, 

Yo). To the authors' knowledge, an analytical solution is still 
not available for such a problem. To search for an approximate 
numerical solution, the convolution integral in the time domain 
is discretized here. By separating the whole concerned time 
period into n equally spaced intervals and by performing neces- 
sary manipulations, Eq. (12) is transformed into the following 
system of algebraic equations: 

{r tr r3 = 

rn ) 

or expressed as 

G2 G1 p2 

G3 G2 GI P3 
! i ".. 

n Gn-I Gn-2 "" Gl (k n 

(14) 

R(k)= G(k)P k =  1,2  . . . . .  N (15) 

where rj and pj are quantities of the strain and the impact force 
at time t = j A t ,  respectively; At  is the discretized time interval; 
and Gj is in the form of Eq. (A3) in the Appendix. The notation 
(k) indicates the quantity related to the kth sensor. Note that 
both R<k) and P are n-component vectors, and G<k) is an n by 
n matrix and is usually ill-conditioned (Rust and Burrus, 1972). 
All the elements in the upper triangular part of G(k) are zero 
and are not shown in Eq. (14). The special form of the Green's 
function matrix reflects the characteristic of the convolution 
integral. 

3 Location Identification 
If k = i and k = j are substituted into Eq. (15), the following 

equations are obtained: 

R(i) = G(i)P (16a) 

R~) = G~)P. (16b) 

Premultiplying the above two equations by Go) and G(i), respec- 
tively, they become 

G~)R(i) = G~)G(i)P (17a) 

G(i)R~) = G(i)G~)P. (17b) 

Recalling that the convolution integral is commutative, it is 
easy to prove that 

Go)Go) = Gfj)G(i) (18) 

Thus, a mutuality relationship can he deduced from Eq. (17a),  
(17b), and (18) as 

G(i)Ro" ) = Gcj)R(~ ). (19) 

This equation is simple and does not involve the force history 
vector, P.  A similar relationship was obtained by Sachse and 
Ceranoglu (1979) to get G(2) from a known G(1), and by Doyle 
( 1987a, b),  although were in the frequency domain, to find R(2) 
from a known R(o. In their work, the location where the impact 
force was applied was assumed to be known. 

In this paper, Eq. (19) is now used to find the impact location 
without actually knowing the impact force history. This is based 
on the following fact: Given the recorded strain responses and 
the locations where they are sensed, Eq. (19) is valid only when 
the Green's functions are evaluated using the accurate position 
at which the force is applied. As compared to the commonly 
used arrival-time difference method, this method is more reli- 
able. This is because in the arrival-time difference method the 
absolute or relative arrival instants of primary waves must be 
known very accurately, whereas in the present method the whole 
response histories are used for the purpose of location detection. 
Thus the arrival times of primary signals are not critical. Espe- 
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cially when the signals are so noise-contaminated that the arrival 
instants cannot be clearly recognized, the proposed method is 
still applicable. The traditional method, however, may fail be- 
cause it depends solely upon these noisy data at the very begin- 
ning stage in an impact event. 

However, the complicated form of the Green's function in 
Eq. (13) forbids that the impact location (x0, Y0) be determined 
by an analytical method. In this paper another approach is pro- 
posed, which applies the optimization technique to solve this 
problem approximately. An objective function is defined as 

N N 
F(x, y) = ~ ~ f) HG(i)R~) -- Gu>Ru)I[ 2 (20) 

i=1 j=m 
j~i  

where Ilell denotes a square norm of the associated vector, and 
~j are non-negative weighting factors to be determined. To ob- 
tain the impact location is now equivalent to finding the point 
(x0, Y0) at which F is minimum. Note that at least two strain 
gages located asymmetrically with respect to both z and y axes 
are needed, where the original of .g and y axes is at the plate 
center. The weighting factor in Eq. (20) is considered to be 
necessary because, if (x, y) is located on a plate boundary 
which is simply supported or fixed, all components of G#) will 
be zero. Thus F = 0 if)~/are taken to be constant in Eq. (20). 
As a result, all points at the boundary have minimum values in 
the optimization problem. Therefore, a suitable weighting factor 
must be selected to eliminate such a problem. In this paper, it 
is proposed that 

1 
& -- iiG(,)Ru)llZ (21) 

such that Gu)R~) is normalized at any location. 
There is another difficulty to be resolved because many local 

minimum locations exist within the plate domain, and what we 
need is the impact location at which F has the global minimum 
value. A strategy to resolve this problem is to find any points 
within the domain of attraction of the global minimum location 
such that an optimization process starting from these points 
always converges to this location. Also, if these points are lo- 
cated very near to the global minimum point, an important 
characteristic lain in such points is that their F-values are usually 
much smaller as compared to those corresponding to other 
points outside the domain of attraction of the global minimum 
location. 

Thus, a simple grid generation scheme is proposed along with 
the aforementioned method to identify the impact location, i.e., 
the location at which F has the global minimum value. A typical 
example for the grid generation procedure is depicted in Fig. 
1. By using this scheme, a set of appropriate initial grid points, 
denoted Generation-l, are selected first over the plate surface, 
and the corresponding objective functions are calculated. Opti- 
mization processes are then performed to search for the global 
minimum location from a number of grid points which have 
the smallest F-values among all the grid points calculated. As 
long as a converged F-value is smaller than a preset constant,~ 
the identified impact location is considered to be obtained. Oth- 
erwise, grid points belonging to the next generation are chosen 
and the same procedures proceed again. However, the number 
of total grid points must also be confined to a certain bound, 
even when all minima obtained do not satisfy the convergence 
criterion. This is because the recorded responses in a practical 
situation may be so noise-contaminated that, even at the real 
impact location, the corresponding F-value does not satisfy the 
convergence criterion which is too strictly set. For this latter 
case, the best solution, which is the one with the smallest F- 
value among all the obtained minima, is identified as the impact 
location. 

During the optimization process, it is necessary to compute 
the gradient of the objective function by which the search direc- 

00000: 
AA~A~: 

XXXXX: 

G e n e r a t i o n -  1 p o i n t s  
G e n e r a t i o n - 2  p o i n t s  
G e n e r a t i o n - 3  po in t s  

)( × x "A ( 

A A t A t & 

X . . . . .  
h a t e  
b o r d e r  

Fig. 1 Schematic of the procedure for grid point generation. In this 
example, 5 × 5 points were selected in generation-1. In generation-2 and 
3, additional 16 and 40 points, respectively, were added. 

tion can be determined. A spatial derivative of F can be obtained 
as 

OF N N 
~ = 2 Z Y ~  

I (OGu) OGu~ \ (G(i)Ru~ - Gu)R¢i))r \ O~ R~j) ~-" Ru) ) 

× iiV(~)Ro)l[2 

(OGu) Rcj)) T( G(i)R~j))" I[Go)Ru) - Gu)Ru)II z \ - ~ - -  

- (22) IIGu)Ru)II 4 
where ~ denotes x or y. In this study the conjugate gradient 
method (Fletcher, 1964) was adopted to determine the sequen- 
tial search directions. In general, this method has a faster con- 
vergence rate than the well-known steepest descent method. A 
unidirectional minimization search was then performed to locate 
the minimum location. In this study this was accomplished by 
applying a combination of the quadratic interpolation scheme 
and the bisection method (Fox, 1971 ). 

4 Force Identification 
Once the impact location is obtained, the Green's fimctions 

for all the recorded responses are also determined. Finding the 
impact force history is then equivalent to performing deconvolu- 
tion of Eq. (12) to obtain the unknown forcing function, p(t). 
The discrete form in Eq. ( 15 ), which is obtained from Eq. (12), 
is used again, and an error function is defined as 

N 
E = ~ I[G~)P - Ro)l[ z. (23) 

j=l 

The subject now turns into finding the forcing function, P,  
which minimizes E. Here, the conjugate gradient method is also 
adopted. For a quadratic objective function such as that in Eq. 
(23), it can be proved that the minimum point is always ob- 
tained within n iterations. 

One may feel that the objective function defined in Eqs. (20) 
and (21) can be replaced using the error function in Eq. (23) 
to locate the impact position. In fact, this was also the authors' 
initial idea. But notice that the computation time spent in a 
deconvolution process involving n variables is in the order of 
n 3, whereas only an order of n 2 is required for the evaluation 
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of the objective function defined by Eqs. (20) and (21). This 
is why the objective function different from that given by Eq. 
(23) is proposed in this paper to search for the impact location. 

5 N u m e r i c a l  Ver i f icat ion  

Problems of impact by randomly generated force histories 
and locations were employed to examine the validity and the 
effectiveness of the proposed method. A rectangular aluminum 
plate of 200 x 200 x 2 mm in size was used and was assumed 
to be fixed at all edges. 

The location at which the impact force was applied was ran- 
domly generated by letting 

x0 = (ran).  a 

Y0 = (ran).  b (24) 

where (x0, Y0) is the impact location and (ran) is a computer- 
generated random number, whose range is always between 0.01 
and 0.99 in this study. Also, a and b are the plate dimensions 
in the x and y directions, respectively. The impact force was 
randomly generated in the following way: 

[ ~ C j s i n ( J ~ )  for O - < t ~ T  

for t > T .  

where C~s are randomly generated real numbers. Without loss 
of generality, a constant was multiplied by these C]s such that 
the maximum value of p ( t )  was equal to 1000 N. Here, T 
denotes a chosen time period and was set to be 400/~s for all 
the numerical examples. On the loading surface of the plate, 
three strain gages, which were located at (50, 50), (150, 100) 
and (50, 150) mm, and were oriented in the x,  x ,  and y direc- 
tions, respectively, were used to sense the dynamic response 
from a "forward" calculation; i.e., to obtain the strain responses 
by multiplying the Green's function matrix by the force history 
vector at the right-hand side of Eq. (15). A time-step of 2 #s 
was used for numerical discretization, and the strain responses 
at 250 time steps were calculated accordingly. 

200  
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Fig. 2 Comparisons of the identified and the true impact locations for 
20 numerical examples 

Table 1 A typical optimization process to find the impact 
location 

Numerical Example A 

Optimization process to find the impact location 

No. of unid. Temporary rain. 
search pt. (mm) F-value 

0 (100.00, 75.250) 0.37289E+01 
l (93.717, 81.676) 0.11412E+01 
2 (93.477, 85.915) 0.21694E+00 
3 (94.920, 86.000) 0.86594E-02 
4 (95.001, 85.619) 0.27910E-09 
5 (95.001, 85.619) 0.27910E-09 

An inverse problem was then resolved, after the strain re- 
sponses were obtained, to recover both the impact location and 
the force history. The Generation-1 grid points were chosen to 
be 9 × 9 = 81 for all examples. According to the procedure 
depicted in Fig. 1, the number of the additionally generated grid 
points at consecutive generations, i.e., generation-2, 3, and 4, 
would be 64, 144, and 256, respectively. Among the grid points 
of the same generation, three with the smallest objective func- 
tions were chosen as the starting points for further optimization 
searches. In this section, when a converged F-value was less 
than 0.05, the location corresponding to that F-value was identi- 
fied as the impact location. Once the impact point was located, 
Eq. (23) was then used to search for the optimal impact force 
history. The conjugate gradient method was applied to detect 
the impact location as well as the force history. 

Twenty examples were executed. Table 1 shows a typical 
example corresponding to " A "  in Fig. 2 for locating the impact 
position using the optimization process. The starting point was 
at (100.00, 75.250) mm, and the optimal location was at 
(95.001, 85.619) mm. In Table 1, each temporary minimum 
point is where the minimal F was located along a sequential 
search direction. It can be found that the convergence rate was 
fast. Comparisons between the identified and the true impact 
locations for all the 20 examples are shown in Fig. 2. Excellent 
agreements are found. Comparisons of the identified and the 
true force histories for four typical examples are presented in 
Fig. 3. One can find that very good agreement was obtained. 
All other examples not shown in Fig. 3 were almost as good 
as that of Example A. 

The above computations were conducted on a CONVEX C1 
computer at the Institute of Applied Mechanics of National 
Taiwan University. The CPU time required for computing an 
F-value at a trial location was 0.258 sec, whereas an average 
of 17.89 sec of CPU time was needed to obtain the force history 
vector, P,  by the deconvolution process. Note that the later is 
about 69 times longer than the former. 

Among the 20 examples executed, the impact locations for 
14 examples were identified using starting points belonging to 
Generation-1. The remaining six examples in which the impact 

• locations were identified used starting points belonging to Gen- 
eration-2. Also, it was found that the F-value corresponding to 
the identified impact location was smaller than other local min- 
ima by several orders of magnitude for all examples. 

The aforementioned method has also been applied to force 
and location detection on composite laminates. Similar numeri- 
cal tests were performed and the agreement between the identi- 
fied and the true results was found to be as good as that shown 
in this section (Wu and Yen, 1992). 

6 C o n c l u s i o n  

The proposed method to identify both the impact location 
and the transverse impact force history from the strain responses 
at certain points of a rectangular plate has been presented. It 
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Fig. 3 Comparisons of the identified and the true force history for exam- 
ples denoted by A, B, C, and D 

has been shown by the results of numerical verification that the 
method is valid and effective. The simple mutuality relationship 
among any pairs of strain responses can be used to obtain the 
impact location without actually knowing the impact force his- 
tory. The impact force history can be obtained subsequently 
after the impact point is located. The conjugate gradient method 
has been successfully employed to search for the impact location 
as well as the force history. 

The remaining work of concern is to check the validity of 
the proposed methods using strain signals from real impact 
events, which is one of the subjects in Part 2 of this investiga- 
tion. 
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A P P E N D I X  

In this Appendix the derivation of Eq. (14) is given. The 
time period in Eq. (12) is discretized into n equally spaced 
intervals. The applied force in each interval is approximated by 
linear interpolation and expressed as 

P(~' )  = P j - i  + r - fj-I (pj  _ P j - I )  
tj tj-1 

where 

t j - i  < T < tj (A1) 

tj = j A t  

pj = p ( t j )  

At = discretized time interval. 

By substituting Eq. (A1) into Eq. (12) and performing integra- 
tion, one obtains 

k 

e;;(xi,  Yl ,  h / 2 ,  &) ~ ~( ; )  = o~+i- jPj  1 - ~ k ~  n (A2) 
j= l  

where 

h 
G~ ;) = ~ { F ; } r [ K u ] - I [ K i 2 ] [ X ] [ T ] [ X ] r { Y }  (A3) 

G(;) h j+l = ~ { F ; } r [ K I I ] - I [ K ~ 2 ] [ X ] [ S ] [ X ] T { Y }  j - >  1 

[X] = [ { e l ) , ( e 2 ]  . . . . .  {eL}] 

IT] = Diag [T(1) ,  T(2) . . . . .  T(L)] 

[S] = Diag [ S ( j ,  1), S ( j ,  2) . . . . .  S ( j ,  L)].  
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At w~ ~ 0 

T ( / ) =  1Ki [ 1  sino~At(oJiAl) J] 
1 

S ( j ,  i) - - -  
Kito~At 

[ -  sin (ooitj-l) + 2 sin (witj) 

- sin (w&+l)] 

and at w~ = 0 

T(i)  = (At)2/(6m~) 

S( j ,  i) = j ( A t ) 2 / m i .  

In the above, Diag means a diagonal matrix. Writing Eq. 
(A2) for k = 1, 2 . . . . .  n, a system of equations like that in 
Eq. (14) is then obtained. 
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On the Inverse Problem of 
Rectangular Plates Subjected 
to Elastic Impact, Part I1: 
Experimental Verification 
and Further Applications 
Experimental verification of  the method developed in Part 1 to identify both the 
impact location and the force history from strain responses on a rectangular plate 
was performed. Results showed the validity of  the method in a real impact event. 
Also, a "method was developed to further identify the initial velocity and the mass of  
an impactor by which a transverse impact was induced. This was accomplished by 
solving algebraic equations obtained from the assumption that the lateral displace- 
ments of  both the impactor and the plate at the impact point were coincident during 
the contact period. Moreover, lhe inverse problem using incomplete response signals 
as the given data was investigated. A procedure to temporarily reconstruct the lost 
portions of  the recorded signals was first presented, and the identification problem 
could then be solved by similar methods as that used for  the complete response 
signals. Experimental verificalion was also performed. The agreement between the 
measured and the identified results was very satisfactory. 

I Introduction 

In Part 1 of this investigation (Yen and Wu, Part 1 ), a method 
has been developed to identify both the impact location and 
the transverse impact force history from strain responses on a 
rectangular plate. Numerical verification of the method was 
performed by randomly generating the impact locations and the 
force histories, and then performing forward calculations to 
obtain the corresponding strain responses. These responses were 
then used as the input data for the identification purposes. Al- 
though the agreement between the true and the identified results 
was excellent, it is also important to know how reliable the 
method is when it is applied to a real impact event. That is to 
include the effects due to background noise, instrumentation 
limitation, and other operation factors, etc. Therefore, the first 
goal of this paper is to experimentally verify the method devel- 
oped in Part 1. An instrumented hammer was employed as the 
impactor to strike a rectangular aluminum plate where three 
strain gages were taped at different locations and were used to 
sense the strain responses. 

Secondly, in addition to identification of the location and the 
force history, a method is developed to further determine the 
initial velocity and the mass of an impactor by which a trans- 
verse impact is induced. This is conducted after the location 
and force history are identified using the methods proposed in 
Part 1. Then, by assuming that the lateral displacements of both 
the rigid impactor and the plate at the striking point are coinci- 
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dent during the contact period, simple algebraic equations con- 
taining the initial velocity and the mass of the impactor can be 
obtained. Because the system of equations are always overdeter- 
mined, the least-square method can be employed to obtain the 
solution. 

Further, in the service condition of a structure, it is often that 
the initial stage of the recorded response signals of the structure 
during impact are missing. A typical situation is due to use of 
a finite triggering level in a transient recorder, in which such 
data missing often occurs either because the recorder is without 
a pretrigger function, or because the pretrigger time is not prop- 
erly set. Under this circumstance the arrival-time difference 
method (Pat,  1978) is, in general, no longer applicable to locate 
the source location. In this paper, methods are developed to 
overcome this problem. Experiments were also conducted to 
verify the proposed methods. 

For the sake of completeness, some equations used in this 
paper, which were already developed in Part 1, are repeated 
here. 

The equation derived to relate the dynamic strain response 
to the impact force is given by 

fit Ii Jilt r2 Ga Gi P2 
r3 = G3 G: G1 P3 . ( 1 ) 

n (k~ n G . _ i  G._2  " "  G i tk~ ., 

Alternatively, it can be symbolized as 

R(k~ = G(k~P k =  1,2  . . . . .  N (2) 

where the vector on the left-hand side of the above equations 
represents the strain response; the vector on the right-hand side 
is the discrete impact force history; and the matrix which relates 
the former to the latter represents the Green's function. The 
notation (k) denotes the quantity which belongs to the kth sen- 
sor, and the total number of the sensors used for the identifica- 
tion purposes is N. 
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Fig. 1 Energy spectrum of a typical strain response, G2, of Experiment- 
1. A hammer was used as the impactor. 

The objective function used to find the impact location is 
defined by 

N S I 
f = ~ ~ IIG<,~Ru~- au>R<~)ll =. (3) 

,=~ j=~ [IGu)Ru)II z 
j-~i 

The location at which the value of F is minimum corresponds 
to the impact point. The work to find the point where F is 
minimum is accomplished by the proposed grid generation 
scheme and the conjugate gradient method, as described in Part 
1 of this investigation. 

The objective function defined to find the impact force history 
is given by 

N 

E = E IIGu)P -eu)ll =. (4) 
j=l 

The optimal force history is obtained once the P,  which mini- 
mizes the objective function, is found. In Part 1, this work is 
accomplished by the conjugate gradient method. Whereas in 
this part, the gradient projection method (Rosen, 1960; Fox, 
1971), which can confine the impact force in the unilateral 
compressive direction, is employed to obtain the force history 
when response data from a real impact event are used. 

2 E x p e r i m e n t a l  V e r i f i c a t i o n  

Experiments using a 6061-T6 aluminum plate as the target 
were performed to examine the validity of the methods devel- 
oped in Part 1 of this investigation. The Young's modulus, 
Poisson's ratio and the density of the plate were E = 70 Gpa, 

= 0.3 and p = 2700 kg/m 3, respectively. The target had 
dimensions of 141 mm × 141 mm × 2 ram, and was hung from 
two light strings at two corners to simulate the free boundary 
condition. On the loading surface, three strain gages (KYOWA 
KFG-2-350-Cl - l l )  were taped to measure the dynamic strain 
responses, which were then recorded by an oscilloscope (Nico- 
let Company, System 460). The orientations and locations (in 
ram) of the three gages were e~(40.5, 40.5), e=(90.5, 70.5), 
and eyy (40.5, 100.5), respectively. The impact force was exerted 
at the target by an instrumented hammer (PCB Piezotronics 
Company, 086B01 SN6445, sensitivity 10.9 mV/Newton),  
which contained a force transducer to measure the impact force 
directly. The hammer had a fiat head of 3 mm in diameter and 
the impact force exerted by this hammer was approximated as 
a point load. 

Eight impact tests were performed. The recorded strain re- 
sponses were then used to identify both the impact location and 

the force history. To know how many modes must be included 
in the eigenmode expansion, the response signals can always 
be analyzed by using the fast Fourier transform method to obtain 
the frequency content. For example, the recorded strain response 
for the gage at (90.5, 70.5) mm in the first example was ana- 
lyzed using an FFT program provided by Press et al. (1989). 
The result is shown in Fig. 1. It can be found that most of the 
spectrum energy was distributed in the frequencies lower than 
50 kHz. Thus, the first 14 × 14 vibration modes of the plate 
were employed in the computation, and the highest natural fre- 
quency was 74.95 kHz. A time-step of 4/.zs was used for the 
time domain discretization. 

Initially, as that used in Part 1, the conjugate gradient method 
was applied to search for both the impact location and the 
optimal force history. A comparison between the identified and 
the measured impact force history for Example 1 is shown in 
Fig. 2 (a) .  One can find that the identified results oscillate about 
the measured history. Negative impact force, i.e., tensile contact 
force between the impactor and the target, was even obtained 
in certain periods, which is not physically permitted in this 
study. As compared with the numerical results obtained in Part 
1, this was mainly due to noise contained in the recorded re- 
sponse signals. Because the recorded response signals are al- 
ways contaminated with noise to some degree, this situation 
was encountered in most of the identified results. In order to 
confine the identified force history in the unilateral compressive 
direction, a constrained optimization algorithm using the gradi- 
ent projection method was adopted to find the optimal force 
history. The only constraint imposed on the optimization search 
was that the impact force had not to be in tension. As shown 
in Fig. 2(b) ,  one can find that more reasonable results were 
obtained. Therefore, for all the experimental cases conducted 
in this study, the conjugate gradient method was used to search 
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Fig.2 Theidentifiedforcehistoryobtainedby(a)theconjugategradient 
method, and (b) the gradient projection method. The solid curves repre- 
sent the measured forces. 
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Fig. 3 Comparisons of the identified and the true impact locations for 
the eight examples using a hammer as the impactor. Also shown is 
arrangement of the strain gages for GI: e~(40.5, 40.5) ram, G2: Ex~(g0.5, 
70.5) mm, and G3: E~(40.5, 100.5) mm. 

tion about what the mass and the striking velocity should be to 
cause such an impact event. In this section, the latter subject is 
investigated. 

For a rigid impactor of mass, M, and at an initial velocity, 
v0, striking on a structure, the displacement, s ( t ) ,  can be ex- 
pressed by 

l f0 s ( t )  = so + rot - ~ ( t  - r ) p ( r ) d r  (5) 

where So is the initial displacement and p ( r )  is the impact force 
exerted on the impactor. If we let the instant displacement at 
the impact point of the plate be w (t), which is obtained through 
forward calculation by exerting the identified impact force at 
the identified impact location, then, by assuming that the lateral 
displacements of both the impact point of the plate and the 
impactor are coincident during the contact period, the following 
equation can be obtained: 

'fo w ( t )  = s ( t )  = so + r o t -  ~4 ( t  - r ) p ( r ) d r  (6) 

provided that the time, t, is within the contact period. Intuitively, 

Z 

for the impact location, and the gradient projection method was Z 
applied to identify the optimal force histories. ~ t ~  

Comparisons of the identified and the measured impact loca- .~ _~ 
tions for all the eight examples are shown in Fig. 3. Also shown ~ c~ ~ 
in this figure is the arrangement of the strain gages. It can be ~ 
found that good agreements were obtained. The largest devia- ~ ,  
tion was 2.77 mm, which corresponded to Example 3. This r ~  
value was still smaller than the 3 mm diameter of the hammer 
head. Comparisons of the identified and the measured impact ~.. ~I 
force histories are presented in Fig. 4. The results were satisfac- ~ 
tory for all examples. Therefore, the developed method is con- 
sidered reliable for the impact location and force history detec- ~ 
tions in a real impact event. ~ 

In the above calculations, the initial grid points for detection ~ 
of the impact location was 9 × 9. Three grid points of the same ~ 
generation corresponding to the smallest objective functions 
were chosen as the starting points for further optimization Z 
search. The corresponding F-values at the identified impact 1o- ~ 
cations were between 0.112 (for Example 2) and 0.0178 (for ' < ~  
Example 8). The F-values at all other local minima obtained ~ p 
were found to be greater than 2.0 for all examples. Therefore, 
there were at least one order-of-magnitude differences between ~,~ 
the global and the local minima. In this study, an F-value ~ ~ r.r.l 
smaller than 0.2 was set as the convergence criterion. Among ~ 
the eight examples executed, only Example 5 used the starting ~ c~ ~ 
point belonging to Generation-2 grid points to find the impact ~ ff~ 
location. All other examples used only Generation-1 grid points. 
Thus, the method to find the impact location was considered to ~ ~ ,  
be simple and effective in real impact situations. ~ ~ 

In this study, all received signals were only scaled by their ~ 
corresponding physical units. Neither of these signals were pro- ~ 
cessed by any filters, nor were the environmental noises handled 
with special care. ~ . ~ .  

3 Identif ication of  Mass  and Velocity of  a Projectile 

It is well known that when a structure is hit by a foreign 
object, the impact force history is strongly affected by the mass 
and the striking velocity of the impactor. Conversely, this also 
reveals that the impact force history must contain the informa- 
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Fig. 4 Comparisons of the identified and the measured force histories 
for the eight examples using a hammer as the impactor 
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we may think that the initial displacement of the plate is zero, 
and So should also be zero if the instant for the onset of contact 
is set to be t = 0. However, the response signals in a real impact 
event are usually recorded using a transient recorder with a 
pretrigger device, i.e., the response signals might be recorded 
from some instant before impact occurs. This was also the case 
in this study. Thus, the time t = 0 determined using pretrig- 
gering was actually before the onset of contact. Typical and 
obvious results can be found from the corresponding force his- 
tories in Fig. 4 for Examples 2, 4, and 5. Thus, the initial 
displacement of the impactor, so, in Eq. (6), is the displacement 
before the onset of contact and shall be a negative value. In 
this study, in addition to Vo and M, So is treated as the third 
unknown. Note also that the identified impact force before the 
occurrence of impact might not be zero in this study, which was 
due to the existence of noise and the approximation involved in 
numerical calculation, as also exemplified in Fig. 4 for Exam- 
ples 1, 3, and 8. 

Suppose that during the contact period there are discrete time 
instants, tk = kAt,  for k = n~ . . . . .  n2. Then, there are (n2 - 
n= + 1) equations, each in the form of Eq. (6), available to 
solving for the three unknowns of So, v0, and M. Since the force, 
p(~-) in Eq. (6), is the identified impact force obtained in 
discrete form, and its distribution is approximated by linear 
interpolation in each time interval, the integral can easily be 
evaluated. By performing integration in each time interval and 
summing the results, Eq. (6) can be reduced to 

~xt 2 k 
wk = So + vok~t - ~ ~ [(3k - 3 j  + 2)pj-l 

j=l  

+ ( 3 k -  3 j +  1)ps] nl--< k-< nz (7) 

where w~ is the magnitude of w at time t = kAt.  Because the 
system of equations obtained are always overdetermined, these 
unknowns can be solved by applying the least-square method. 

Two experiments were conducted. The experimental setup 
was similar to that in Section 2 except that the target was struck 
by a pendulum, instead of by a hammer. The pendulum was 
composed of a steel rod hung at two appropriate locations by 
two pairs of light strings. Each pair of strings were arranged in 
a V-shape to prevent the rod from yaw motion. The rod had a 
hemispherical head of 12.7 mrn in diameter. An accelerometer 
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Fig. 5 Comparisons of the identified and the true impact locations for 
two examples using a projectile as the impactor 
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Fig. 6 Comparisons of the identified and the measured force histories 
for the two examples using a projectile as the impactor 

(PCB Piezotronics company, 303A02 SN23823, sensitivity 11.6 
mv/g) was screwed at the tail of the rod to measure the accelera- 
tion history of the impactor. Under the approximation that the 
steel impactor was rigid, the impact force could be obtained by 
multiplying the acceleration of the impactor by its mass. The 
arrangement of the strain gages was the same as before. 

Comparisons of the identified and the measured impact loca- 
tions as well as the impact force histories are shown in Figs. 5 
and 6, respectively. One can find that very good agreements 
were obtained, especially for the location identification. The 
identified impact forces in Fig. 6 were then used to find the 
displacement responses at the identified impact locations. The 
displacements obtained are shown in Fig. 7 for both test cases. 
A time-step of 4 #s was used in the above numerical calculation. 
Then, the force and displacement data in the time intervals 
between 200 to 700 #s and 100 to 500 #s, respectively, were 
applied to find the masses, initial velocities, and initial displace- 
ments for these two tests. The time intervals taken in the above 
calculation were based on a conservative estimation that contact 
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Fig. 7 Displacement histories at the identified impact locations for the 
two examples using a projectile as the impactor 

702  / Vol. 62, S E P T E M B E R  1995 T ransac t ions  of  the  A S M E  

Downloaded 04 May 2010 to 171.66.16.28. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Table 1 Identified mass and initial velocity of the projectile 

Identified mass and initial velocity: 

Example Mass (g) Initial Velocity (m/see) 

true identified error tree identified error 

1. 64.4 69 .6  +8.1% 1.58 1.46 -7.6% 
2. 64.4 59.0 -8.4% 1.79 1.92 +7.3% 

between the impactor and the target was sure to happen during 
these intervals. The computation results are listed in Table 1. 
Also shown in this table are the true values. The errors were 
found to be less than nine percent for both the identified masses 
and initial velocities in both cases. The results were considered 
to be satisfactory. 

4 Ident i f icat ion Us ing  I n c o m p l e t e  R e s p o n s e  Signals  

Force Identification. When the impact location is known 
a priori and only the impact force is of interest, the method is 
very simple. If the recorded signals from ra to r,n(m < n )  in 
Eq. (1) are lost, there are only (n - m) equations; whereas the 
unknown discrete force variables are still Pt to P,. Equation 
( 1 ) is not solvable if the plate response from only one gage is 
used. However, if there are N gages used, and if 

N ( n  - m )  > n (8) 

holds, the objective function defined in Eq. (4) can still be 
applied to identify the impact force history, except that the 
total available equations are now N ( n  - m ) .  The optimization 
method used in the preceding sections can thus be applied to 
find the optimal force history. Because the procedure is very 
similar to that for the complete plate responses, no example is 
illustrated. 

Location and Force Identification. When both the impact 
location and the force history are to be identified, the problem 
becomes more complicated. Recalling that the objective func- 
tion in Eq. (3) has to be evaluated for complete response signals 
of R0) and Rv) ,  i , j  = 1 , . . . ,  N ,  this equation can not be used 
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Fig, 8 Comparisons of the identified and the true impact locations for 
the two examples using a projectile as the impactor when the first 400 
p,S response signals are missing 

directly when the first m discrete signals recorded from plate 
motion are missing. To overcome this problem, the lost signals 
are first temporarily "reconstructed." The grid points based on 
the method illustrated in Part 1 of this investigation are still 
used as the trial impact locations. The "impact force history," 
which is assumed to be applied at each of the grid points, is then 
recovered by the method illustrated in the above subsection. The 
corresponding lost response signals can then be computed from 
a forward calculation once this impact force history is obtained. 
Consequently, the objective function, F,  in Eq. (3) can be eval- 
uated because the response signals are now complete. Since in 
this way, the lost signals may not be reconstructed at the true 
impact location, the objection function, F,  obtained correspond- 
ing to each grid point is in general not the same as that associ- 
ated with the complete response signals. However, this does 
not influence the search of the true impact location since the 
global minimum value of F will still be obtained when the lost 
signals are reconstructed at the true impact location. 

But it is valuable to note that the computation time in the 
deconvolution process to find the force history is in the order 
of n 3 , Thus, this method may soon become infeasible when the 
total number of the discrete signals is large. However, because 
the lost signals at the beginning stage in an impact event are 
usually of a short period and because multiple gages are used, 
one only needs to recover the force of sufficient duration so 
that the corresponding lost response signals can be recon- 
structed. For example, if the strain signals obtained from N 
gages at the time tl to tm are missing, it is only required to 
identify the force history using the signals at time t,,+~ to tm+k 
as long as the following inequality holds: 

N k  ~- m + k .  (9) 

Thus, the corresponding discrete impact force history, p~, i = 
I . . . . .  m + k, which acts at each trial grid point, can be 
obtained through deconvolution and, subsequently, the corre- 
sponding lost response signals can be reconstructed from for- 
ward calculation. By using this method, the computation time 
for deconvoluting Eq. (4) can be much reduced. 

The above procedures are executed at all grid points such that 
the objective function, F,  defined in Eq. (3) can be evaluated 
accordingly. Then, again, a number of grid points belonging to 
the same generation, which have the smallest objective func- 
tions, are chosen as the starting points for the subsequently 
optimal location search. In the search process, the lost strain 
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Table 2 Identified mass and initial velocity of the projectile 
when the first 400 ps signals are missing 
Identified mass and initial velocity: 

Example Mass (g) Initial Velocity (m/see) 

true identified error true identified error 

1. 64.4 61.1 -5.1% 1.58 1.47 -7.0% 
2. 64.4 65.9  +2.3% 1.79 1.82 + 1.7% 
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signals are also reconstructed by the same way until the optimal 
impact location is identified. Then, the impact force can be 
determined using the same method as that illustrated in the 
preceding subsection. 

Experimental Verification. To verify the proposed 
method, strain signals from the same experiments as that used 
in Section 3, i.e., an aluminum plate struck by a steel projectile, 
were used again. The complete strain Signals lasted 1000 #s. 
Assuming that the strain signals in the first 400 #s were lost, 
the value of m was equal to 100 because the time-step used 
was 4 ps. Thus, am in Eq. (9) could be taken as 75 when three 
gages were used. This was considered suitable because 3 × 75 
> 100 + 75. The number of initial grid points employed for 
locating the impact point was still 9 x 9. Comparisons of the 
identified and the measured impact locations as well as the force 
histories are shown in Figs. 8 and 9, respectively. It can be 
found that the agreement was nearly as good as that with com- 
plete strain response signals. Identification of the mass and ini- 
tial velocity of the projectile was also conducted. These values 
are presented in Table 2. Again, very satisfactory results were 
obtained. It may also be interesting to calculate the "identified 
strain response" for each strain sensor by using the identified 
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Fig. 11 Comparisons of the identified and the measured strain re- 
sponses for the second example using a projectile as the impactor when 
the first 400/.~s response signals are missing 
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Fig. 10 Comparisons of the identified and the measured strain re- 
sponses for the first example using a projectile as the impactor when 
the first 400 ps response signals are missing 

force history as the applied load, and then to compare the results 
with the corresponding measured curves, of which the first 40 
percent of the data were assumed to be missing. Figures 10 and 
11 show such comparisons. One can find that the lost response 
signals were reconstructed fairly well. Although not shown in 
this paper, similar good results were also obtained when incom- 
plete strain signals were used to identify the impact location 
and the force history, and to reconstruct the lost strain histories 
for the eight examples shown in Section 2, i.e., an aluminum 
plate struck by a hammer (Yen, 1992). Further, this method 
was extended to identify the impact forces exerted at multiple 
locations on a laminated plate when part of the recorded strain 
data were missing (Wu et al., 1994). 

In the above calculation, the total computation time to obtain 
an objective function, F, when the strain histories in the first 
400 #s were missing was approximately 5.12 sec; whereas only 
0.254 sec was required for the case with complete strain histor- 
ies. The former was about 20 times longer than the latter. This 
comparison also shows that additional cost is required in solving 
the problem with incomplete signals. However, it is still reason- 
able. 

5 Conclusion 
The method to identify the impact location and the force 

history from strain responses on a rectangular plate has been 
further verified by impact experiments. This method was also 
successfully extended to identify the mass and the initial veloc- 
ity of an impactor by which the transverse impact was induced. 
Furthermore, in a situation when the recorded response signals 
are incomplete, a procedure has been proposed to temporarily 
reconstruct the lost signals such that the methods used for com- 
plete response signals are still applicable. This method has also 
been verified experimentally. The identified impact location, 
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force history, as well as the initial velocity and mass of the 
impactor all agreed very well with the measured results. 

It is noted that if the strain histories are replaced by different 
dynamic responses of the plate, e.g., lateral displacements or 
velocities, all the proposed methods can still be applicable with- 
out further modification. Thus the proposed method is consid- 
ered to be general. 
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Free Vibration of a Class of 
Homogeneous Isotropic Solids 
A Ritz approach, with simple polynomials as trial functions, is used to obtain the 
natural frequencies of vibration of a class of  solids. Each solid is modeled by means 
of a segment which is described in terms of  Cartesian coordinates and is bounded 
by the yz, zx, and xy orthogonal coordinate planes as well as by a fourth curved 
surface, which is defined by a polynomial expression in the coordinates x, y, and z. 
By exploiting symmetry, a number of  three-dimensional solids previously considered 
in the open literature are treated, including a sphere, a cylinder and a parallelepiped. 
The versatility of the approach is then demonstrated by considering several solids of 
greater geometric complexity, including an ellipsoid, an elliptical cylinder, and 
a cone. 

1 Introduction 
A survey of the literature on the free vibration of solids 

reveals that the preponderance of the work has been concerned 
with spheres, cylinders, and parallelepipeds. Among the works 
on the free vibration of spheres are those by Lamb (1882), 
Chree (1889), Sato and Usami (1962a,b), and Lapwood and 
Usami (1981). Examples of the works on solid cylinders in- 
clude those by Hutchinson (1967), Armenakas, Gazis, and 
Hen'mann (1969), Gladwell and Vijay (1975), and McMahon 
(1970). Rectangular parallelepipeds have been studied by 
Fromme and Leissa (1970), Leissa and Zhang (1983), Hutch- 
inson and Zilmer (1983), Leissa and Jacob (1986), and McGee 
(1992), among others. 

Solids of other geometries have received less attention in the 
literature. Examples of such solids are the truncated quadrangu2 
lar pyramid treated by Irie, Yamada, and Tagawa (1987), and 
the truncated triangular prism and cone considered by Narita 
(1990). 

In the present work, a Ritz approach with simple algebraic 
polynomials as trial functions is used to study the vibration of 
a class of solids. Each solid may be modeled by means of a 
segment which sits in one octant and is bounded by the three 
orthogonal coordinate planes x = 0, y = 0, and z = 0, and by 
a fourth curved surface describable by a polynomial function 
in x, y, and z. By treating any or all of the three coordinate 
planes as planes of symmetry, a wide variety of geometries may 
be treated. 

2 Analytical Approach 
Consider an isotropic solid or segment of solid bounded by 

the orthogonal planes x = 0, y = 0, and z = 0 and by a fourth 
curved surface described by the equation 

f ( x , y , z ) =  + + - 1 = 0 ,  (1) 

where p, q, and r are arbitrary real positive numbers. 
For the free vibration problem, simple harmonic motion at 

radian frequency 0o is assumed. The displacements u, v, and w 
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in the x, y, and z directions, respectively, have amplitudes U, 
V, and W, which can be expressed as 

U(x, y, z) = ~ Aq,~xi+lyyj+l~zk+l~, 
V ( x, y, z) = Z Z Z  BqkX'+tyYJ+Z~zk+tY, 

W ( x ,  y, z) = E Z Z  Cokxi+'~YJ+t~/Zk+t~, (2) 

where Aok, Bok, and Co~ are as yet undetermined linear coeffi- 
cients. The index l~ depends upon the restraints placed on the 
U displacement on the surface x = 0 and takes and value 0 for 
no restraint (U ~ 0) and 1 for full restraint (U = 0). Similarly, 
indices l~ and l~ w depend upon the restraints imposed upon V 
and W in the x = 0 plane, and indices lr v , ly v, and l~, and l~ v, 
lz v, and l~ w depend on the restraints in the y = 0 and z = 0 
planes, respectively. The displacement series given can also be 
used to model problems exhibiting symmetry of geometry and 
boundary conditions about one or more of the planes given by 
x = 0, y = 0, and z = 0. This is done by choosing values of 
indices l to apply appropriate boundary conditions on the 
plane(s) of symmetry to model symmetric (S) modes (zero 
displacement normal to plane, nonzero displacements in-plane) 
and antisymmetric (A) modes (nonzero displacement normal 
to plane, zero displacements in-plane) about particular planes. 

The maximum strain energy of the solid Vmax can be expressed 
in terms of the normal strains ex, ey, and ez in the x, y, and z 
directions, respectively, and the shear strains y~y, 7yz, and Yz~ 
(Leissa and Zhang, 1983), which are in turn expressible in 
terms of derivatives of U, V and W. The maximum strain energy 
Tm,~ is directly expressible in terms of U, V, and W. 

Finally, the trial function series (2) are substituted into the 
energy expressions and the Lagrangian functional Lm,x = (Tm,~ 
- Vm~x) is minimized with respect to the undetermined coeffi- 
cients Aok, Bok, and C~jk to yield a set of equations in a standard 
eigenvalue form. 

3 Numerical Results 
In all cases treated, the frequency parameter reported is f~ 

= wm/(p/G) and the same number of terms has been used in 
each of the displacement series for U, V, and W, as well as in 
all three coordinate directions x, y, and z, and is referred to as 
N × N × N in the text and the tables. Also, in all but one case, 
the sphere, the Poisson ratio, has been taken as 0.3 and, unless 
otherwise stated, all surfaces of each solid are taken as free. In 
any of the computations where the exponent ~ appears, it was 
approximated by using the very high value of 1012. 

The first problem treated is that of the free vibration of a 
sphere, for which an exact solution in terms of Bessel functions 
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Table 1 
son's ratio v = 0.25. 

Number 
of 

Terms 

Frequency parameters f~ for a solid sphere of radius a. Pois- 

Mode type 

SSA 1 SSS 1,2 SSA 2 SSS 3 SSA 3,4 
NxNxN AAA 1,2 SAA 1 SAA 2,3 AAA 3 

IT2 IS2 2 S I 1T3 IS3 

4x4x4 2.501 2,640 3.4251 3.865 3.916 

5x5x5 2.501 2.640 3.4247 3.865 3.916 

6x6x6 2.501 2,640 3.4245 3,865 3.916 

7x7x7 2.501 2.640 3.4245* 3.865 3.916 

SSS 4 SSS 5,6 SSS 7-9 SSA 5,6 SAA 7 
SAA 4 SAA 5,6 AAA 4-6 

lSo 2S2 1S4 iT4 2TI 

4x4x4 4.440 4.867 5.017 5.096 5.778 

5x5x5 4.440 4.866 5.011 5,095 5.766 

6x6x6 4.440 4.865 5.009 5.095 5.764 

7x7x7 4.440 4,865 5.009 5.095 5.763 

SSA 7-9 SAA 8-10 SSA 10,11 SSA 12 SSS 12-15 
AAA 7,8 SSS 10,11 AAA 9 SAA 11-13 

tS5 tTs 283 3Sl iS6 

4x4x4 6.048 6.275 6.463 6.94.4 7.141 

5x5x5 6,034 6.267 6.455 6.7'79 7.030 

6x6x6 6,033 6.266 6.454 6.774 7.024 

7x7x7 6.033 6.266 6.454 ~ 6.771 j 7.023 

* Value given by Sato and Usarni (1962a) is 3.424 

of the first kind is possible, and for which exact natural frequen- 
cies and mode shapes have been computed by Sato and Usami 
(1962a, 1962b) by using a value of 0.25 for the Poisson ratio. 
In this case, only ~th of the sphere is modeled and the curved 
surface is described b y f ( x ,  y, z) = ( x / a )  2 + ( y / a )  2 + ( z /a )  2 
- 1 = 0. Of the eight possible sets of symmetry conditions, 
only four are distinct cases, namely SSS, AAA, one of SAA, 
ASA, AAS, and one of SSA, SAS, ASS, where the first, second, 
and third letters refer to the symmetry conditions applied on 
the x = 0, y = 0, and z = 0 planes, respectively. In Table 1, 
the first 15 nonzero natural frequency parameters f2 are given, 
for a Poisson ratio of 0.25, as computed by using the present 
approach with increasing number of terms in the displacement 
series, from which it may be seen that the rate of convergence 
of the solution is very rapid. The results obtained by using 7 
X 7 × 7 terms in the series agree to the number of figures given 
with the values obtained by Sato and Usami (1962a) from the 
exact solution, with the exception of the third mode, which, 
when rounded to four decimal figures, differs in the last decimal 
place as can be seen in the table. In Table 1 the frequency 
parameters are identified not only by their symmetry class, but 
also as ~T. or ~S, referring to the ith mode of the nth harmonic 

Table 2 Frequency parameters ~ for a solid cylinder of circular cross 
section 

Mode AAA 1 AAA 2 SAS 1 SAA 1 SSS 1 SSS 2 
Type SSAI n = 1 n = 1 n = 0  AAS 1 

n = 2  n = 2  

1.570796 1.978 1,994 2.151 2.326 2,338 

fl 1.570796' (1.993) (1.996) (2.151) (2.326) (2.360) 

Mode SSS 3 SAS 2 SSA 2 SSS 4 AAS 3 SSA 3 
Type AAS 2 AAA 3 

n = 2  n = l  n = O  n = O  n = 2  

2.488 I 2.802 2.872 3.067 3.141593 3.192 
0 ' 

(2.503) (2.814) (2.872) (3.068) 3.141593 (3.218) 

( ) Results by Gladwell and Vijay (1975) 

• Exact results from torsion theory x12, ~r 

Table 3 Frequency parameters f~ for a cone 

B.C. on 
Base 

,l 

FRED, 

CLAMPED 

Mode type 

SS I/AA 1 SS 2 SA 1 SA 2 SS 3/AA 2 

1.768 2.639 2,728 2.975 3.103 

SS 4/AA 3 SA 3 AA 4 SS 5 SA 4 

3.607 3.650 3,858 4.023 4.236 

SA 1 AA I SS 1 SA 2 i SS 2/AA 2 

2.106 2.883 3.486 3,946 4.378 

SA 3 SS 3/AA 3 AA 4 SA 4 SA 5 

4.932 5.419 5.444 5.695 5.829 

of toroidal (T) or spheroidal (S) vibration as was done in Sato 
and Usami (1962a, 1962b). 

The second problem considered is the vibration of a solid 
cylinder of length 2a and of radius a. Again only ~th of the 
cylinder is modeled, with the portion of the cylinder lying in 
the first octant being described b y f ( x ,  y, z) = ( x / a )  2 + ( y /a )  2 
+ ( z / a )  ~ - 1 = 0. A total of six sets of symmetry conditions are 
considered, namely SSS, AAA, SSA, AAS, one of SAS or 
ASS, and one of SAA or ASA. The first 12 nonzero frequency 
parameters f2 are given in Table 2 together with results obtained 
by GladweU and Vijay (1975) by using a finite element ap- 
proach. The symmetry class and the circumferential wave num- 
ber n corresponding to each frequency is also given in Table 
2. The present results reported were obtained by using both 6 
X 6 × 6 and 8 x 8 x 8 terms in each of the displacement 
series U, V, and W and were identical to the number of figures 
given; it is reasonable to assume that the solution had converged 
and that the values are exact to the number of figures given. 
The first and the 1 lth nonzero frequency parameters obtained 
by using the present method were not reported by Gladwell and 
Vijay and correspond to the first and second pure torsional 
modes for which the exact solution may be obtained from ele- 
mentary torsional vibration theory. 

The third problem treated is that of a cone of circular cross 
section and of height-to-base radius ratio c/a  equal to 1 and 
either free or clamped at the base which lies on the z = 0 plane. 
This is modeled by using one quarter of the cone with the 
curved face being described b y f ( x ,  y, z) = ( x / a )  2 + ( y / a )  2 
+ ( z / a )  - 1 = 0. Of the four possible symmetry cases, only 
three are distinct, namely SS, AA and one of SA or AS. The 
lowest ten nonzero frequency parameters f~ are given in Table 
3 as computed by using 7 x 7 X 7 terms in the displacement 
series for a cone with a clamped base (U = V = W = 0) and 
for a cone with a free base. A convergence study performed 
suggested that the frequency parameters have converged to the 
number of figures given. 

The fourth problem treated is that of an ellipsoid with semi- 
axes ratios a/b  = 1/2 and a/c  = 1/3 and is modeled by using 
only ~th of the solid with the curved surface being described by 
f (  x,  y,  z) = ( x / a )  2 + (y /2a)  2 + ( z /3a )  2 - 1 = 0. The lowest 
18 nonzero frequency parameters f~ are given in Table 4 as 
computed by using 7 x 7 x 7 terms in the series. Again, a 

Table 4 Frequency parameters f~ for an ellipsoid 

Mode Type ASS 1 AAA I SAS 1 ASA 1 SSS 1 AAS 1 

0 0.56456 0,6626 0.8551 1.038 1.060 1.110 

Mode Type SAA l ASS 2 ASS 3 SSA 1 SAA 2 AAA 2 

fl 1.152 1.222 1.503 1.514 1,515 1.547 

Mode Type ASA 2 SSS 2 SAS2 SSA 2 AAS 2 SSS 3 

0 1.571 1.593 1.671 1,709 1.807 1.911 
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Table 5 Frequency parameters n for a solid cylinder of elliptical cross Table 6 Frequency parameters fZ for the class of solids shown in 
section Fig. 1 

Mode Type AAA 1 SAS 1 ASS 1 ASA 1 SAS 2 AAS 1 

fl 1.202 1.513 2.030 2.184 2.199 2.265 

Mode Type SSS 1 SSA 1 SAA 1 SSS 2 SAA 2 SSS 3 

O 2.365 2.372 2.473 2.708 2.912 3.070 

Mode Type AAA 2 AAS 2 ASS 2 SAS 3 SSA 2 AAA 3 

O 3.144 3.363 3.412 3.427 3.443 3.733 

convergence study, not given here, suggested that the natural 
frequency parameters had converged to four significant figures. 

The fifth problem treated is that of the free vibration of a 
solid cylinder of elliptical cross section of major to minor semi- 
axis ratio a / b  = 2 and of major semi-axis to length ratio a / 2 c  
= 0.5. Again, this case is modeled by using ~th of the cylinder 
with the curved surface being given b y f ( x ,  y, z) = ( x / a )  2 + 
( 2 y / a )  2 + ( z / a )  ~ - 1 = 0. The lowest 18 frequency parameters 
f2, as computed by using 7 X 7 × 7 terms in the series, are 
given in Table 5. Again, accuracy to the number of figures 
given was determined through a convergence study. 

The sixth and last problem treated is that of the free vibration 
of a class of solids, an example of which is illustrated in Fig. 
1. Each solid is fully clamped on the surface defined by z = 0 
and is symmetrical about the planes x = 0 and y = 0, hence 
only ~ of the solid need be considered. The free surface is 
defined by the equat ionf (x ,  y, z) = ( x / a )  ~ + ( y / a )  p + ( z /  
a )  p - 1 = 0, for p = ~, 1, ~, 2, 3, and oo. The lowest three 
frequency parameters f2 for each of the four classes of symmetry 
are given in Table 6, as computed by using 7 x 7 × 7 terms 
in the series. A convergence study, not presented here, sug- 
gested that the values given are accurate to within three signifi- 
cant figures. 

4 Concluding Remarks 
The Ritz method with simple algebraic polynomials as trial 

functions has been applied to the problem of the free vibration 
of a number of solids of different geometries and very accurate 
natural frequencies have been obtained. It should be noted that 
the polynomial trial function series described by Eqs. (2) form 
a mathematically complete set of functions and hence conver- 
gence of the Ritz method to the exact frequencies is guaranteed 
as the number of terms in each series tends to infinity. Further- 
more, by virtue of the Ritz procedure, the numerical natural 
frequencies computed are always upper bounds. It should be 

zj 

o / : /~, ,  
/ \ \X 

x / , z  o ~'/~.-ftx,y,z)-o 
( p- 2/3) 

Fig. 1 Prismatic solid 

Mode type 

ss 
Exponent p 1 2 3 

2/3 3.160 4.293 4.607 

1 2.856 3,588 3,965 

3/2 2,685 3.195 3.614 
2 2.605 3,007 3.445 

3 2.529 2.820 3.250 

1012 2.367 2.513 2.891 

SA 

Exponent p 1 2 3 

2/3 2.367 4.238 4.795 

1 1.928 3.559 4.282 
312 I. 686 3.178 3.899 

2 1.577 2.999 3.566 

3 1.473 2.816 3.216 
1012 1.334 2,465 2,842 

AA 

1 2 3 

2,461 3,365 3,888 

2.371 3.576 4.267 

2.104 3.154 3.964 

1.928 2.868 3,731 

L740 2.576 3.460 

1.475 2.181 3.072 

AS 

1 2 3 

2.355 2.828 3.811 

2.169 2.937 3.918 
1.880 2.786 3.660 

1.706 2.694 3.475 
1.537 2,603 3,240 

1,334 2.465 2.842 

cautioned that, as with most series solutions in which polynomi- 
als are used, if too many terms are retained in the deflection 
series, the resulting matrices can become ill-conditioned, the 
eigenvalue solving routines then failing to yield meaningful 
results. 
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Toeplitz Jacobian Matrix for 
Nonlinear Periodic Vibration 
The main di~rence between a linear system and a nonlinear system is in the non- 
uniqueness of  solutions manifested by the singular Jacobian matrix. It is important 
to be able to express the Jacobian accurately, completely, and efficiently in an 
algorithm to analyze a nonlinear system. For periodic response, the incremental 
hatwaonic balance ( IHB ) method is widely used. The existing IHB methods, however, 
requiring double summations to form the Jacobian matrix, are often extremely time- 
consuming when higher order harmonic terms are retained to fulfill the completeness 
requirement. A new algorithm to compute the Jacobian is to be introduced with the 
application of fast Fourier transforms ( FFT) and Toeplitz formulation. The resulting 
Jacobian matrix is constructed explicitly by three vectors in terms of  the current 
Fourier coefficients of  response, depending respectively on the synchronizing mass, 
damping, and stiffness functions. The part of  the Jacobian matrix depending on the 
nonlinear stiffness is actually a Toeplitz matrix. A Toeplitz matrix is a matrix whose 
k, r position depends only on their difference k-r. The other parts of  the Jacobian 
matrix depending on the nonlinear mass and damping are Toeplitz matrices modified 
by diagonal matrices. I f  the synchronizing mass is normalized in the beginning, we 
need only two real vectors to construct the Toeplitz Jacobian matrix (TJM), which 
can be treated in one complex fast Fourier transforms. The present method o f  TJM 
is found to be superior in both computation time and storage than all existing 1HB 
methods due to the simplified explicit analytical form and the use of  FFT, 

1 Introduction 

The application of the incremental harmonic balance method 
(IHB) to the analysis of nonlinear oscillations has become well 
recognized. Various exact steady-state solutions have been es- 
tablished for a number of strongly nonlinear discrete and contin- 
uous systems (Lau et al., 1981, 1982; Pierre et al., 1985). The 
IHB have been illustrated to be more effective than perturbation 
methods in analyzing the systems with large nonlinearities and 
more efficient than direct numerical integration methods in per- 
forming parametric studies (Leung and Fung, 1988). Recently, 
fast Fourier transformations (FFT) algorithm has been used to 
facilitate algebraic manipulations that lead to a more general 
IHB procedure. This procedure will permit more complicated 
forms of nonlinear functions, such as dry friction damping 
(Pierre et al., 1985 ) and piece-wise linear restoring spring (Kim 
and Noah, 1991). The method of IHB has been treated as a 
general numerical method for seeking periodic solution of non- 
linear differential equations. However, there are some draw- 
backs found in the existing IHB methods. For example, as 
pointed out by Cameron and Griffin (1989) etc., to include 
higher order harmonic terms for accurate solution the numerical 
iteration of IHB is tedious and may not be more efficient than 
that of direct numerical integrations, i.e., the Runge-Kutta 
method. An alternative computation strategy to execute the har- 
monic balance was first reported by Ling and Wu (1987) in 
the fast Galerkin method (FG) and later by Cameron and Griffin 
(1989) in the alternating frequency/time method (AFT).  By 
means of fast Fourier transform (FFT) and inverse fast Fourier 
transform (IFFT) algorithms, the methods include the inter- 
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active manipulations between the time and frequency domain 
as to employ the computation conveniences on each domain. 
This strategy circumvents the tedious processing of the Jacobian 
matrix in IHB and is proved useful to accelerate the computation 
of simple nonlinear problems by Ling and Wu (1988) and 
Cameron and Griffin (1989). Since the Jacobian is estimated 
by finite differences, only the secant iterative methods can be 
adapted. Consequently, the convergent rate in the iteration is 
decreased and the energy conservation properties of IHB 
method are lost so that the location of the bifurcation or singular 
points and that the post bifurcation solutions cannot be accu- 
rately determined (Iooss and Joseph, 1980). 

To improve the IHB approach on both aspects, the present 
paper introduces a new computational algorithm that leads to a 
Toeplitz formulation of the Jacobian matrix. The method sub- 
stantially reduces the amount of computational work while con- 
serves the energy in the iterations. Based on the Galerkin aver- 
aging theory and discrete Fourier transformation (Brigham, 
1974), we provide an explicit formula for the Jacobian matrix. 
A path-following method is also incorporated in the algorithm 
to ensure the effectiveness and robustness in handling complex 
nonlinear phenomenon. The procedure provided in this paper 
is extended to a subharmonic response of a multiple DOF sys- 
tem with general forms of nonlinearities. 

2 Formulation 
Consider a nonlinear oscillators governed by the equation 

u" + N(u ,  u' ,  w, k, t) = 0, (1) 

where w, t are the linear fundamental frequency and the time 
scale, respectively, prime represents d/dt, and N( .  ) is a nonlin- 
ear time-dependent function of displacement u, velocity u ' ,  
fundamental frequency w, and system parameter k. A nondi- 
mensional time change 7- = wt is preferable in seeking the 
periodic solutions. This leads to a nondimensional time-depen- 
dent equation, 

f ( T )  = W2a " + N(u ,  a, w, k, 7-) = 0, (2) 

where the upper dot indicates a derivative with respect to ~-. 
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Fig. 1 
state) 

~c = ~2 + AYe ( No ii~Ucli~To I <---- 6Uc( 

. .  I 

F low  c h a r t  f o r  N e w t o n i a n  i t e ra t i on  (*  r e p r e s e n t s  t h e  u n b a l a n c e d  

T a b l e  1 C o m p a r i s o n  o f  t h e  n u m b e r s  o f  mu l t i p l i ca t i on  

Method Number of Hultlpllcatlons 

Direct I~ 11M(2N+I) 2 

Present ll(2N+l)Z+ 2Hiogz M 

The corresponding first-order incremental forms of Eq. (2) is 
then obtained by the substitutions w = Wo + &~, k = ho + 
Ak, u = Uo+ Au, 

ON ON & a + T u  Au=77(7") (3) 
~o~ZXa + ~o ~ 0 o 

where, zXu, £xd, 4 i i  are small increments of displacement, ve- 
locity, acceleration with respect to T, respectively; the subscript 
zero refers to an approximated known state and 77(7") is a resid- 
ual function. In general, while incrementing from a known solu- 
tion to the next, a predictor-and-corrector procedure can be used 
and the residual function is evaluated by 

0.3 

REDUCTION OF COMPUTATION 
(For per iteration) 

0.25- 

E 0.2 

~ 0.15 

N 
~ 0.1 

~ 0.05. 

o .......................................................... 
4 8 1'6 3'2 6'4 128 -2~" 

Number of Harmonic Terms(N) 

P e r c e n t a g e  o f  c o m p u t i n g  t i m e s  ( T J M / I H B  × 100 p e r c e n t )  Fig. 2 

T a b l e  2 N u m e r i c a n  c o m p a r i s o n  o f  T J M  v e r s u s  IHB 

{ for  step |ength O.i and resfduat toterence t .e-5)  

Number of Iterations I and CPU - tlmes T 
No,of Frequency Ist Order 
Step Ratio ~ Amplitude IRB method {a) Present Method (b) 

( l / red)  Is Ta lb Tb Tb/T= 
0 1.OOOO00 3.935953 12 5.65 5 0,49 8.67X 
1 1.173276 4.343391 12 6.21 4 0,55 8.86~ 
2 1.302025 4.676480 16 8.18 5 0.66 8.06~ 
3 1.419599 5,000948 18 9,18 5 0.61 6.64~ 
4 1.528153 5,315249 22 11.15 5 0.61 5,47~ 
5 1.628985 5,617792 29 14.67 5 0.65 4,43~ 
6 1.722977 5.907414 36 18,07 5 0.66 3,65~ 
7 1,810760 6.183333 42 21.09 5 0.66 3,13~ 
8 1.892812 6.445093 46 23.01 5 0.61 2.65~ 
9 1.969521 6.692505 49 24.49 5 O.61 2,49~ 

Total Running Tlme 2:46,48 0:06.21 3.67~ 

T a b l e  3 S tab i l i t y  p o i n t s  a long  a so l u t i on  pa th  (F ig.  2) 

f Stability Property ~ k 

0.000000 lxlT stable 
0.461353 1×IT unstable Fold 
0,228323 lx tT  stable 
2.395560 2xlT stable Symmetric Breaking 
3.291727 2x lTuntab le  Fold l 
3.257349 2xlT stable ~ 2.9915 3.41 
5.387085 4x2T stable Period 2 Bifurcation 
6,264048 8x4T stable Period 4 Bifurcation 0,8769 
6.443806 16x8T stable Period 8 Bifurcation 0.1998 4.39 
6.483227 32×16T stable Perlod 16 Bifurcation 0.0394 4.56 

- -  distance between period double bifurcation points 

A - -  ra t io  of distance 

77(7.) = 

- [2Woa'o + ON l A w  
O~ oJ 

- [~kN o] 2Xh predictor (4a) 

-[~oZao + N(uo, Uo, ~o, ho, 7")] 

= -fo(7-) corrector. (4b) 

Here, A~v and £xk are the active increments of fundamental 
frequency and system control parameter, respectively. In the 
predictor phase, Eq. (3) can also be expressed as a time-varying 
coefficient equation 

OOo~Aa + WoC(7.)Aa + s(z)Au = 77(7.) (5) 

where c(T),  s(7-) are the synchronizing damping and stiffness 

12- 
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PHASE DIAGRAM 
( f = 6 . 0 , w = l . 0  l o w e r )  
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1 
D i s p l o c e m e n t  

Fig. 5(a) Phase diagram at f = 6.0 (lower branch) 

functions, respectively, and the synchronizing mass has been 
normalized, 

C(T) = 0FUN. o and s(~-) = 0~uu N o' (6) 

An approximated steady-state periodic solution of Eq. (2) is 
expressed by the truncated Fourier series with complex coeffi- 
cients Ur, 

N 

u(T) = ]~ Urexp(im-) (7) 
r= -N  

whose increment is assumed to be 
N 

AU = ~ A U , . e x p ( i r ~ - )  w h e r e  i = ~ ( 8 )  
r=-N 

Here, the integer N must be large enough to accommodate the 
higher order harmonic solutions. Substitution of Eq. (8) into 
Eq. (5) leads to 

N 

Y, [s(~-) - r2w~ + irwoc('r)]AUr exp(irT) = y(7) .  (9) 
r ~ - N  

After applying the inverse discrete Fourier transformation to the 
time-varying Eq. (9),  we have the following period-averaged 
equation: 

s - r=w~ + irwoc 
q~O r=-N 

r -i27rq(k - expL r)j ] x AU~ 

M-~ [27rq'~ [-i27rqk'~ 

q=O 

2 - 

1 - 

0 

- 2  - 

- 3  - 

-4 J 

TIME HISTORY 
( f = 6 . 0 , w = l . 0  lower ) 
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P e r i o d  i 

Fig. 5(b) Time history at f = 6.0 (lower branch) 
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PHASE DIAGRAM 
( f = 6 . 0 , w = l . 0  u p p e r )  

I , I I I I 
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D i s p l a c e m e n t  

Phase diagram at f = 6.0 (upper branch) 

k =  - N  . . . .  , 0  . . . . .  N 

q = 0 , 1  . . . . .  M - 1  

where M is the total number of discrete points per period and 
should be taken as M ~ 2N + 1 to avoid the aliasing distortion 
occurring in the discretization. 

Exchanging the order of the inner and outer summations in 
Eq. (10), we put the incremental Eq. (3) in the frequency 
domain, 

[J]{AUc} = {R} (11) 

where { AUe } = [ AU_N . . . .  AUG . . . .  A UN] r is the unknown 
frequency incremental vector, { R } is the residual vector, and 
[J]  is the Jacobian matrix used in the Newton-Raphson itera- 
tion, whose components are given by 

Jkr = S ( k -  r) - rZ~v~6(k- r) + irovoC(k- r) (12) 

in which 6 ( . ) ,  S ( ' ) ,  and C ( ' )  are given by Eqs. (13)- (15) ,  
respectively, and r, k denote the row and column numbers 

corresponding to the location of the element in the Jacobian 
matrix. In Eq. (12), the resulting Jacobian matrix is constructed 
explicitly by three convolution vectors 6(" ), C(" ), and S(" ) in 
terms of the current Fourier coefficients of response, depending, 
respectively, on the synchronizing mass, damping, and stiffness 
functions. Therefore, the part of the Jacobian matrix depending 
on the nonlinear stiffness is actually a Toeplitz matrix. The 
other parts of the Jacobian matrix depending on the nonlinear 
mass and damping are Toeplitz matrices modified by diagonal 
matrices. If the synchronizing mass is normalized in the begin- 
ning, we need only two real convolution vectors to construct 
the Toeplitz Jacobian matrix (TJM), which can be treated 
within one complex fast Fourier transformation. The evaluating 
process can be further accelerated by mean of the efficient use 
of the FFT techniques. Apparently, 6 ( ' )  can be feasibly treated 
as the Dirac's delta function 

6 ( k _  r) = { 1  k = r 
0 otherwise 

(13) 

TIME HISTORY 
( f = 6 . 0 , w = l . 0  u p p e r )  
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Fig. 5(d) Time history at f = 6.0 (upper branch) 
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Fig. 6(a) Phase diagram at f = 6.46 (lower branch) 

and S(.  ), C(.  ) as modal damping and stiffness functions, re- 
spectively, which can be transformed directly from their syn- 
chronizing time-dependent functions s ( . )  and c ( . )  in Eq. (6) 
through a standard FFT algorithm, 

q =  ° 

(14) 

C(p) = ~ c exp . (15) 
q=0 

Here p refers to the index of the convolution sequences used 
by the Toeplitz matrices, p = k - r. Moreover, since s ( .  ) and 
c ( . )  are evaluated discretely at a set of finite M time-dependent 
points, the related functions S(.  ) and C( .  ) may also be deter- 
mined within the M discrete points on frequency domain. There- 
fore, in case the index r - k in Eq. (12) exceeds the range, p 

~[0,  M - 1], their values can also be evaluated by shifting 
the period, 

p = mod ( M + k - r ) 
M ' (16) 

Thus, once S(p) and C(p) are obtained by inverse fast Fourier 
transforms in Eqs. (14), (15), the whole Jacobian matrix is 
readily available according to a simple algebra relations de- 
scribed in Eq. (12). The resultant linear algebraic Eq. ( 11 ) can 
be solved by any standard solver. Its solution is then trans- 
formed back into time domain again by Eq. (8) to evaluate the 
nonlinear function N(" ) and to update the residual function 
T(~') for the next iteration. The iteration goes until the residuals 
become sufficient small. A flow chart for the Newtonian itera- 
tion is given in Fig. 1. 

It is also advantageous to write Eq. ( 11 ) in real form, because 
only (2N + 1) real variables, instead of (2N + 1) complex 
ones are needed. The reduction is possible because U~ and U k 
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Fig. 6(c) Phase diagram at f = 6.46 (upper branch) 

are complex conjugates. Assuming the originalf(~-) presented 
in Eq. (2) be expanded simultaneously by a real and a complex 
discrete Fourier series, we have 

(27rq)~ +N \ ,v, i2"rrqr' 
f = 2 rrexp~----.~--] 

r =  N 

= -~- -F Z Gr COS + Hr sin 
r = l  

q = 0  . . . . .  M -  1. (17) 

Substituting the identity relation 

exp(itg) = cos 0 + i sin 0 (18) 

we have 

Gr = Fr + F-r (19a) 

Hr = i(Fr - F-r) (19b) 

G .  Hr E R 2n+1 and Fr E C z"+l 

r = 0 , 1  . . . .  ,N.  

Meanwhile, if the solution u(T) is similarly presented, 

u = ~., C r e x p | - - E - -  j 
r = - - N  

2 r = l  

therefore, 

q = 0 . . . . .  M - 1 (20) 

1 
C, = ~(Ar - iBr) 

1 C_r = ~(A, + iBr) 

(21a) 

(21b) 

TIME H ISTORY 
( f = 6 . 4 6 ,  w = l . 0  lower)  
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Ar, Br @ ~ and Cr E 

r = 0 , 1  . . . . .  N. 

Concurrently, the trigonometric coefficients of the residual 
function 7 ( r )  can be evaluated through the same substitutions 

[ 21rq ~ +N ( - i27rqr~  
" y ~ - ~ - )  = ~ R r e x p ~ k T  ) 

r=-N 

R~°+ ~ R c r C O S ( ~ )  R ~ r s i n ( ~ )  
2 r=l 

q = 0 . . . . .  M -  1 (22) 

Rcr = Rr + R-r  

= 2 Y ~ - ~ " )  exp ~ + e x p  
q=O 

: 2 2 Y ~ - ~ - )  c°s 
q=O (23a) 

R,r = i(Rr - R-r) = 2 " y ~ - ~ - )  sin . (23b) 
q=O 

If the solution vector in the real incremental equations is ar- 
ranged according to the order { AU } = [AA0, AAi . . . . .  AAN, 
AB~ . . . . .  ABN] ~, the real form incremental equation can be 
written as 

QK l' KI2~ = ~Rcr~  

K 2l K22){AU } /  [ R s r J "  
(24) 

From Eqs. (17), (18), (19), (20), (21), the real Jacobian 
matrix [K] can then be generated from Eq. (12) by the chain 
rule of differentiation 

K ~  - OGk OGk OFk OC___~ + OG__~ OFk OC_r 

OA r OF k OU r OA r OFk O f -  r OA-r 

OGk OF-k OCr OGk OF-k OC--r + - -  + - -  
OF-k OC~ OA r OF-k OC-~ OA_~ 

1 
= ~ [&,~ + J~,-r + J-~,~ + J-~,-A 

k = 0  . . . . .  N, r = 0  . . . . .  N. (25a) 

Similarly, we have 

K ~  OGk i [ - -Jk ,  + Jk,-~ -- J-k.r + J-k,-r] 
OBr 2 

k = 0 . . . . .  N, r = 1 . . . . .  N (25b) 

K~ = OHk i 
OAr = 2 [Jk# + Jk.-~ - J-k,r -- J-k.-r] 

k =  1 . . . . .  N , r  = 0 . . . . .  N (25c) 

K ~  OHk 1 
OBr 2 

[Jk.r - Jk,-r -- J-k.r + J-k.-r] 

k =  1 . . . . .  N , r =  1 . . . . .  N (25d) 

where Jk,r, Jk.-r, J-k,r, J-k,-r represent the corresponding ele- 
ments in the complex Jacobian matrix. In summary, 

105 05 05 05liar) - i / 2  i /2  - i / 2  i /2  
K ~  = i l2  i /2  - i / 2  - i / 2  ~ g k,r " 

\ KkZ~ 0.5 --0.5 --0.5 0.5 \ J-k,-~ 

(26) 

3 Cont inuous  M e t h o d  

An adaptive arc-length parameterization scheme is imple- 
mented to perform the path-following calculation as smoothly 
as possible. Suppose one advances the solution curve with a 
prescribed step value p, the auxiliary spherical surface of radius 
p will travel in ~ZU+Z space and if there are intersections with 
the solution curves contained in original Eq. (2) the moving 
spherical surface will generate a sequence of points along these 
curves. The equation of the auxiliary surface is usually ex- 
pressed as an arc-length constraint 

g(U,  ~) - p = 0 (27a) 

where p is the prescribed arc length of the solution curve and 
g(U,  ~) takes the role of path function that may be described 
by 

g ( U , ~ )  = [ O U / O p ] r { A u }  + ( O ~ / O p ) ( A ~ )  (27b) 

where A~ represents the control parameter which can be either 
Aw or A k  in Eq. (4),  { AU } is the unknown increment vector. 
The incremental Eq. (24) becomes 

[ K ] { A U }  = { ~ } A ~  + {ARf} (28) 

where { • } indicates the tangent vector along the solution curve. 
{ ARf} is the residual vector related to f ( r ) .  Therefore, to- 
gether with Eq. (27b), we obtain the extended set of equations 

K - O  r [ A R f ]  

Lp - goJ 

or 

[ K , ] { A X  } = {AP}  (30) 

where go refers to the approximated path function evaluated at 
the former iterating step; p - go defines the searching direction 
on solution curve along which the solution errors existing in 
the initial approximation tends to be eliminated to the certain 
tolerant level (Rik, 1984). The properties of the solution points 
can be determined by (i)  the determinant of Jacobian matrix 
including the subharmonic terms and (ii) the eigenvalues of the 
transition matrix in Floquet-Liapunov theory (Leung and Fung, 
1989; Leung and Ge, 1992). For example, if det [K] and det 
[Kt] pass through zero simultaneously while one of the eigen- 
values increase through positive one, the point is identified as 
a symmetry breaking or period 1T bifurcation point. If det [K] 
and det [Kt] pass through zero simultaneously while one of 
the eigenvalues decreases through negative one, the point is 
identified as a period double bifurcation point. And if det [K] 
pass through zero while the sign of det [K,] remain unchanged, 
a fold point is encountered with one of its eigenvalues growing 
through positive unit. 

4 Verif ication 

To justify the formulas given in Section 2, we further com- 
pared them with the published results. Substituting Eq. (12) 
into (25a) gives 

Kkt~ = ½[S(r - k) - rEwo26(r - k) + irwoC(r  - k) 

+ S ( - r  - k) - r2wo26(-r - k) - i r w o C ( - r  - k) 

+ S ( r  + k) - r2w2o6(r + k) + irwoC(r  + k) 
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+ S ( - r  + k)  - r2co26 ( - r  + k)  

- i r c o o C ( - r  + k)].  (31) 

Assuming p = r - k or p = r + k, we apply the identity relation 
(18) to simplify Eq. (31 ), 

S ( p )  + s ( - p )  = Y~ s 
q=O 

[exp( ) 
= 2 Y~ s cos (32a) 

q=0 

i C ( p )  - i C ( - p )  = i c 
q=0 

[exp( ) exp( )l 
= - 2  ~ c sin (32b) 

q=0 

6 ( p )  + cS(-p)  = Y, exp + exp 
q=0 

= 2 Y~ cos  
q=0 

r , k = 0  . . . . .  N. (32c) 

By the following trigonometric simplifications 

we obtain 

K~ = 2 Z s cos - c rcoo 
q=0 

× s i n ( ~  f )  - r 2 w o Z C O S ( - ~ f ) ] c o s ( ~ - ~ ) .  (34a) 

Similarly, 

K~ 2 = 2 s sin + c rco0 
q=0 

× c o s ( ~ ) - r Z c o o Z s i n ( - ~ ) ]  c o s ( - 2 - ~ )  (34b) 

K ~ = 2  ~., s cos  - c  rcoo 
q=0 

× s i n ( ~  f )  - r 2 c o o Z C O S ( ~ ) ] s i n ( - 2 - ~ )  (34c) 

K 2 ~ = 2  Y~ s sin + c rco0 
q=0 

× cos ( ~ )  - raw02 sin ( ~ )  ] sin ( ~ - ~ ) .  (34d) 

The factor 2 in Eqs. (34) and (23) can be canceled from 
both sides of Eq. (24). Therefore, the real Jacobian matrix 
generated in the present method are exactly the same as the 
result discretized from the Ferri 's formulae (Ferri, 1983). How- 
ever, the reduction of computational works at each Newtonian 
iteration is significant as tabulated in Table 1 and depicted in 
Fig. 2. The computer storage requirement is much reduced as 
we can construct the Jacobian in Eq. (12) using two Toeplitz 
sequences S ( k - r )  and C ( k - r )  only. The accuracy of the Newton- 
ian iterations is also greatly enhanced at the vicinity of singular 
points. It is possible because the round-off errors in digital 
computation decrease with the significant reduction of the nu- 
merical multiplications involved. 

5 Illustrative Examples 
Consider the Duffing equation under harmonic forcing func- 

tion of period T = 2ucorc, u" + 2#u '  + ku + au 3 = f c o s  cot, 
where #, k, a,  f a r e  the damping, linear stiffness, cubic stiffness 
coefficients, and forcing amplitude, respectively, u is the order 
of subharmonics considered. 

(i)  Cyelie fold. Consider the case when # = 0.1, k = 1, 
a = 0.1, u = 1 are fixed values, and f i s  taken as 2, 3, 4, 5, 
respectively. As we slowly vary the remaining control parameter 
oo from 1 to 3 incrementally, it is found that two limit cycles 
of different stability coexist for certain values of the control 
parameter. They approach one another as we vary the control 
parameter co, Fig. 3. The dotted lines represent the unstable 
solutions which are not observable physically. At fold points, 
the stable solutions collide and disappear out of the immediate 
neighborhood associating with the so-called jump phenomenon 
or hysteresis. The Jacobian in incremental Eq. (24) was evalu- 
ated by both approaches; the TIM formula, Eqs. ( 2 5 a - d ) ,  and 
the IHB formula, Eqs. ( 3 0 a - d ) .  We compare the numerical 
performance of the both the IHB and the present TJM methods 
for the construction of the resonance response diagram, Fig. 3, 
for f = 5. We tabulate the information in constructing the 
response diagram between 1 < w < 2, where the transition is 
smooth, in Table 2 for step arc-length p = 0.4 and residual 
tolerance 10 -6. Ia and T, are the number of iterations and the 
computing time required (by a 486 DX-50 IBM compatible 
computer) in each step for method (a) ,  IHB, and Ib and Tb for 
method (b) ,  TJM, respectively. It is shown that IHB requires 
more iterations to achieve the same accuracy and each iteration 
requires more computation than the TJM method. In the range 
2 < co < 2.5, the arc-length step p = 0.4 is too large for IHB, 
although it can be handled by TJM comfortably. In addition, 
the storage requirement is very favorable for TJM because the 
Jacobian is constructed by two Toeplitz matrice only. The fourth 
order Runge-Kutta method is also applied in the range 1 < w 
< 2 for comparison purpose. It needs 16'87" (averaged) CPU- 
time to reach one at rest initial conditions. 

(ii) Period-Double Cascade. A sequence of n period- 
doubling bifurcation is computed and a set of stable limit cycles 
with u = 2" is finally obtained when the other system parameters 
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Tab le  4 C o m p a r i s o n  o f  C P U  t i m e s  

R.K. Method v TEN PRESENT METHOD 
Resular P,T Slnsular P,T(f) 

1 21 00=00.44 0 0 : 1 8 . 1 3  03:23, 44 (2. 395561 ) 

2 41 00:10. I0 00=22.19 21:35.15(5.387086) 

4 81 00:16.75 00:25.98 06:53.76 (6. 264049} 

8 161 00= 50,41 00:48.90 03:03, 83 {6. 443807) 

are defined as/.z = 0.1, k = 0, a = 1, ~ = 1, and f i s  varying 
incrementally from zero to seven. The stability points along the 
solution path are tabulated in Table 3. With the application of 
analytical Jacobian when the additional bifurcated subharmonic 
components are taken into account, the location of singularity 
as well as the continuation along the second branch are com- 
puted by the inverse iteration without trial and error (Leung 
and Fung, 1989) (Fig. 4). The ratios of distance of the period 
double bifurcation points h~, as mentioned by many nonlinear 
dynamics textbook, are found to have a trend to approach the 
universal Feigenbaum number of 4.67. (Table 3 ). On the other 
hand, after the symmetry breaking, the two asymmetric period 
double cascades coexist in the upper and the lower branch. Fig. 
5 (a)  - (d) exhibit the coexisted upper and lower periodic orbits 
of period 2T, where the phase diagrams and time histories are 
drawn, respectively. Figure 6 ( a ) -  (d) show the period 8T bi- 
furcation existed. The harmonic terms used for numerical com- 
putation is up to 20~, + 1 and the ideal numbers of iteration 
are expected to be 4. Under such circumstances, in Table 4, 
comparisons are made between TJM and Runge-Kutta methods 
on the amount of computational work. It is found that at the 
vicinity of stability points, the convergent rate of Runge-Kutta 
method is very slow. 

6 Conclus ion  

We have described an efficient TJM algorithm for implement- 
ing the incremental harmonic balance to nonlinear oscillations. 
Significant improvements to the existing IHB on efficiency and 

convergency have been illustrated. On the other hand, it is worth 
mentioned that, the amount of analytical work involved in the 
proposed algorithm is just about the same as those in numerical 
integration; however, their efficiencies are different in many 
orders of magnitude especially at the vicinity of the stability 
points. 
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Vibration of Stress-Free 
Hollow Cylinders of Arbitrary 
Cross Section 
A three-dimensional elasticity solution to the vibrations of stress-free hollow cylinders 
of arbitrary cross section is presented. The natural frequencies and deformed mode 
shapes of these cylinders are obtained via a three-dimensional displacement-based 
energy formulation. The technique is applied specifically to the parametric investiga- 
t ion of  hollow cylinders of different cross sections and sizes. It is found that the 
cross-sectional property of  the cylinder has significant effects on the normal mode 
responses, particularly, on the transverse bending modes. By varying the length-to- 
width ratio of these elastic cylinders, interesting results demonstrating the dependence 
of frequencies on the length of the cylinder have been concluded. 

1 Introduction 

The free vibrations of isotropic elastic solid cylinders with 
traction-free surfaces have been investigated by several re- 
searchers over the last few decades. A large proportion of these 
works, however, is concerned with the axisymmetric modes of 
vibration. McNiven and Perry (1962) and Rumerman and 
Raynor ( 1971 ) have presented frequency solutions to free cylin- 
ders of infinite length. Hutchinson (1971), on the other hand, 
presented results for the axisymmetric vibrations of a free finite- 
length solid cylinder. Later, Hutchinson (1980) expanded his 
earlier formulation (Hutchinson, 1971) and solved the general 
three-dimensional vibrations of a solid cylinder which includes 
the nonaxisymmetric vibration modes. A recent study by Liew 
et al. (1995) on the vibration of three-dimensional elastic solids 
also includes the results for a short, solid square cylinder with 
stress-free surfaces. A remarkable benchmark experimental data 
for stress-free circular cylinders was reported by McMahon 
(1964). To date, many pioneering works in this topic, however, 
are limited to only solid cylinders. Results for cylinders with a 
deep cavity are virtually nonexistent. Very often in engineering 
practice, cylindrical elastic solids are created with deep cavities 
to reduce their weight, provide access, and to cut down on 
production costs. A proper three-dimensional free-vibration 
study on these hollow cylinders will, therefore, be useful to 
many branches of engineering. 

The present work proposes an energy-based solution ap- 
proach to the free-vibration analysis of arbitrarily shaped elastic 
hollow cylinders. The method is developed based on a global 
three-dimensional elasticity energy principle with polynomial- 
based displacement shape functions. The functions are ex- 
pressed in the forms of truncated series of one and two-dimen- 
sional orthogonal polynomials. The one-dimensional longitudi- 
nal function is employed to account for the boundary conditions 
at both ends. On the other hand, the two-dimensional surface 
function is uniquely constructed to satisfy the essential geomet- 
ric boundary conditions of the internal and external walls of the 
cylinder. 
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In this study, we focus on stress-free symmetric hollow cylin- 
ders with arbitrary cross section. By considering the symmetry 
inherent in the problem, the natural vibration of the elastic 
solids can be categorized into four distinct symmetry classes. 
Frequency parameters have been found for hollow cylinders 
with different cross section properties and sizes. The accuracy 
of the results is validated through direct comparisons with the 
existing three-dimensional elasticity solutions and experimental 
data. For the first time, vivid three-dimensional vibration mode 
shapes of these hollow cylinders are presented which serve to 
enhance our understanding on the physics of vibration of this 
kind. 

2 Three-Dimensional Elasticity Solutions 
Consider a hollow cylinder of finite length L as shown in 

Fig. 1. The cross section is assumed to be arbitrary. The outer 
and inner characteristic dimensions of the cross section are 
denoted by a0 and ai, respectively. The orientation of the cylin- 
der is defined on a Cartesian coordinate system (xl, x2, x3). At 
a general point, the spatial displacement may be resolved into 
Ul, u2 (lateral) and u3 (longitudinal) components, respectively. 

2.1 Truncated Double Polynomial Series. For an elastic 
solid undergoing linear, small-strain, simple harmonic vibratory 
motion, the displacement components have the general forms, 

ui(xl,x2, x3, t) = Ui(xl, x2, x3) sinwt; i =  1 , 2 , 3  (1) 

where w and t denote the angular frequency and time, respec- 
tively. The displacement amplitude function, U~ (xl, x2, x3), for 
each displacement component assumes the form of a truncated 
double polynomial series in one and two dimensions. It is ex- 
pressed as follows: 

M N 

U , ( x i , x 2 ,  x3)  E E ' ' : Cmn ¢~m(Xl, x 2 ) i ~ n ( X 3 ) ;  
m=l n=l 

i =  1 ,2 ,3 .  (2) 

The two-dimensional polynomials, ZC~m(Xl, X2) dictate the lat- 
eral surface variations of each displacement component. The 
one-dimensional polynomials lib,(x3), on the other hand, ap- 
proximate the displacement variations in the longitudinal direc- 
tion. These polynomials have been used in the authors' earlier 
work (Liew, et al., 1993). 

2.2 Treatment of Free Wall Conditions. Considering a 
cylinder with free-wall conditions, the corresponding boundary 
conditions at the inner and outer walls are 
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Fig. 1 Geometry and dimensions of an arbitrarily shaped hollow cylinder 

a,,, = r,,, = %3 = 0 (3)  

where n and t are the coordinate normal and tangent to the wall 
boundary, cr.. is the normal stress, ~-., and 7",3 are the shearing 
stresses. For a cylinder with symmetric cross section, the de- 
flection mode shapes can be divided into four symmetry classes. 
They are the doubly symmetry modes (SS),  symmetry-antisym- 
metry modes (SA),  symmetry-antisymmetry modes (AS) and 
doubly antisymmetry modes (AA)  about the xtx3 and x2x3 
planes, respectively. At each symmetry class, the basic functions 
chosen are given in Table 1. It should be noted that in the 
Ritz procedure, it is sufficient to satisfy the essential boundary 
conditions. In the minimization process, Eq. (3) is satisfied only 
approximately. 

In this study, both ends of the hollow cylinder are assumed 
to be free from stresses. The stress-free boundary conditions 
are defined as 

Cr33 : 7-3. = 7"t3 = 0 .  ( 4 )  

The following basic functions satisfy the geometric boundary 
conditions of a cylinder with stress-free ends: 

~qJ~(x3) = 1.0; i = 1, 2, 3. ( 5 )  

2 .3  E n e r g y  F u n c t i o n a l  in  a T h r e e - D i m e n s i o n a l  S p a c e .  
For a linear, small-strain vibratory motion, the strain energy of 
an elastic solid can be expressed as 

'fff  V = ~ crredv (6) 

where e = {%; i , j  = 1, 2, 3} and cr = {cru; i , j  = 1, 2, 3} 
are the strain and stress tensors, respectively. 

The constitutive relation between the stress and strain is given 
by 

a = De. (7) 

The elasticity matrix D for isotropic material is given by 

D = 

dH d12 dl3 0 0 0 
d12 d22 d23 0 0 0 
d13 d23 d33 0 0 0 
0 0 0 d44 0 0 
0 0 0 0 d55 0 
0 0 0 0 0 d66 

(8) 

and 

(1 - v ) E  
dkk = ; k = 1, 2, 3 (9a) 

(1 + v)(1 - 2v) 

v E  
dl2 = ; dlz = dx3 = d23 (9b) 

(1 + v)(1 - 2v) 

E 
du = - -  ; l = 4, 5, 6 (9c)  

l + u  

where E is the Young's modulus and v is the Poisson ratio. 
The kinetic energy for free vibration is defined as 

 fff T = p Z t i~dv  (10) 
i=l 

in which t/i; i = 1, 2, 3 are the periodic displacement compo- 
nents. The symbol p denotes the mass density per unit volume. 
The volumetric integrations in Eqs. (6) and (10) are performed 
over the volume of the cylinder which excludes the deep cavity. 

An instantaneous energy functional consisting of the strain 
and kinetic energies can be defined as 

FI = V -  T. (11) 

2 .4  T h e  E i g e n v a l u e  M a t r i x  o f  a H o l l o w  C y l i n d e r .  B y  
eliminating the periodic components and replacing the spatial 
displacements with the displacement amplitude functions de- 
fined in Eq. (2) into Eq. (11) gives the maximum energy func- 
tional of the hollow cylinder: 

r l  . . . .  = Vmax - -  Tmax. ( 1 2 )  

This is minimized with respect to the undetermined coeffi- 
cients by setting 

01Fl~,x 
= 0; i = 1, 2, 3. ( 1 3 )  

OCt. 

The resulting eigenvalue matrix has the following form: 

kH 
k~2 k2~|  

L Sym k 3 3 j  

[. o {i} _ k z m 22 C 2 = . 
Sym m 33 C3 

(14) 

The explicit form of the respective elements in the stiffness and 
mass matrices are given as follows: 

1 - - v  11 (11~ 1olo-i1~oo.~ 
k m j n k  - -  - -  kl,:.~mj l - ' n k ) l l  

(1 - 2v) 

1 o ,o ,  oo o o  , 
+ 2 (Emj F . k ) .  + ~ (Emj F.k)ll (15a) 

~ v ~OOl oo 1 o~oo oo 
k~j,k -- 1 --- 2/..' (E,,~ F,k)12 + ~ (Emj F./)la (15b) 

Table I Basic two-dimensional surface functions used in each symme- 
try class of vibration 

Symmetry Two-dimensional surface function 
cl~s '¢,(x,,x2) ~¢,(x,,x~) ,¢,(x,,~2) 
SS x I x 2 1 
SA XlX 2 1 x 2 
AS 1 xv~ x I 
AA x 2 x I x l x  2 
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Table 2 Convergence of frequency parameters, ~ = ~oa0 p ~ ,  for stress-free hollow cylinders 
with symmetric cross sections (inner-to-outer characteristic dimension, a~/ao = 0.5; length- 
to-width ratio, L/an = 5.0; ~, = 0.3) 

Order of Symmetry Classes and Mode Sequence Number 
polynomials SS-I SS-2 SS-3 SA-It SA-2"t SA-3t AA-I AA-2 AA-3 

(a.) Solid cylinder with an annular cross section 
p=6,q=5 0 . 6 2 6 7  1 .2349  1 .2390 0 .2218  0 .6243  1.1781 0 . 3 8 9 8  0 .7822  1.2349 
p=6,q=7 0 . 6 2 6 5  L2326 1 .2363 0 .2203  0 .5119  0 .8495  0 .3897  0 .7793  1.1692 
p=6,q=8 0 . 6 2 6 5  1 .2319  1 .2360 0 .2203  0 .5083  0 .8347  0 .3897  0 .7793  1.1692 
p=6,q=9 0 . 6 2 6 5  1 .2319  1 .2360 0 .2203  0 .5082  0 .8343  0 .3897  0 .7793  1.1692 

(b.) Square cylinder with a deep circular cavity 
p=&q=5 0.6261 1 .2389  1 ,2577 0 .2435  0 .6580  1 .1964 0 .3566  0 .7157  1.2093 
p=6,q=7 0 . 6 2 6 0  1 .2344 1 ,2560 0 .2419  0 .5453 0 .9015  0 .3565  0 .7128  1,0693 
p=6,q=8 0 . 6 2 6 0  1 .2344 1 ,2555 0 .2419  0 .5417  0 .8730  0 .3565  0 .7128  1,0689 
p=6,q=9 0 . 6 2 6 0  1 .2344 1.2555 0 .2419  0 .5416  0 .8729  0 .3565  0 .7128  1,0689 

(c.) Square cylinder with a deep square cavity 
p=6,q=5 0 , 6 2 6 0  1 .1327  1 .1517 0 .2466  0 . 5 5 6 4  1 .1717 0 ,3559  0 ,7142  1.0001 
p=6,q=7 0 . 6 2 5 8  1 .1319  1 .1483 0 .2450  0 .5464  0 .8818  0 .3557  0 .7112  0.9975 
p=6,q=8 0 . 6 2 5 8  1 .1315  1 .1483 0 .2450  0 .5427 0 .8676  0 .3557  0 .7112  0.9971 
p=6,q--9 0 . 6 2 5 8  1 .1315  1 .1483 0 .2450  0 ,5426  0 .8673  0 .3557  0 .7112  0.9971 

,For symmetrical cross sections, the symmetry-antisymmetry (SA) modes and the antisymmetry-symmetry (AS) modes 
have the same frequency values. 

,ooo Ol 
k,.,/,,,~ = - 2v)  (E"0 Fnk)13 

1 - -  lJ 22 kmj~k - - -  
(1 - 2v)  

1 ooto l 0  ] 

f + 2 (E..j F,,~)t3 

(15, 0101 ~00-~ 1 t" lt~. to]o lfi, Jo,t 
X~amj 1' nk )22 -~ -~ ~,SZ~ mj .t.. nk )22 

k.,j~k = - 2u) 

(15c)  

( 1 5 d )  

( 17 0010]1~01 h ( life 0001 "llfi~ I0 X l ~,l.Z~mj l 'nk)23 + I.It~ng lt, nk )23 f  ( 1 5 e l  

: (ao 2 1:  
kmjnk ~ e J  [(1 - 2u) 

and 

0000 l l 
( E m j  Fnk)33 

1 r~OlOtvOO~ ] 1 
+ 2 ~ k-l-.r,nj JUnk)33 ( 1 5 f )  -- klt~.rmj 1' nkJ33 f JP ('1~010111200"~ 

u = (1 + ~r~oooo~oo~ mmj~k U)~mj  1' ,,kin (15g)  

mmjnk22 = (1 + u)(Emj°°°°F,~)22°° (15h) 

33 = (1 + ~r~oooo~oo~ (15i) mmjnk M J k ~ m j  z" nk)33 

2.50 

• 2 . 2 5  

2.00 

II 
1 . 7 5  

I 1.50 

1.25 

1 . 0 0  

0 . 7 5  

0.50 

. . . .  I . . . .  I . . . .  I . . . .  I . . . .  I . . . .  I . . . .  I . . . .  

Experimental dam (MeMahen, 1964) 
D odd longitudinal mode 
A even longitudinal m o d e  

8 S - 3  0 o d d  s u r f a c e  m o d e  

. ~ / o even surface m o d e  
Q 

O O ~ -- --O" "O,. ~ ------ -- 

. 8 S - 2  

8 8 - 1  " ~ .  

. . . .  i , , i i i , , = , i . . . .  i . . . .  ~ = = , . I , , , , i . . . .  

0.50 0 . 7 5  1 . 0 0  1 . 2 5  1 . 5 0  1 . 7 5  2 . 0 0  2.25 2.50 

L e n g t h - t o - w i d t h  r a t i o ,  L/ao 

Fig. 2 Plot of first three lowest doubly symmetry (SS) modes for a 
stress-free solid circular cylinder at different length (J, = 0.294) 

where 

[ o~+e{%AZl, x2)} ] 
× 0~(-----~ d.gldX-i (16a) 

in which m , j  = 1, 2 . . . .  [(p + 1)(p  + 2 ) / 2 ] ,  n, k = 1, 2, 
• . .  q and oz,/3 = 1, 2, and 3. The normalized variables, ~5, .~2, 
and .~ are defined as 

x l  x2 X3 
X l = - - ; ~  = -  and X3 = -  ( 1 7 )  

ao ao L 

Finally, by solving the eigenvalue equation defined in Eq. 
(14) yields the eigenvalues of  the hollow cylinder: 

h = wao ~/p/E. (18) 

3 N o r m a l  M o d e s  o f  H o l l o w  C y l i n d e r s  

Frequency solutions for hollow cylinders of various cross 
sections have been obtained from the present formulation. In 
this study we focus only on three practical cases to illustrate 
the method• These cases are: ( 1 ) a hollow cylinder with annular 
cross section; (2) a square cylinder with a deep circular cavity; 
and (3) a square cylinder with a deep square cavity• 

3.1 Convergence  Character is t ics .  To ascertain the relia- 
bility of  the present formulation, comprehensive convergence 
studies have been carried out for hollow cylinders of different 

Table 3 Comparison of transverse vibration frequency parameters, ,k 
= aJao~/p/E, for a stress-free circular solid cylinder at different length- 
to-width ratios 

Mode Source of Length-to-width ratio, L/a 
results 1.0 1.25 2.0 2.50 5.0 10.0 

SA-I Hutchinson 2A7324 1.86902 0.95960 0.67752 0.20444 0.05524 
Present3-D 2.47308 1.86876 0.95950 0.67740 0.20412 0.05454 

((/.0061, (0.0141 (0,0101 (0.0181 (0.157) (1,2831 
SA-2 Hutchinson 2.66806 2.40800 1.77520 1.38064 0.49476 0.14476 

Present3-D 2.66794 2.40782 1.77508 1.38052 0.49452 0.1441(I 
(0.004) (0.007) (0.007) (0.009) (0.049) (0.458) 

SA-3 Hutchinson 2.59376 2.10542 0.84590 0.26804 
Present3-D 3.47491 2.68794 2.59400 2.10596 0.84654 0.26778 

I-0.009/ /-0.026/ /0.076/ /0.0977 

*Figure in parenthesis denotes the discrepancy in %. 
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Inner/outer 
ratio, aJao 

0.2 

0.4 

0.6 

0,8 

Symmetry Classes and Mode Number 

SS-1 SS-2 SS-3 SA-lt SA-2t SA-3* AA-1 AA-2 AA-3 

u, 1,5451 2.3742 2.3833 0.9637 1.7400 2.5184 0.9742 1,9484 2.37 2 

1.5393 1.597/4 1.6071 

0.9084 0.9458 1.2024 

0,3888 0.4178 0.7148 

0,9672 1.6034 2.2173 

0.97/51 1.4521 1.9822 

0.9863 1,0639 1.1002 

0.9742 1,5974 1,6071 

0.9084 0.9458 0.9742 

0.3888 0,4178 0.7148 

Fig. 3 Vibration mode shapes of an annular hollow cylinder at different inner-to-outer characteristic dimen- 
sions, al/ao and L/ao = 2.0 (tdeformed geometries for the symmetry-antisymmetry (SA) modes are equivalent 
to the antisymmetry-symmetry (AS) modes in this case) 

cross-sectional shapes. Table 2 shows the rate of convergence 
of the frequency parameters, ~ = wao~p/E, at each symmetry 
class of vibration. The inner-to-outer characteristic dimension, 
at/ao, and the length to width ratio, L/ao, of these cylinders 
are fixed at 0.5 and 5.0, respectively. The degree, p, of the 
polynomial in the lateral surface function and the number of 
terms, q, for the longitudinal function are varied in different 
steps to show the relative effects on the convergence rate. It is 
observed that p = 6 is required to approximate the surface 
variations in a doubly connected domain. By increasing the 
number of terms, q, used in the longitudinal direction, signifi- 
cant improvement on the convergence rate is achieved. It is 
also deduced that the cross sections of the hollow cylinder 
has very little effect on the convergence rate. From the above 
numerical experiment, it is deduced that fairly accurate fre- 
quency results can be obtained with admissible functions of p 
= 6 and q = 9 in each displacement component. 

3.2 Comparison of Results. 

3.2.1 Experimental Benchmark Data. The first reported 
experimental results on free vibration of stress-free cylindrical 
solids are attributed to McMahon (1964). He examined the 
natural frequencies and mode shapes for cylinders of different 
sizes and presented a very comprehensive set of frequency data. 
Both aluminium and steel materials have been used in his fabri- 
cation of these cylindrical solids. 

In this section, we compared the present predicted solutions 
with the benchmark data of McMahon (1964) for steel solid 
cylinders with length varying in the range of 0.5 -< L/ao <-- 
2.50. The frequency spectral of the first three lowest doubly 
symmetry (SS) modes is presented in Fig. 2. McMahon (1964) 
devised a different characterization of the vibration modes for 
the solid cylinder. The present doubly symmetry modes fall into 
the set of results presented for circumferential order of zero and 

Symmetry Classes and Mode Number 

SS-1 SS-2 SS-3 SA-I? SA-2t SA-3f AA-1 AA-2 AA-3 

 1.,354 2.3  2.394  ,0 8 1.6742 2.3931 0.8934 1.77,, ,9 73 

1.5275 1.5922 1,6694 

0,9367 1.0592 1.3850 

0,4114 0.5638 0.9213 

t,0244 1.5332 2.1937 

1,0195 1,3630 1.9810 

0.9985 1.1770 1.3350 

0.8922 1,4298 

0.8856 0.9231 

1,5082 

0.9472 

0.487/2 0.4979 0.8538 

Fig, 4 Vibration mode shapes of a square cylinder with a deep circular cavity at different inner-to-outer 
characteristic dimensions, a~/ao and L/aa = 2.0 (*deformed geometries for the symmetry-antisymmetry (SA)  
modes are equivalent to the antisymmetry-symmetry (AS) modes in this case) 

Journal of Applied Mechanics SEPTEMBER 1995, Vol. 62 / 721 

Downloaded 04 May 2010 to 171.66.16.28. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Inner/outer Symmetry Classes and Mode Number 

SS-1 SS-2 SS-3 SA- l t  SA-2t SA-3 t AA-1 AA-2 AA-3 

2,3117 2.3242 1.0253 1.6629 2.1 148 0.8933 1.7792 1.8738 

1.4605 13247 13462 1.0249 1.4969 2.1478 0.8914 1.297/0 1.3557 

II iii ilIli  Ii ,III  III 
0.8345 0.9364 1.2281 1.0078 1.2937 1.8269 0.6999 0:7019 0.8822 

ratio, a~/ao 

0.2 

0.4 

0.6 

0.8 

0.3558 0.4266 0.6255 0.7999 0.8230 0.8516 
IIIIIIII II 

0.2714 0.2797 0.8489 

Fig. 5 Vibration mode  shapes  of a square cylinder with a deep square cavity at different inner-to-outer 
charac te r i s t i c  d imens ions ,  aJao and  L/ao = 2.0 (tdeformed geometries for the symmetry-antisymmetry (SA) 
modes  are equivalent to  the  antisymmetry-symmetry (AS) modes in this case )  

two in his experimental work. The symbols in Fig. 2 denotes 
the experimental points reproduced from the work of McMahon 
(1964). The Poisson ratio used for the computation is taken as 
u = 0.293 (which corresponds to steel material). The terms 
odd and even used in this figure describe antisymmetry and 
symmetry motions about the longitudinal direction of the cylin- 
der, respectively. 

From the figure, it is evident that the present predictions are in 
excellent agreement with the experimental results. In addition, it 
is interesting to note that the odd longitudinal rod mode (de- 
noted by triangle) passes gradually from SS-3 to SS-2 and 
finally merges with the fundamental doubly symmetry (SS-1) 
mode. Similar mode crossings of this nature are also observed 
for the odd and even surface modes. 

3.2.2 Three-Dimensional Analytical Results. The fre- 
quency results for stress free hollow cylinders of arbitrary 
cross section are very limited in the literature. To enable 
comparison with the existing three-dimensional solutions, we 
have computed the frequency parameters, h = wao~/p/E, for 
a stress-free elastic solid circular cylinder treated earlier by 
Hutchinson (1981).  Table 3 compares the first three fre- 
quency parameters of the symmetry-antisymmetry (SA)  
modes with the analytical solutions of Hutchinson (1981).  
Excellent agreement is found for all the length-to-width ra- 
tios. The percentage of discrepancy between both methods is 
found to be well within 1.0 percent except for the SA-1 mode 
at a length-to-width ratio of 10.0 which produces a maximum 
discrepancy of 1.3 percent. 

10.0 

9.0 

8.0 

7.0 
"T 
i n  

6,0 

i S.0 

i 4.0 

3.0 

2.0 

1.0 

I , I . I ' ' ' I I ' ' f ' I ' ' I I 

L __.L~ ss-2 

SS-1 : 

SA-1 
i , , , i , , , , I i I i = I i ~ i i 

10 ' 0 - '  ' ' ' I . . . .  I . . . .  I . . . .  

'.oi t 
sol I =, 1 

i.i  
,z-------- \ 

SA-1 

1.0 , ~ , , J l ~ , ~ l ~ , , , I , , , i  
2.0 40 6.0 8.0 10.0 2.0 4.0 6,0 8,0 10.0 

Length-to-width ratio, L/a. 

Fig. 6 Plots of frequency parameters X = (L/ao)~/h versus length-to-width ratio, Llao, for 
a s t ress - f ree  ho l low  cy l inder  w i th  an annular cross  sec t ion ;  (a) al/ao = 0.3 and (b) aJ 
ao  = 0 .7  
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II 
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8.0 i ~  $S-2 

7.0 L~/ i  ~lll~x t ~ Xi 
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2.0 40 6.0 80 10.0 
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Fig. 7 Plots of frequency parameters X = (Llao),,/k versus length-to-width ratio, Llao, for 
a stress-free square hollow cylinder with a deep square cavity; (a) al/ao = 0.3 and (b) ad 
ao = 0.7 

3.3 Vibration Frequencies  and Mode Shapes.  In this 
section, the natural frequencies and mode shapes of different 
hollow cylinders are presented. Figures 3 to 5 show the 
deformed geometries of the stress-free hollow cylinders of  
finite length (L/ao = 2.0) with different cross sections. 

For the annular hollow cylinder depicted in Fig. 3, it is 
observed that the natural frequencies and deformed mode 
shapes change significantly as the inner-to-outer character- 
istic dimension, a~ ~at of the cross section varies. The funda- 
mental doubly symmetry (SS)  and doubly antisymmetry 
(AA)  modes at a~/a o = 0.2 exhibit extensional and torsional 
motions, respectively. As the wall thickness decreases (with 
higher value of a~ ~at), however, it is found that the funda- 
mental modes in these two symmetry classes become domi- 
nated by the circumferential motions. At a~/ao = 0.8, it is 
further noticed that the first three doubly symmetry (SS)  
and the doubly antisymmetry ( A A )  modes are equivalent 
in mode shapes and frequencies. For the symmetry-antisym- 
metry modes ( S A ) ,  the transverse bending motion continue 
to dominate the fundamental frequency for the range of ai / 
a0 considered in this study. As ai/ao increases to 0.8, it is 
observed that the second and third symmetry-antisymmetry 
modes change to circumferential motions of order two. 

Figures 4 and 5 show the deformed mode shapes of a square 
cylinder with a deep circular or square cavity, respectively. 
Again, it is found that as the wall thickness decreases, the 
extensional and torsional modes of the cylinder tend to occur 
at a much higher mode number. The circumferential modes 
begin to dominate the lower vibration spectrum as ai ~at in- 
creases. In general, it can be deduced that as the wall thickness 
reduces (corresponds to a higher at ~at ratio), the frequency of 
vibration decreases proportionally. A cross examination of these 
figures further reveals that for the same inner-to-outer character- 
istic dimension ratio, at~at, the square cylinder with a deep 
square cavity possesses the lowest natural frequencies at all 
symmetry classes. 

3.4 Parametric Investigation. To investigate further on 
the influence of the inner-to-outer characteristic dimension ratio, 
ai/ao, and the length-to-width ratio, L/ao, upon the natural 
frequencies, the computed results are presented in Figs. 6 and 

7. The frequency parameter, used in these figures has been 
redefined as 

= (L/ao)~/~. (19) 

The ratios, ai ~at, are taken as 0.3 and 0.7 in this investigation. 
The first two modes at each symmetry class are presented. By 
increasing the length-to-width ratio of the cylinder, it is found 
that the frequency parameter, X, increases monotonically. The 
variation is most steep for the SS and AA modes. On the other 
hand, the frequency variations with respect to ratio, L/ao, for 
the SA modes (which correspond to transverse vibratory mo- 
tions about the xl and x2 directions) are more gradual and as 
the length increases further, these modes converge asymptoti- 
cally to the elementary beam solutions. Several mode crossings 
are found in the frequency diagrams for both the square and 
circular hollow cylinders. The mode crossing is caused mainly 
by the lowering of the frequency parameters in the symmetry- 
antisymmetry (SA) modes following the increases in the length 
of the cylinder. 

It is interesting to note that for the annular hollow cylinder 
at ai ~at = 0.7, the doubly symmetry and doubly antisymmetry 
modes are closely coupled in the range of 2.0 ~ L/ao < 4.5. 

4 Conc lus ions  

An in-depth exposition of the free vibration characteristics 
of hollow cylinders is presented. In this work, we focused on 
the free vibration studies of cylinders with free-wall conditions 
and traction-free boundaries at both ends. For the first time, 
vibration frequencies and deformed mode shapes for various 
stress free hollow cylinders were presented in a systematic man- 
ner. The deformed mode shape diagrams showed very interest- 
ing mode changing phenomena as the basic geometric parame- 
ters of the cylinder varies. Particularly, the occurance of circum- 
ferential modes at the lower frequencies as the wall thickness 
of the cylinder decreases. The effects of wall thickness and 
length-to-width ratio on the overall dynamic behaviour of these 
cylinders have been investigated via frequency plots. It is noted 
that frequency crossings are commonly encountered as the 
length-to-width ratio increases. It is concluded that the square 
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hollow cylinder with a square cavity has the highest bending 
stiffness while the cylinder with an annular cross section pos- 
sesses the highest torsional stiffness as compared to cylinders 
of other shapes. 
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Three-Dimensional Rigid-Body 
Collisions With Multiple 
Contact Points 
This article deals with three-dimensional collisions of rigid, kinematic chains with 
an external surface while in contact with other surfaces. We concentrate on a special 
class of kinematic chain problems where there are multiple contact points during the 
impact process. A differential formulation based algorithm is used to obtain solutions 
that utilize the kinematic, kinetic, and the energetic definitions of the coefficient of 
restitution. Planar and spatial collisions of a three-link chain with two contact points 
are numerically studied to compare the outcomes predicted by each approach. Partic- 
ular emphasis is placed on the relation between the post and pre-impact energies, 
slippage and rebounds at the contact points, and differences among planar and nearly 
planar three-dimensional solutions. 

1 Introduction 
In rigid-body mechanics, a basic assumption is that the con- 

figuration of the rigid bodies are held constant in the analysis 
of the collision process, with no significant change in mass and 
moments of inertia. Furthermore, it is customarily assumed that 
each body exerts an impulsive force on the other at a common 
point of contact. The duration of the contact is assumed to be 
negligible in the time scale of the motion before or after the 
impact. Therefore, positions of the rigid bodies are held constant 
in the analysis of the collision process. Analytical solutions 
(obtaining post-impact velocities in terms of pre-impact veloci- 
ties) of rigid-body collision problems are formulated in terms 
of two principles: Newton's law of motion and Coulomb's law 
of friction. In addition, the solutions require the knowledge of 
two constants: coefficient of friction and coefficient of restitu- 
tion. 

The original definition of the coefficient of restitution is due 
to Newton (1686),  who established that the ratio of the rebound 
and incidence velocities of two colliding particles (or small 
spheres) in the normal direction is constant, and inherently tied 
to the material properties of the colliding bodies. Today, this 
definition is called the kinematic definition of the coefficient of 
restitution. Newton's experiments did not consider cases where 
there was a relative tangential velocity at the contact point. 
Poisson (1817) hypothesized that the coefficient of restitution 
was the ratio of the normal restitution impulse to the compres- 
sion impulse at the contact point (the kinetic definition of the 
coefficient of restitution). He also pointed out that there were 
several possible tangential motions that may arise at the contact 
point during the collision period. With the help of his co-worker 
(Morin, 1855), he proved that Coulomb's friction model can 
be used to relate the normal and tangential contact forces. Routh 
(1860) developed a graphical method to solve planar impact 
problems of rough, inelastic bodies. His method brought solu- 
tion to collisions where the slip between the colliding bodies 
changes direction during impact (Poisson listed this as a possi- 
ble case but did not provide a solution method). These develop- 
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ments lead to Whittaker's (1904) method of solution of impact 
with friction, which is fundamentally different that its predeces- 
sors and can be extended to three dimensions. Whittaker's 
method combines Newton' s definition of the coefficient of resti- 
tution and Poisson's definition of the phases of collision and 
yields algebraic equations, which can be easily solved for the 
post-impact velocities. Although this approach does not prop- 
erly treat the contact forces when the slip direction changes 
during collision, it has been widely accepted as the standard 
method that is being taught today in undergraduate engineering 
education. 

Kane and Levinson ( 1985 ) showed that Whittaker's approach 
may predict erroneous energy results in rigid-body problems 
when friction is present. This observation sparked an intense 
effort geared toward resolving the energy inconsistencies in the 
classical solution of collision problems. An important contribu- 
tion to the solution of rigid-body collision problems was made 
in Keller (1986). Keller revisited Routh's graphical method 
and formulated a three-dimensional differential approach that 
resolved the energy paradox by using the kinetic definition of 
the coefficient of restitution. The proposed solution method was 
based on the differential formulation of collision problems and 
allowed the utilization of various definitions for the coefficient 
of restitution using the same solution scheme (Stronge, 1990). 
An important recent contribution to the area was the definition 
of a new coefficient of restitution (the energetic definition) by 
Stronge based on the internal dissipation hypothesis (Stronge, 
1990). This new definition resolved the arguable (Smith, 1991 ) 
inconsistencies in energy losses predicted by the kinetic defini- 
tion. Subsequently, Brach (1992) bridged the gap among the 
algebraic and differential solution methods for planar collision 
problems by proposing and algebraic scheme that yields the 
same outcome as the differential schemes. 

In the present article we study a rarely addressed class of 
three-dimensional collision problems in the light of recent de- 
velopments in the area. These type of impacts arise in applica- 
tions that involve multibody systems such as walking machines 
and space structures (Hurmuzlu, 1993). We study three-dimen- 
sional collisions of kinematic chains with external surfaces that 
take place through multiple contact points. This class of prob- 
lems was considered in Hurmuzlu and Chang (1992). They 
formulated an algebraic solution of impacts of planar multibody 
system with two contact points based on the kinematic formula- 
tion of the coefficient restitution (with an energy correction 
scheme proposed in Brach, 1989). Here a three-dimensional 
solution scheme based on the differential formulation of impact 
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Fig. 1 Spatial kinematic chain with multiple contact points 

equations that incorporates the three definitions of the coeffi- 
cient of restitution is presented. Unlike the planar cases, the 
equations of motion are nonlinear and algebraic formulations 
cannot be used to solve the problem when Coulomb's law is 
used to model the frictional effects. 

In the ensuing article we first define the impacting system and 
the related coordinate frames. Then, we develop the differential 
equations that govern the impulsive motion. Subsequently, we 
present a procedure to solve the collision problem using the 
three definitions of the coefficient of restitution. Finally, we 
use a simplified three-link chain with two contact points to 
numerically study the effect of choosing a particular coefficient 
of restitution on the predicted post-impact conditions. We spe- 
cially focus on the relation between the post and pre-impact 
energies, slippage, and rebounds at the contact points, and dif- 
ferences among planar and nearly planar three-dimensional so- 
lutions. 

2 Problem Statement, Coordinate Systems, and 
Variable Definitions 
Consider the n interconnected rigid links B~ . . . . .  B, (Fig. 1 ). 
The end Ac of the chain collides with the surface So. Prior to 
impact, k + 1 free ends of the chain are resting on the surfaces 
Sj. The collision at A< may lead to several consequences de- 
pending on the initial conditions, the coefficients of friction 
among the surfaces and the chain (here we assume isotropic 
surfaces with a coefficient of friction/.z/at the contact point A:), 
and the coefficient of restitution e at Ac. The impulsive forces 
generated at the collision point are assumed to be instantane- 
ously transmitted through the chain without any dissipative 
losses. We further consider that the contacts with external sur- 
faces occur only at the free ends of the chain. In addition, we 
assume that the contacts at the noncolliding ends are perfectly 
rigid contacts (i.e., no restitution or energy loss). The motion 
of an end point during the collision at any given contact point 
can be specified by one of the following three cases: 

I The end is slipping along surface while interacting with it 
in the normal direction, 
II The end is not slipping along but interacting with it in the 
normal direction. 
III The end is not interacting with the surface. 

726 / Vol. 62, SEPTEMBER 1995 

In addition, an end may undergo a sequence of motions dur- 
ing the collision period that can be presented by a combination 
of these three cases. Interaction in this a~icle denotes that a 
particular end exerts a normal force on the contact surface. This 
normal force results in a tangential dry friction force which 
is proportional to the normal force (Coulomb's model). It is 
worthwhile to note that other possible modes of interaction 
such as tangential restitution has been considered by previous 
investigators. In this article the primary mode of tangential inter- 
action is assumed to be through dry friction. 

Now we describe the coordinate systems that are used to 
describe the motion of the chain in the three-dimensional space. 
The link B1 has three rotational and three translational degrees- 
of-freedom. Each body Ba, i = 2, 3 . . . . .  n has spherical joints, 
and therefore has three relative degrees-of-freedom with respect 
to the body Ba_i. Let R[i, j ,  k] define a fixed inertial reference 
frame and Ri a set of reference frames attached to bodies Bi as 
depicted in Fig. 1. Without loss of generality, the R coordinate 
axes are aligned with the plane surface So. We express by b~,  
b~2, and bi3 (i = 1, 2 . . . . .  n) the corresponding mutually 
perpendicular unit vectors along the axis of Ri. Let nj be the 
unit vector of the normal to the surface Sj and directed from Sj 
into the contacting link. Let tj and t :  be unit vectors in the 
common tangent plane to the surface Sj and the contacting link 
satisfying n: = tj × t:. 

The orientation of each body with respect to its lower adjacent 
body is defined through Euler's angles ~b~l, ~bi2, and ~bi3 where 
i = 1 . . . .  or n. The relative translations of body B~ is given 
by a l ,  ce2, and a3. The generalized coordinates for the system 
can be expressed as the (3n + 3) × 1 dimensional vector 

q = {0~1, a2, c~3, ~bll, ~b12, ~b13 . . . . .  ~b,,,, ~b,2, ~b,3} r. (1) 

The unit vectors of an axis frame of a body can be expressed 
as a linear combination of the unit vectors of the axis frame of 
an adjacent body as 

I bil 
b / a [  
b,3_l 

b i - l l ]  
"~ S i i - I  b/--12| (2) 

bi_13j / 
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where 

S~_,  = - c c k ~ s c k i ~  

--SOilC~.~i2 

s ,~ ,~s4 , , ,  - c ,# , , sck ,~c ,~ ,~  
S~i ISi3 + C(~i IS~i2S~i3 

c4,i , c 4,,~ 

in which the symbols c = cosine and, s = sine. The angular 
velocity of B~ in R can be written as 

to~ = { u ~ ,  u~2, u,3}  ~ (3) 

and the (3n + 3) x 1 dimensional vector of generalized speeds 
is given by 

u = {ul, u2, u3, Ull, u12, ul3 . . . . .  u,,l, u,2, u,,3} r (4) 

where u~ = &~, u2 = &z, and u3 = &3. The velocity of the Aj 
end is 

vj = v~ + vj'nj ( j  = 0 ,  1 . . . . .  k , c )  (5) 

" ' = vJtj + " ' is the tangential where vj is the normal and vj vj tj 
velocity• The 1 × (3k + 6) vector of contact forces is given 
by 

F = {F[, F[', Fg . . . . .  F~., F~', F,~, Ere, F'~', F~} T (6) 

where, F~ is the normal contact force and F~ = FJtj + FJ/t~ 
is the tangential contact force. The impulses at the contact points 
are obtained by integrating Eq. (6) with respect to time, which 
gives 

t 
7" c 

t '  
"7- c 

,7- n 
- c 

where 

f• F~d~7 

f f  Fto'd~7 

f ]  F~drl 

f f  F~drl 

= fo ~ F~'d~ 

f f  F~drl 

f~  F~d~7 

f f  F~d~7 

(7) 

t n z j = ~ r j +  r j n j  ( j = 0 ,  1 . . . . .  k , c )  (8) 

t '  ! with r ]  the normal impulse and ¢~ = r~tj + r j  tj the tangential 
impulse. We have denoted with ~7 the tin3e variable since t is 
used as a tangential coordinate. 

3 Equations of Motion 

3.1 Equations of the Impulsive Motion. In this article 
we use Kane's formalism (Kane and Levinson, 1985) to derive 
the equations of motion, because this is a minimally laborious 
method and can be easily implemented by using symbolic ma- 
nipulation programs. Accordingly, the total kinetic energy of 

the rigid multibody system moving in the reference frame R is 
specified by 

K = Kt, + K,o, = K(q,  u) (9) 

where K,r denotes the kinetic energy due to the translation and 
is given by 

1 n 

Ktr = ~ ~ mivGi" VGi. (10) 
i=1- 

Here, the mass of the rigid link Bi is m~ and vc~ expresses the 
velocity of center mass of B~ in R. The kinetic energy due to 
the rotation is given by K,o, and defined as 

l n 

K,o, = ~ 2~ ~i " Ii " toi (11) 
i=, 

where Ii is the central inertia dyadic of the member Bi. The 
generalized active forces in R are given by 

~r = ~ 0VJ 'F  0 v c ' F  j=o OUr ~ + - -  c and ~t ' r  ~ 0Vj • F 0vc. F I + _  c 
OUr j = 0  OUir 

( r =  1 , 2 , 3 ; i =  1 ,2  . . . . .  n) (12) 

where vj and vc are the velocities of Aj and Ac in R. For collision, 
however, an integrated form of equations can be written as 

d OK d OK 
- -7 r  and ~ - - : T i r  

drl OUr d'q OUir 

( r =  1 , 2 , 3 ; i =  1 ,2  . . . . .  n). (13) 

Equation (13) establishes a relationship between the time deriv- 
ative of the generalized velocity vector u and the force vector 
F,  which leads to the matrix form 

M ( q ) u  = D(q ,  0)F  (14) 

where M ( q )  is the (3n + 3) × (3n + 3) mass matrix; D(q ,  
0) is a (3n + 3) × (3k + 6) matrix that depends on pre-impact 
positions and inclination angles of the contact surfaces; and e 
is the vector of Sj surface inclination angles, which is given by 
the direction cosines of the surface normal nj. 

3.2 Equations of Motion With Contact Constraints. 
The linear velocities and accelerations of the points of the chain 
contacting the external surfaces can be related to the generalized 
velocity and acceleration vector by using kinematic relations. 
The general forms (the exact form depends on the structure of 
the chain) of these relationships can be written as 

I1 1 1 0] 
v = H , (q )  u (15) 

and 

I ] I  ° ] 1 1 1 0 0 + (16) 
a = Hi(q) H2(q, u) 
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where 

' ' ,' . } r  (17)  a = {a[ ,  a [ ,  ag . . . . .  a~,, a~ ,  a~, a'~, a~ ,  a~ 

is the (3k + 6) × 1 acceleration vector. Combining Eqs. (14) 
and (16) yields 

a = H2(q,  u)  + H i ( q )  M ( q ) - l D ( q ,  0)F.  

(18) 

Elimination of the nonimpulsive terms (i.e., H2(q, u) )  from 
this equation gives 

dv [1 1 l OJ M(q)_~D(q, O)F = F(q, O)F 
a = d-~ : Hi(q)  

(19) 

where v is the velocity vector of the contact points of the chain 
with the surfaces Si and F (q ,  O) is a constant (3k + 6) × 
(3k + 6) matrix that depends on the pre-impact positions and 
inclination angles of the contact surfaces. 

Additional constraint equations can be written by considering 
the relative motions of the contacting ends with respect to the 
external surfaces. For the three possible cases of the end point 
motions that were listed in Section 2, the following equations 
can be written: 

I Aj is slipping with interaction in the normal direction: 

F~ = - # / c o s  (~+)Fy, F f  = - # j  sin (~j)F;  

• n 0 and v] = vj = 

with 

~j = arctan (vf/v~) ( j  C J c {0, 1 . . . . .  k, c}) .  (20) 

Note that we are assuming isotropic contact surfaces, and there- 
fore, using the same coefficient of friction for the two tangential 
directions. Also, in this article we assume that deformations 
occur only at the collision point A~. Therefore, at the other 
points when the end contacts the surface it is assumed that its 
normal velocity is zero. 

II Aj is not slipping but interacts with the surface: 

~ j = v j = 0  subject to I F~/F]] -<#~ 

( j E J C  {0,1 . . . . .  k,c}) .  (21) 

III Aj does not interact with the surface: 

F:-=-0 ( j ~ J C  {0,1 . . . . .  k}).  (22) 

Note that during collision F~" q: 0, since the impact occurs 
at Ac. 

The 3n + 3 differential equations that are given in Eq. (19) 
include 3k + 6 unknown contact forces on the right-hand side. 
Having specified the constraint equations that correspond to the 
various possibilities at the contacting ends, one can get 3k + 5 
additional relationships using Eqs. (20) through (22). The gen- 
eral form of the constraint equations for all contacting ends can 
be written as 

A ~  = O, (23) 

A~ ~ = 0, (24) 

F '  = {F[,  F[', . . . .  F~, F~', F~., F~' } T 
~n = {F~ . . . . .  F~,} r 

also, Ai is an 11 × (3n + 3) (l~ = number of ends in category 
I + 3 × number of ends in category II) matrix with elements 
that are equal to one or zero, A2 is an 12 × (3k + 5) (/2 = 3 
x number of ends in category III) matrix with elements that 
are equal to one or zero, A3 is an /3 × (2k + 2) (/3 = 2 × 
number of ends in category I) matrix with elements that are 
equal to one or zero, and A4 and A5 are/3 × (2k + 2) and 13 
x 1 matrices that are nonlinear functions of the velocity vector 
(the dependence on velocity is due to the ~i terms in Eq. (20)).  
Equations (23), (24), (25), and (19) can be combined to obtain 

dv/dr I = F~H(v,  q, O). (26) 

Now we will replace the independent variable t, with the normal 
impulse at Ac, 7- --- r~". For this purpose we use the last rows 
of the vectors in Eq. (7) to obtain 

= F7 _d_d. (27) 
a~ d~- 

Dividing Eq. (26) by F~ and using Eq. (27) yields 

dvldr = II (v ,  q, 0). (28) 

Here we can observe that the differential equations are nonlinear 
functions of the velocities. This occurs only in three-dimen- 
sional problems. Therefore, algebraic formulations that depend 
on the kinetic, kinematic, or energetic definitions of the coeffi- 
cients of restitution are only possible for planar cases. Perhaps, 
this is also the reason that Routh's graphical method cannot be 
extended to three-dimensional cases. 

3.3 Sl ipping Condit ions  for the Contact ing Ends.  Dur- 
ing collision, the relative motion of a contacting end that is 
interacting with the respective surface may change from one 
case to another (e.g., originally the end may be slipping in a 
particular direction, it may stop and/or slip in another direc- 
tion). The following two cases are possible: 

I Aj is slipping initially (i.e., v~(r0) * 0) and stops slipping• 
The normal impulse at Ac when end j stops slipping is defined 
as r 7 with t * v: ( r :  ) = 0. 
II Aj starts slipping when it is not slipping initially (i.e., 
v~(r0) = 0). Slippage at a specific end happens when the fric- 
tion condition in Eq. (21) is violated. 

3.4 Interaction Condit ions  for the Contact ing Ends.  
Another factor that should be considered is the motion of the 
contacting ends (excluding A~) in the normal directions• For 
example, an end that is initially interacting with the surface 
separates during collision and attaches again. Accordingly, we 
list the following possibilities for the respective cases enumer- 
ated earlier (section 3.2) in the article: 

1 and II A~ stops interacting with the surface when the normal 
acceleration becomes positive as a result of a case change at 
any of the contacting ends (i.e., a~ > 0). In the absence of 
such changes Aj will not detach from the surface Sj until the 
end of collision• 
III A~ is not interacting with the surface and initially the normal 
velocity is directed away from the surface (i.e., v](~-0) > 0). 
Interaction reoccurs at Aj when this velocity vanishes. The nor- 
mal impulse at A~ when end j begins interacting with surface 

n( **~  Sj is defined as ~-7" with v: ~-: ) = 0. 

and 

A3Ft = A 4 ( v ) F  n 4- As(v)F~ 

where, the force vector is partitioned as, 

(25) 

4 Solution of the Impact Problem 
In this section we present a procedure to calculate the post- 
impact velocity vector u(~-f) given the pre-impact velocity vec- 
tor u(0) .  The procedure is centered around the solution of the 
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set of nonlinear differential equations given in Eq. (28). Yet, 
the structure of the right-hand sides of these equations depends 
on the conditions at the contacting ends (i.e., on the matrices 
A~ ). As stated earlier, during collision, a contacting end may 
slip along the surface while interacting with it in the normal 
direction (other possible cases are listed in Sections 3.3 and 
3.4). A change in the relative motion of one contacting end in 
the chain requires the modification of the differential equations. 
Here we will develop a procedure that automatically detects 
such changes and implements the necessary modifications to 
differential equations to produce consistent results. 

Starting from a set of pre-impact conditions, the problem is 
solved in incremental stages. A unique set of equations that 
reflects the conditions which have to be satisfied at the con- 
tacting ends are used in each stage. An important factor that 
should be reminded to the reader, is that, we use the normal 
impulse r at the colliding end, A~, as the independent variable 
in the differential equations. This convenient transformation of 
variable, which was introduced in Keller (1986), is particularly 
useful in tracking the continuous changes in the generalized 
velocities during collision. Furthermore, formulation in terms 
of the normal collision impulse allows the implementation of 
various definitions of coefficients of restitution with relative 
ease. This can be realized by first determining the normal im- 
pulse at the end of the compression phase or the onset of the 
restitution phase. The restitution phase starts when the normal 
velocity at A~ vanishes during the collision. We define the nor- 
mal impulse at A~ that marks the beginning of the restitution 
phase by r* with v~(r*) = 0. The value of the normal impulse 
atA~ at the end of the restitution phase (i.e., end of the collision) 
r I depends on the definition that is used for the coefficient of 
restitution. Computation of r j  for each definition can be speci- 
fied as follows: 

1 Kinematic Coefficient of Restitution: 

v~(r51)) = -ev~(O). 

2 Kinetic Coefficient of Restitution: 

r ~  2) = (e + 1)r*. 

3 Energetic Coefficient of Restitution: 
the normal force at the impact point is 

(29) 

(30) 

The work done by 

AW n= _f F~v~dt= - f  v~(r)dr.  (31) 

From the energetic definition of the coefficient of restitution 
(Stronge, 1990) we obtain T} 3) 

r ff v~(r)dr = - e  2 v~(r)dr.  (32) &* 

The overall solution procedure of the collision can be outlined 
by the following steps: 

1 Set % = 0, ~'(0) = 0, AW"(0 )  = 0 and compute v(0)  as 
function of u (0) .  
2 Define an initially empty a set L~, which includes the contact 
points where the chain interacts with the respective contact 
surfaces. Add A~ to the list Lc (interaction is always present at 
A~). Thus, Lc can be written as 

L, = {Ai, Aclr ~ * O, vT(r,~) < 0 ( j  = 0, 1 . . . . .  k)}. 

3 Set F} = 0 and F~ = 0 VAj ~ L~. Create a new set L, that 
includes the contact points Ai ~ L~ having zero tangential veloc- 
ities (vJ(r,~) = 0) at r,r but slip for r > r,~. This set is initially 
empty and is given by 

L, = {Aj ~ Lclvj(r,~) = 0 and v~(r) * 0 Vr  > r,~}. 

4 Set F~. = - # j  cos [{i(r,r)]F~ and F~' = - > j  sin 
[{j( 'r,r)]]~ gAj E L~\Ls. 

5 Set FJ = -/ .# cos [{7(r,r)]F)' and F S = - /z j  sin 
[{~'(r,r)]/~ V A i e  L,. 
6 Set a~ = 0 for the remaining points in Lc. 
7 S e t a ] = 0 V A i  ELc.  
8 Applying the relations formulated in steps 3, 4, 5, 6, and 7 
solve Eq. (19) for a and F in terms of F~. 
9 Compute the force ratios/z~ = IFJF] I (note that, the ratios 
IFJlF)'] do not depend on F~) at the contact points that are 
bracketed in step 6. Calculate the slip angle ~}' = arctan 
[FSIF~]. If all >] < /zj continue to the following step. Other- 
wise, add the point A i to L, where/z)' = max [/,~ . . . . .  /.z~], 
such that/z)~ > /.~1 . . . . .  #it > #jl. Then, go to step 5. 
10 Check if all a]  -> 0 for Aj ~ Lc and vS'(r,r) = 0, if true 
proceed to the next step. Otherwise, append Aj to the list Lc, 

" " . ,  " I], such that aS' ~, a" < where aj = max [laj, [, . .  l aj,,, . . . ,  ~,, 
0. Then, go to step 3. 
11 Having determined the conditions at the contacting ends, 
construct the matrices Ai and prepare the differential equations 
given in Eq. (28). 
12 Calculate r *  for all slipping ends including A~ and com- 
pute r *  * for all noninteracting ends. Compute r t, the normal 
impulse at A~ when the normal velocity at this point vanishes 
(end of the compression phase). Computation of r * *  and r * 
is confounded by the nonlinear form of the differential equa- 
tions. One would normally solve the differential equations to 
obtain the velocities in terms of r and set 

t * g  v j ( r j  ) = 0 (33) 

to solve for r *  *. Here, the solution v ( r )  can only be obtained 
numerically. Thus, the root finding process should be combined 
with the numerical integration process to obtain the roots of 
Eq. (33). In the present study, we realized this by using the 
package Mathematica TM, and obtained the solution of the differ- 
ential equations in the form of interpolating polynomials of r .  
Then the polynomials were used to numerically compute the 
roots of the equations. 
13 Setr.~w = m i n [ r * , r o * , . . , , r ~ , r ~ , *  r ~ * ,  . . , ,  r***] 
subject to r.ow > r,r. Compute v(r.ow), u ( r . ~ ) ,  and 
AW~(r,~w). Let r,~ = r . . . .  If r.~w ~= r* go to step 2, otherwise 
proceed to the next step. 
14 Set AW"(r*)  = &W"(%~w) and AW"(T,~w) = 0, and go 
to step 2. Henceforth, in step 12 do not compute r*, instead 
when using: 

(1) the kinematic definition calculate @~) from Eq. (29). 
(2) the kinetic definition calculate @2) from Eq. (30). 

(3) E (3) the energetic definition calculate r f  from q. (32). 

Then, carry out the computations of 13 with T} ° instead of r*,  
skip this step and proceed to the next step. 
15 The solution of the problem is given by the vector of the 
generalized velocities that was obtained in step 13. 

This procedure is based on the presumption that at the onset 
of each stage there are no interactions at the contacting ends 
except at A~. Therefore, in step 2 the list of contacting ends L~ 
contains only this point. Then, in step 10, the ends that interact 
with the external surfaces are sequentially appended to this list. 
Each time a contact point appended to L~, the slippage is 
checked again for all interacting points in step 9. Once the 
motions of the all of the ends are resolved (the loop that is 
bracketed by steps 2 and 10), the equations of motion are set 
in step 11. The equations are integrated until a case change 
in the contacting occurs. If no case changes are detected, the 
integration is carried out until the end of the compression or 
restitution phase. 

5 Application 
In this section we present the application of the solution 

procedure to the impact problem of a three link chain with two 
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Fig. 2(a) Three-link chain with two contact points; (b) stick diagram for 8 = 100 and 
= 5°; (c) stick diagram for 8 = 10 ° and ~ = 175 ° 

contact points (Fig. 2). The contact surfaces are horizontal, and 
the chain includes slender members (each with a length of 1 m 
and mass of 1 kg) that are connected with spherical joints. In 
the analysis that follows, we seek to study three aspects of 
multicontact Chain collision problems using the simplified 
model. 

i Effect of the Slip Reversal atAc on Two and Three-Dimen- 
sional Solutions. To conduct a numerical analysis we started 
with planar pre-impact configurations and then gradually per- 
turbed the coordinates to observe the difference among planar 
and three-dimensional solutions. Accordingly, the generalized 
coordinate vector at the instant of impact was selected as 

q = {0, 0, 0, ~b11, ~b12, (~13,621, 622, ~b23, (~31, ~b32, ~b33} T 

= {0, o, o, o, ~ - -  ¢, 6, o, ¢,  6, o, 6, 6} T 

where ¢ was the configuration and 6 was the perturbation pa- 
rameter. The configuration of the chain at impact was gradually 
varied from a completely extended (6  = 0 deg) to a completely 
collapsed position (~b = 180 deg), whereas the chain was planar 
for 6 = 0 deg and three-dimensional for 6 ~ 0 deg (see Fig. 
2). The pre-impact generalized speed vector was selected as 

u (0)  = {0, 0, 0, 0, -0 .1 ,  0 ,0 ,  -0 .2 ,  0, 0, 0.3, O} Tra----~ . 
s 

This particular selection ensured that the velocity of the collid- 
ing end was directed toward the surface prior to collision for 
all configurations. In addition, the coefficients of friction and 
restitution were selected as #0 = #c = 0.5 and e = 0.9, respec- 
tively. 

The results indicated that kinematic definition of the coeffi- 
cient of restitution leads to paradoxical energy outcomes when 
the tangential velocity of the colliding end stopped slipping 
during the impact (see the energy and velocity plots in Fig. 3). 
This behavior was observed for planar and three-dimensional 
solutions. On the other hand, when the tangential velocity of 
the colliding continued slipping in the same direction ( 109 deg 
_< q5 _~ 180 deg), three definitions of the coefficient of restitu- 
tion lead to identical outcomes. The energy loss plots revealed 
further discrepancies among various results obtained by using 
the three definitions of coefficient of restitution. When the slip 
at the colliding end stopped during compression (0 deg -< ¢ 
< 75 deg and ~-~* < T*), kinematic definition lead to the lowest 
and kinetic definition lead the highest energy losses. When the 

slip stopped at the maximum compression ( ¢  = 75 deg and 
r y  = Tt),  all definitions gave the same results. Yet, when the 
slip stopped in the restitution phase (75 deg < ~b < 109 deg 
and T ~* > 7-*), the kinematic definition lead to the highest and 
the kinetic definition lead to the lowest energy losses. 

Next we focused on the difference among planar and three- 
dimensional solutions. This characterization is important be- 
cause in many applications the collision may be approximated 
as a planar event (an attractive option given the simplicity of 
planar solutions). Yet practically every real problem is three 
dimensional. We observed that for small perturbations (up to 6 
= 10 deg), the difference among the planar and three-dimen- 
sional results were insignificant. In this case it appeared that 
assumption of planar collisions can be justified for nearly two- 
dimensional collisions. 

ii Effect of Slip at the Noncolliding End. When slip rever- 
sal occurred at the colliding end, the solutions that were ob- 
tained by using the three definitions of the coefficient of restitu- 
tion lead to different results. Then one interesting aspect of the 
present problem was the effect of slip reversals at the noncollid- 
ing end A0, on the solutions obtained using the three definitions 
of the coefficient of restitution. 

We selected the following pre-impact generalized coordinate 
and velocity vectors to study the problem: 

q =  {O, O, O, O, Tr - ¢, 6, 0, ¢, 6, 0, 37r/2 - ¢¢, 6} T 

and 

u ( 0 ) =  {0.02 ~ , 0 ,  0, 0 , - 0 . 1  ra____d,s 

0, 0, - 0 .2  ra___ds ' O, O, -0 .3  ra___ds ' O) T" 

To simplify the analysis we kept the problem planar by letting 
6 = 0 deg. The results computed for 90 deg _< ¢ _< 180 deg 
(see Fig. 4) revealed that solutions obtained for the three defi- 
nitions of the coefficient of restitution differed only when the 
slippage in the colliding end  reversed or stopped during the 
collision period. As we observed from the shaded regions of 
Fig. 4, when slip reversal was only present of the noncolliding 
end the solutions were identical. Thus, we concluded that the 
changes in the slip direction at noncolliding ends did not change 
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the results obtained by using different definitions of the coeffi- 
cient of restitution. 

iii Rebounds at the Noncolliding End. Finally, we studied 
the rebounds at the noncolliding end. We considered the results 
obtained for the following pre-impact conditions: 

q =  { O, O, O, O, Tr - qb, 6, 0, qb, & O, 37r/ 2 - ~b, 6 } r 

and 

u(0)  = {0, 0, 0, 0, -0 .1 ,  0, 0, -0 .2 ,  0, 0, -0 .3,  0} r ra__d 
S 

The numerical analyses were conducted for 90 deg < ~b < 180 
deg and 6 = 0 deg, 10 deg, and 30 deg. We considered the 

v 

110 130 150 170 

~ [ d e g r e ~ ]  

Fig. 4 Energy loss, tangential velocity at A,  and tangential at Ao 

Journal of Applied Mechanics 

rebound velocities and normal impulses at the end Ao (see Fig. 
5). With the exception of the shaded interval, either the rebound 
velocity or the normal impulse was zero for any given collision. 
Two transition regions regarding the rebounds at the noncollid- 
ing end, Ao were observed. The first transition (~b ~ 101 deg) 
occurred through a single point where the normal rebound ve- 
locity and impulse were simultaneously equal to zero. The re- 
bound without interaction was observed for ~b < 101 deg and 
interaction without rebound was observed for ~b > 101 deg. 
During the second transition (the shaded interval), however, 
an intermediate region was observed such that the chain re- 
bounded after it interacted with the surface (159 deg -< ~b < 
168 deg). The main difference between the two transitions were 
the slip conditions at Ao during collision. For the former case, 
the noncolliding end did not slip when interacting with the 
surface. For the latter case, however, the end was slipping when 
it was interacting with the surface. 

6 Conclusion 

This paper considers the multicontact, rigid-body collisions 
of spatial, kinematic chains in the presence of friction. The 
solution techniques are based onthe  differential formulation of 
the equations of impact. Full details of a procedure to solve 
three-dimensional, multicontact collision problems are pre- 
sented. The procedure can be used to solve the problem by 
utilizing the kinematic (Newton, 1686), kinetic (Poisson, 
1817 ), and the energetic (Stronge 1990) definitions of the coef- 
ficient of restitution. 

The numerical results of the collisions of a three link chain, 
with two contact points were utilized to investigate several as- 
pects of the solutions obtained using the three definitions of 
the coefficient of restitution. We observed that the kinematic 
definition lead to paradoxical results regarding energy loss dur- 
ing collision (energy gain as a result of collision). This behavior 
was present in planar and spatial solutions, We also observed 
that the energy loss predicted by the energetic definition of the 
coefficient of restitution always lied between the losses pre- 
dicted by the other two definitions. One notable aspect of the 
results was that the three definitions lead to identical results 
when the colliding end slipped continuously during collision or 
when it stopped slipping at the instant of maximum compres- 
sion. Furthermore, the kinetic definition predicted the greatest 
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energy losses when the slip stopped during compression and 
the least energy losses when the slip stopped during the restitu- 
tion phase. 

The slip conditions at the noncolliding end did not cause 
the solutions obtained by the three definitions of coefficient 
restitution to differ. Yet the slippage at this end was the primary 
determinant in the transitions that occurred from a rebounding 
to a nonrebounding configuration at the noncolliding end. When 
the end did not slip, we observed that there is convergence point 
where the end does not rebound and does not interact with 
surface (i.e., zero normal velocity and zero normal impulse). 
When the end slipped, the transition occurred over an interval 
where the end rebounds with interaction with the surface (i.e., 
nonzero normal velocity and nonzero normal impulse). If the 
brief occurrence of the latter type of transition regions was 
overlooked, we might have concluded that the proposed solu- 
tions methods generally predicted that the rebound at the non- 
colliding end only occurs without interaction with the surface. 
When the end rebounds, however, it attains a velocity that is 
directed away from the contact surface at the onset of collision 
and never interacts with it during the entire impact period. 
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A Finite Elastoplastic 
Constitutive Formulation With 
New Co-rotational Stress-Rate 
and Strain-Hardening Rule 
A constitutive model for  finite elastoplastic deformations is presented. This model 
incorporates two novel features: first, a strain-hardening law that is applicable to 
complex loading paths and histories; and second, an objective stress-rate measure 
that is based on the spin of  an orthogonal triad of  material unit vectors which 
instantaneously coincides with the principal directions of  the stress tensor. Problems 
of  shear superposed on triaxial tension, cyclic shear deformation, and biaxial nonpro- 
portional loading are studied. It is shown that realistic predictions for the aforemen- 
tioned problems are obtained by using the proposed constitutive model. 

1 Introduction 
Metals exhibit a rather complex elastoplastic behavior under 

different loading paths or histories. The classical isotropic or 
kinematic-hardening models are not sufficient to properly de- 
scribe the observed material behavior. Consequently, a number 
of elastoplastic constitutive models have been proposed in re- 
cent years. They include so-called unified models (viscoplastic 
models): Miller (1976), Krempl et al. (1986), Chaboche 
(1989), and Moosbrugger and McDowell (1990); and two- or 
multi-surface models: Mroz (1967), Dafalias and Popov 
(1976), McDowell (1985), and Ellyin and Xia (1989), among 
others. However, most of these models are formulated within 
the assumption of infinitesimal strains. 

In the case of finite elastoplastic constitutive theories, there 
are some disagreements among various investigators on a num- 
ber of important issues. A comprehensive review regarding 
these issues and the state of finite plasticity, up to its date of 
publication, is given by Naghdi (1990). It contains a list of 
major contributors in the field and, due to space limitation, they 
are not repeated herein. It is not the purpose of[he present paper 
to discuss general issues such as the suitable decomposition of 
the total strain rate, etc., which are amply discussed elsewhere, 
e.g., see Naghdi (1990) for further references. Instead, the ob- 
jective of this paper is to extend in a straightforward manner, 
a recently developed elastoplastic constitutive model for small 
deformations to the finite deformation range. This can be 
achieved because most of the basic ideas and features of a small 
deformation theory can be extended to the finite deformation 
range with proper care. The proposed model incorporates two 
recent contributions by the authors: a comprehensive strain- 
hardening law applicable to complex loading path and histories, 
Ellyin and Xia (1989), and an objective stress-rate, Xia and 
Ellyin (1993). The latter provides a more realistic prediction 
for problems involving dominant shear stress or shear deforma- 
tions. The model is developed mainly for polycrystalline metals 
in which relatively small elastic deformation takes place and 
von Mises yield condition is assumed to hold. 
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After a general description of the model in Section 2, three 
types of problems are considered: (a) shear superposed on 
triaxial tension, (h) cyclic shear deformation, and (c) biaxial 
nonproportional loading. The proposed constitutive model fur- 
nishes satisfactory predictions for these examples. This prompts 
us to recommend the use of the proposed model for practical 
engineering problems. 

2.1 General  Form of the Constitutive Equation. The 
present model is formulated in the Eulerian reference frame, 
i.e., the constitutive relation has the basic form 

r = f ( D ,  ~') (1) 

where D is the spatial strain rate, which is defined as the sym- 
metric part of the velocity gradient, ~- is the Kirchhoff stress, 

:¢ , . , 
and 7 is an objective measure of the stress rate. 

Two types of hypersurfaces are introduced in the Kirchhoff 
stress space, a yield surface and a stress memory surface, 

6y = f ( ¢  - a) - qZ = 0 (2) 

~b,~ = f ( 7 - / 3 ) - R  2 = 0. (3) 

In the above, a and q specify the center and radius of the yield 
surface. The size of the stress memory, R, is determined by the 
maximum equivalent stress level experienced by the material 
during its previous loading history, i.e., R = ~-~q ...... The equiva- 
lent stress is defined as ~-~q = [3/2 s : s] 1/2, where s is the 
deviatoric part of ~-. fl is the center of the memory surface, 
which will be discussed in Subsection 2.3. 

By introducing the stress memory surface, two types of plas-'  
tic loading are distinguished (see Fig. 1 (a ) ) .  The first type is 
called monotonic loading (ML),  in which the stress memory 
surface expands with the movement of the yield surface and 
the two surfaces remain tangent to each other at the current 
loading point (Fig. 1 (a ) ,  path AB).  The second type is termed 
plastic reloading (RL).  After an elastic unloading (Fig. 1 (a ) ,  
path BC) plastic deformation takes place again. In this case, 
however, the current loading point is inside the stress memory 
surface and the size of the stress memory surface does not 
change during this loading stage (Fig. 1 (a ) ,  path CD). When 
the current stress point touches the memory surface and moves 
it through the expansion, we incorporate the latter stage into 
the ML case. 
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It is assumed that the spatial strain rate can be decomposed 
into elastic and plastic parts, ~ i.e., 

D = D e + D l', (4 )  

The elastic strain rate is related to the objective stress rate by 
the generalized Hooke's law, and the plastic strain rate is ob- 
tained from an associated flow rule related to the von Mises 
yield surface 3J2 = 3/2 g : g, thus we obtain, 

D = ~ [(1 + u)~" - u(tr ~)1] + - -  - (~ : g )g  (5) 
4q 2 

where E, u are the elastic constants, g is the deviatofic part of 
r~ = ~. _ t~, and E, is the tangent modulus. The method of 
determining the tangent modulus will be described later. The 
inverse form of Eq. (5) can be obtained after some algebraic 
manipulation, yielding 

, E [-D + u ( t r D ) l  
- -  L ~ ' = l + u  1 - 2 u  

9 E - E, (D : g)g]  (6) 
2q 2 3E + (2u - 1)E, J 

which is in the form of Eq. ( 1 ). 

2.2 Evolution Rule of the Yield Surface. The evolution 
rule of the yield surface is different for the two plastic loading 
c a s e s .  

For the ML case, a Ziegler-type (1959) rule is adopted, 

a = /2(,r - a ) .  (7)  

For the RL case, a Mroz-type (1967) rule is used, 

a = / 2 ( ~ . , n  _ ~.) ( 8 )  

where ~.m is a point E, found on the stress memory surface, 
whose exterior normal is parallel to the outward normal at the 
current stre.ss point D, (see Fig. 1 (a ) ) .  By using the consistency 
condition, q~y = 0 and one of the Eqs. (7) or (8),  the scalar/2 
can be determined. 

2.3 Determinat ion of  the Center of  Stress Memory  Sur- 
face,/3.  As mentioned above, in the ML case, the stress mem- 
ory surface should be tangent to the yield surface at the current 

This type of decomposition is preferable in comparison to other forms, e.g., 
p that of  deformation gradient F = F~F ; see Naghdi (1990) for further discussion. 

stress point. To satisfy this condition, the/3 is determined from 
the following equations: 

Of(t" - / 3 )  (Of(~'S----~-). = k ~-~: 

'If(i-'  - a )  : q2, 
[ f ( ' r '  - /3) = R 2, 

(9) 

where ~-' is the current stress point. It is to be noted that for a 
proportional loading and within the small deformation range, 
/3 = 0, i.e., the stress memory surface is an isotropic one. 
However, for nonproportional loading or in the large deforma- 
tion case, the stress memory surface may become anisotropic, 
i.e.,/3 ~ 0 (see Section 4.2). Condition (9) is applied to the 
ML loading case only. For the RL loading case, the stress 
memory surface (R and/3) does not change since the current 
stress point is inside the memory surface. 

2.4 Description of  Transient  Hardening in the Cyclic 
Loading.  Experimental data indicate that the transient-hard- 
ening behavior of metals is usually reflected in two ways: one 
is in the change of the size of the yield surface, q, and the other 
is in the change of the tangent modulus, El. Both changes can 
be represented by the evolution of the uniaxial Kirchhoff stress- 
logarithmic strain curve. As shown in Fig. 2, we can imagine 
that the uniaxial curve evolves from a virgin state to a saturated 
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Fig. 2 Un iax ia l  curve evolving from a virgin state to a saturated state 
with increasing Ip 
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state with increasing accumulated plastic strain, l,, which can 
be defined as 

Assuming an exponential function form for the evolution of 
the uniaxial curve, we can write the following equations: 

~OI-~=k(q~,-q) ,  
( l l )  

|OE, k ~ p ' =  (E, . , , -  E,), 

where q,,, E,.,, are the saturated values of q and Et, which are 
determined from the saturated uniaxial curve. The initial values 
qo, E,.o are determined from the virgin uniaxial curve. Equation 
(11 ) is applied for both ML and RL cases. 

To describe the additional hardening in the nonpropolrtional 
cyclic loading, a strain memory surface in the Lagrangian strain 
space has been introduced in the model. Since this type of 
behavior is not studied in the examples chosen in the present 
paper (Sections 3 -5 ) ,  its description is omitted herein. Inter- 
ested readers are encouraged to consult Ellyin and Xia (1989, 
1991). 

2.5 Determination of the Tangent Modulus. The calcu- 
lation of the tangent modulus, E,, is also different for the two 
types of plastic loading. In the ML case, E, is directly defined 
as a function of the equivalent stress 7-eq and the function relation 
is obtained from the current uniaxial stress-strain curve. In the 
RL case, we can find a ratio in the stress space (see Fig. 1 (a)) ,  
r = 6~/62, where 6t is the distance measured from the loading 
point D, to the point E on the memory surface, and 62 is the 
distance from the point of the onset of the plastic flow C, to 
the point D. For every ratio r, a corresponding point on the 
uniaxial unloading branch can be found (see Fig. 1 (b)).  Mas- 
ing's (1926) assumption is used which states that the uniaxial 
unloading stress-strain branch can be described by the equation 
Ae = 2F(A~-/2),  which is the magnification of the curve, e 
= F(~-), by a factor of two (see Fig. 1 (b)).  The current tangent 
modulus can then be calculated from the uniaxial stress-strain 
curve. 

2.6 Objective Stress Rate. In extending a small deforma- 
tion theory to a finite deformation, an objective rate of stress 
tensor should be adopted instead of its material derivative. The 
most popular rate measure used in the past has been the Jaumann 
rate. However, Dienes (1979), Nagtegaal and de Jong (1982) 
showed that the Jaumann rate furnishes an unrealistic oscillatory 
response in simple shear deformation for a hypoelastic or a 
kinematically hardening plastic material model. Attempts have 
been made since then to find an alternative objective stress rate 
which provides a more realistic prediction without changing the 
basic form of constitutive equations for the material investi- 
gated; see for example Xia and Ellyin (1993) for a list of 
references. These alternative stress rates have provided a mono- 
tonically increasing solution for the simple shear problem with 
prescribed deformation condition. However, when the problem 
of prescribed shear stress with or without superposed triaxial 
normal stresses (see Section 3) is considered, one finds that 
the Jaumann rate, as well as other proposed rates, still furnish 
physically unrealistic solutions for this example. 

Recently, an objective stress rate has been proposed by Xia 
and Ellyin (1993), in the form of 

,r = ~" + ~W - W~', (12) 

in which a dot represents the material rate, and 

principal stress direction 

T2Z  

T21 

I-2; T12 

T * i  

0 ~ ~ 1 X1 

Fig. 3 Undeformed and deformed state of a unit block. Note that the 
principal stress direction is not changed for the stress-controlled shear 
superposed on triaxial tension provided the applied stress components 
increase proportionally. 

W = W + (D7 - "/'D)/(~Teq), (13) 

where W is the antisymmetric part of the velocity gradient, or 
the spin, and ( is a constant. The present stress rate, based on 
the spin of a material triad that coincides momentarily with 
principal stress axes, accounts for the general stress state in a 
weighted average sense that emphasizes the contributions of the 
dominant principal stress. Detailed discussion and derivation of 
Eq. (13) is given in Xia and Ellyin (1993). It has been brought 
to our attention by a reviewer that the second term of the right 
side of Eq. (13) could be envisaged as a special case of a 
general representation of skew-symmetric tensor-valued iso- 
tropic function with two tensor variables, introduced by Dafalias 
(1985b, Eq. (27)), which was first derived mathematically by 
Wang (1970, Table II) in the form of 

~71(atr - t r a )  + ~2(a2o - - t r a  2) + r/3(ao "2 - ~r2a) 

+ ~74(atra 2 - aZo, a) + ~5(tratr 2 - tr2atr). (14) 

In Dafalias' work (1985a, b), the plastic spin is further defined 
by the first term of the above equation and by choosing a = re, 
tr = s - re, where s, t~ are deviatoric stress and back stress 
tensors. In the present work, a = D and tr = ~-. In addition, 
our derivation of Eqs. (12)-(13) was not based on the concept 
of plastic spin. 

3 Stress-Control led Shear Superposed on Triaxial 
Normal  Stresses 

The stress-controlled simple shear or "unconstrained shear" 
was studied by a few researchers (see Lee and Weithermer, 
1983; Paulun and Pecherski, 1985; Harren et al. 1989). In the 
following, we will study the more general problems of stress- 
controlled shear with the superposed triaxial normal stresses. 

Consider a body whose configuration in the reference state 
is a unit block, Fig. 3. Let the block he subjected to a homoge- 
neous stress state T1~, ~-22, T33 and ~-lz = T2~. With an additional 
constraint condition that the point O is fixed and line OA does 
not rotate. The corresponding homogeneous deformation state 
can be assumed to be 

xl = a(X] + eX2) 

X 2 bX2 ( 15 ) 

x3 cX3 

where X~ and xi denote the coordinates of material points in the 
undeformed and deformed states, respectively. Suppose that the 
applied stress components increase proportionally, i.e., ~-,~/~- J2, 
7-22/7t2 and 733/T12 keep constant. Thus, the direction of the 
principal stress is fixed (see Fig. 3) since 

tan 20 - - -  - const. (16) 
T i  I - -  T22  

where 0 is the angle measured from the xl-axis. The initially 
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Fig. 4 Stress-controlled shear superposed on triaxial tension. (a) ~t= versus tan ~b, (b) q'12 versus b,  (c) ~r12 versus a 
(see Fig, 3 for notation). 

vertical faces of the block, OC, BA, will rotate under the action 
of the fixed direction stress. However, physical intuition leads 
us to believe that this rotation may tend toward a limiting value 
under a monotonically increasing but fixed directional stress. 
Let us first consider an elastic solution of the problem. For an 
arbitrary isotropic elastic material, compressible or incompress- 
ible, linear or nonlinear, Wineman and Gandhi (1984) have 
obtained a universal relation for the present problem expressed 
a s  

7-,  - 7-:2 = a 2 / b :  + tan z ~b - 1 
(17) 

r]2 tan qb 

By comparing Eqs. (16) and (17), one would find that if the 
ratio a / b  tends to zero with increasing applied stress, then the 
rotation ~ will have a limit value of 7r/2 - 0, i.e., the initially 
vertical faces OC. BA will eventually align themselves with the 
principal stress direction. 

Next we consider an elastoplastic material For a monotonic 
proportional loading (without unloading), we would expect to 
observe a somewhat similar response to that of the path-inde- 
pendent elastic material. Based on the deformation mode, Eq. 
( 15 ), the constitutive equations (5), (7), (12), and ( 13 ), a set 
of eight differential equations for the variables a, b, c, e, c~]], 
0/22 , 0/33 , and 0/12 can be derived. They are not produced here 
due to space limitation. Numerical integration was carried out 
to obtain solution for the posed problem. For the sake of simplic- 
ity, q and E, are assumed to be constant (bilinear kinematic- 
hardening material). The material constants are taken to be 

E =  105MPa, u =0.25,  q = 2 0 7 M P a ,  

E , = 3 1 0 M P a ,  ~ = 2 / ( 3 .  

Three combinations of loading are considered: 

(i) "7"11 = T I :  :#  0 ,  7"22 = 7"33 = 0 ,  

( i i )  7"12 ~ 0 ,  T l l  = 7-22 "~ 7-33 = 0 ,  

(iii) 7"22 = 7"12 ~ 0 ,  7"33 "-~ 7"11 = 0 .  

The results for all three cases are displayed in Fig. 4. It is to 
be noted that in all three cases, the principal stress directions 
are fixed in 0i = 31.7, 45, 58.3 deg, respectively. The results 
show that the rotation of the vertical surfaces OC or AB, that 
is the angle ~b tends towards a limiting value. This value for all 
cases is exactly equal to ~bi = 90 - 0i deg. This implies that 
at the limit, b --~ w, a --~ 0, and the unit block will deform into 
a slender bar along the principal stress direction. Thus we obtain 
the same trend as the arbitrary isotropic elastic materials. Fur- 
ther numerical experiments indicate the following interesting 
features of the solution: 

(a) For any other combination of stress components, the 

limit value of ~ is always equal to 90-0 deg as long 
as the constant ~ is taken to be 2/~/3. 

(b) The limit value of ~b is only dependent on the constant 
~, a change in other material constants (E, v, E,, q) 
does not change the limit value. With different value 
of ~, the limiting value will vary proportionally. Fur- 
thermore, even if the value ~ changes first and follow- 
ing that asymptotically reaches a fixed value, the limit 
of ~b is only dependent on the latter fixed value. 

A constant value of ~ = 2/~/3 will be used for all the 
examples in Sections 3-5 in order to obtain the same 
limiting value of ~b as for the arbitrary isotropic elastic 
materials. However, to obtain a better fit to experimen- 
tal data, it is still possible to adjust the value of ~ for 
different stages of the large deformation or for differ- 
ent materials. 

A comparative study is also carried out by using other pro- 
posed objective stress rates for the same problem. For example, 
the prediction for the case (ii) (pure shear stress) by other 
objective rates is shown in Fig. 5. For the Jaumann rate it is 
found that when loading increases to 7-]2/q ~- 1.05, an instability 
occurs and the value of tan ~b drastically reduces to zero. The 
result by using Dafalias rate (1985a) (W = W + p(Da - 
aeD), p = 0.5/~/tr [ (Da - o~D) 2 ] ) is close to our result up to 
7 - J q  = 3. When the loading is increased further, the Dafalias' 
rate, as well as other proposed rates, predicts an increasing tan 
~b to infinity, whereas only the present rate predicts a limited 
value of tan q5 = 1. 

For other combinations of shear stress and normal stress, the 
trend is the same. For the Jaumann rate an instability occurs 
when loading increases to a certain value. For other proposed 
rates, the value of tan q~ tends to infinity as the shear stress 
7-i2 becomes large, irrespective of the combination of stress 
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Fig, 5 Comparison of predicted results for unconstrained shear by 
various proposed objective stress-rates, (a) ¢12 versus tan ~, (b) ~'12 
versus b. 
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Fig. 6 Stress responses for constrained cyclic shear; (a) first two cycles 
by the present model, (b) stabilized response by the present model, (c) 
result by using classical Ziegler hardening rule. No stabilized response is 
obtained by the latter. 
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Fig, 7 Deformation response for unconstrained cyclic shear by the present 
model. (a) r2qj versus ~1 (b)  r /R versus ¢, and z /Z  versus ~; (c) relative position 
of the yield and memory surfaces. The deformation response does not stabi- 
l i ze - the  swift effect is not reversible. 

components. This implies that the vertical surface of the cube 
always rotates 90 deg and the block collapses onto the (Xl, 
X3)-plane under the action of monotonically increasing stress 
with any fixed principal direction, 0 (see Fig. 3). From the 
physical intuition, and the aforementioned results for the iso- 
tropic elastic material models, it follows that the predictions of 
other proposed rates are inappropriate in this case. 

Reliable experimental data for the stress controlled shear to 
a large enough shear strain are limited. Such tests are usually 
performed on thin-walled tubes, and to avoid buckling, the shear 
strain cannot reach a high value. In this respect the experimental 
investigations on large deformation by Bell (1983, 1990) are 
worth noting. For the sake of comparison, we choose one of 
his simple twist tests on aluminum tubes with the largest shear 
strain (see Bell, 1990, Table 1). The measured values of 0/, 6, 
and y (corresponding to a, b, and tan 45 in our formulation) 
are 0.9963, 1.000, and 0.250, respectively. Based on the polar 
decomposition of the deformation gradient F = RV, the rigid- 
body rotation of principal axes and the trace of V are 
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Fig. 8 Deformation response for unconstrained cyclic shear by the clas- 
sical Ziegler's hardening rule. (a) r2~ versus ~, (b) r /R versus ~, and z~ 
Z versus ~. The amplitude of shear strain decreases after each reversal 
of shear stress. 

= arc tan [-0/3'/(0/ + 6)] = -7.1119 deg, 

tr V = 0/ + (0/ + 6) sec O = 3.0081. 

Our calculated results by using the above chosen material con- 
stants are: a = 0.998575, b = 1.00143, tan 45 = 0.249996, 0 
= -7.11484 deg and tr V = 3.01410. If only these numbers 
are compared then one would conclude that the predictions of 
the present model are quite good. However, the problem is that 
the shear deformation of the test is still not large enough to 
distinguish between different constitutive models. For example, 
if we use the conventional Jaumann rate ((  = ~ in Eq. 13), 
the calculated results are a = 0.998558, b = 1.00144, tan 45 = 
0.25001, ~b = -7.11488 deg, and tr V = 3.014074. Thus the 
difference between the two co-rotational rates (as well as most 
of the other proposed formulations) cannot be evaluated at shear 
strain of the order reported in Bell's experiments. 

4 Response of a Thin-Walled Cylindrical Tube 
Subjected to Cyclic Torsional Loading 

Two types of applied cyclic loading are considered. The first 
type is constrained shear, i.e., deformation of the thin-walled 
tube is controlled by 

r = R ,  0 = ® +~b(t)Z, z = Z  (18) 

where 0(t)  = ~b, cos t, and R, ®, Z and r, 0, z are cylindrical 
polar coordinates of a material point in the undeformed and 
deformed configurations, respectively. The second type of load- 
ing is termed unconstrained shear, for which only a pair of 
cyclic shear stress, 3- = % cos t, is applied at two ends of the 
tube, and there is no constraint in the longitudinal and radial 
directions. 

4.1 Constrained Cyclic Shear. By using Eq. (18) and 
constitutive Eqs. (6)- (8) ,  (12), and (13), it is found that 3-22 

- -3 -33 ,  0/22 = --0/33~ and 3-11 "~ 3-12 ~" 3-13 : 0/11 : O/12 ~ 0/13 
= 0, when loading from a virgin state. There are four differential 
equations for r22, r23, 0/22, and a23 with respect to variable 0. 
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Fig. 9 Biexial nonproportional Ioading~tested and predicted results 

They are not produced here due to space limitation. The numeri- 
cal results shown in Fig. 6 are for a tube with a mean radius R 
= 1, subjected to a cyclic twist with ~b = 1 • cos t, having the 
same material constants as that of the example in Section 3. It is 
seen that the stress response (shear stress 7-23 and circumferential 
stress r22 and longitudinal stress r33) reaches a stabilized state 
after the first two cycles. This is because the equivalent stress 
reaches its maximum value after one and a quarter cycles at 
point 5 (Fig. 6(a)) ,  thereafter the yield surface moves inside 
the stress memory surface and a stable cyclic response is ob, 
tained due to the evolution rule for the RL case, Eq. (8). The 
predicted result using only Ziegler's (1959) kinematic harden- 
ing rule, Eq. (7), which does not distinguish between the mono- 
tonic and reloading cases, is shown in Fig. 6(c). It is to be 
noted that the stress response does not reach a stable state, 
especially for 7"22 and 7"33. 

4.2 Unconstrained Cyclic Shear. The following defor- 
mation mode is assumed for this stress-controlled cyclic load- 
ing, 7" = T a COS t; 

r = f [ R ,  O(t)], 0 = ® + O( t )Z ,  z = k [ O ( t ) ] Z .  (19) 

Again, substituting (19) into the constitutive Eqs. (6) - (8) ,  
(12), (13) we find that a22 = -a33, a ,  = a n  = a13 = 0, and 
f / r  = - ~ / k ,  when loading from a virgin state. The deformation 
is isochoric, that is the thickness of the thin-walled tube does 
not change and the value of rz  keeps constant during the loading 
history. Four differential equations for r, O, ~ 2 2 ,  and ~23 with 
respect to variable 7- are obtained. The numerical results with 
7-, = 180 MPa and the same material constants as the previous 
example are shown in Fig. 7. 

It is seen that with the constant applied stress amplitude, 
the deformation response cannot reach a cyclically stable state. 
Amplitude of the shear strain, r2~ (it corresponds to the tan ~b 
in the examples of Section 3) increases after each reversal of 

the shear stress (Fig. 7(a)) .  The r decreases and the z increases 
all the time regardless of the shear stress reversal (Fig. 7(b)) .  
This implies that the Swift effect is not reversible. Such a re- 
sponse is to be expected. We twist two tubes in opposite direc- 
tions (clockwise and counterclockwise), physically the re- 
sponse will not differ if the material properties are the same in 
these two opposite directions. Figure 7(c) shows the relative 
position of the yield and memory surfaces at the instance of r23 
= T a when loading from the virgin state. It is seen that due to 
the large deformation, the component cez2 is no longer zero. To 
keep the yield surface tangent to the memory surface at the 
loading point (0, r , ) ,  the coordinates of the centre of the mem- 
ory surface (/~22, ~23) must have certain nonzero values: For 
the sake of comparison, the predicted results by using only 
Ziegler's hardening rule are shown in Fig. 8. The range of r2@ 
decreases after each reversal of the shear stress. The r values 
do not monotonically decrease in each half cycle. 

To the best of our knowledge, no experimental results are 
available for large cyclic torsional deformation to compare with 
the above predictions. However, comparing the predicted re- 
sponse by two different hardening rules, it is seen that the 
present model predicts more reasonable results. 

5 Nonproportional Biaxial Loading 
To compare the predictions with the experimental data, we 

use two biaxial nonproportional loading test results taken from 
E1-Rafei (1980). These tests were performed on thin-walled 
tubular specimens of C1026 steel. The loading paths for the 
two tests are shown in the insets of Figs. 9 and 10. Our predicted 
results are based on the initial uniaxial curve and saturated 
uniaxial curve as shown in Fig. 2. From these curves interpola- 
tion tables relating the tangent modulus, E,, to the equivalent 
stress, req , are obtained. Other material constants are taken to 
be 
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E =  2.1 × 105MPa, u =0.29 ,  qo = 175MPa, 

q a =  275MPa, ~ = 10. 

The predicted results by the present model, as well as that of 
Ziegler's kinematical hardening, are shown in Figs. 9 and I0. 
It is seen that predictions by the present model are closer to the 
experimental results, especially for the reloading path following 
the elastic unloading. 

At this stage there are no suitable finite deformation experi- 
mental data with complex loading paths available; thus further 
advantages of the proposed hardening model have not been 
fully demonstrated. Interested readers are referred to Ellyin and 
Xia (1989, 1991) where examples are provided with various 
loading paths and histories within the small strain ranges. 

6 Conclus ions  

A constitutive model is formulated for finite elastoplastic 
deformation. The model incorporates two novel features, viz. a 
comprehensive hardening law applicable to complex loading 
paths and histories, and an objective stress-rate measure which 
provides more realistic responses for problems involving domi- 
nant shear stress or shear deformation. The predicted results for 
problems of shear superposed on triaxial tension (Section 3) 
shows the superiority of the proposed objective stress rate, 
whereas the problems of cyclic shear deformation of tubes and 
biaxial nonproportional loading (Sections 4 and 5) demonstrate 
the advantages of the hardening law. These examples indicate 
that the present constitutive model can be used to solve other 
engineering problems with confidence. 

7 A c k n o w l e d g m e n t  

We gratefully acknowledge the support provided by the Natu- 
ral Sciences and Engineering Research Council of Canada. 

References  
Bell, J. F.. 1983, "Continuum Plasticity at Finite Strain for Stress Path of 

Arbitrary Composition and Direction," Archive for Rational Mechanics and Anal- 
ysis, Vol. 84, pp. 139-170. 

Bell, J. F., 1990, "Material Objectivity in an Experimentally Based Incremental 
Theory of Large Finite Plastic Strain," hzternational Journal of Plasticity, Vol. 
6, pp. 293-314. 

Chaboche, J. L., 1989, "Constitutive Equations for Cyclic Plasticity and Cyclic 
Viscoplasticity," International Journal of Plasticity, Vol. 5, pp. 247-302. 

Dafalias, Y. F., 1985a, "A Missing Link in the Macroscopic Constitutive 
Formulation of Large Plastic Deformation," Plasticity Today, Modelling, Methods 
and Application, A. Sawczuk and G. Bianchi, eds., Elsevier, London, pp. 135- 
151. 

Dafalias, Y. F., 1985b, "The Plastic Spin," ASME JOURNAL OF APPLIED ME- 
CHANICS, Vol, 52, pp. 865-871. 

Dafalias, Y. F., and Popov, E. P., 1976, "Plastic Internal Variables Formalism 
of Cyclic Plasticity," ASME JOURNAL OF APPLIED MECHANICS, Vol. 43, pp. 645- 
651. 

Dienes, J. K., 1979, "On the Analysis of Rotation and Stress Rate in Deforming 
Bodies," Acta Mechanica, Vol. 32, pp. 217-232. 

EI-Rafei, A. M., 1980, "Etude experimentale et comparative des aciers ecouris- 
sables soumis a des deformation finies," M.Sc. thesis, IV-258, Universit6 de 
Sherbrooke, Sherbrooke, PQ, Canada. 

Ellyin, F., and Xia, Z., 1989, "A Rate-Independent Constitutive Model for 
Transient Nonproportional Loading," Journal of Mechanics and Physics of Sol- 
ida', Vol. 37, pp. 71-91. 

Ellyin, F., and Xia, Z., 1991, "A Rate-Dependent Inelastic Constitutive 
Model--Part  I: Elastic-Plastic Flow," ASME Journal of Engineering Materials 
and Technology, Vol. 113, pp. 314-323. 

Green, A. E., and Naghdi, P. M., 1965, "A General Theory of an Elastic- 
Plastic Continuum," Archive for Rational Mechanics and Analysis', Vol. 18, pp. 
251-281. 

Harren, S., Lowe, T. C., Asaro, R. J., and Needleman, A., 1989, "Analysis of 
Large-Strain Shear in Rate-Dependent Face-Centred Cubic Polycrystals: Correla- 
tion of Micro- and Macromechanics," Philosophical Transactions of Royal Soci- 
ety of London, Vol. A328, pp. 493-500. 

Krempl, E., McMahon, J. J., and Yao, D., 1986, "Viscoplasticity Based on 
Overstress with a Differential Growth Law for the Equilibrium Stress," Mechanics 
of Materials, Vol. 5, pp. 35-48. 

Lee, E. H., and Wertheimer, T. B., 1983, "Deformation Analysis of Simple 
Shear Loading with Anisotropic Hardening in Finite Deformation Plasticity," 
Recent Developments in Computing Methods for Nonlinear Solids and Structural 
Mechanics, ASME Applied Mechanics Div. Symp., June 20-22, pp. 297-310. 

Masing, G., 1926, "Eigenspannungen und Verfestigung beim Messing," Pro- 
ceedings of 2nd International Congress of Applied Mechanics, Zurich, pp. 332- 
335. 

McDowell, D. L., 1985, "A Two Surface Model for Transient Nonproportional 
Cyclic Plasticity: Part I--Development of Appropriate Equations; Part I I - -Com- 
parison of Theory with Experiments," ASME JOURNAL OF APPLIED MECHANICS, 
Vol. 52, pp. 298-308. 

Miller, A. K., 1976, "An Inelastic Constitutive Model for Monotonic, Cyclic 
and Creep Deformation: Part I--Equations Development and Analytical Proce- 
dures," ASME Journal of Engineering Materials and Technology, Vol. 99, pp. 
97-105. 

Moosbrugger, J. C., and McDowell, D. L., 1990, "A Rate-Dependent Bounding 
Surface Model with a Generalized Image Point for Cyclic Nonproportional Vis- 
coplasticity," Journal of Mechanics and Physics of Solids, Vol. 38, pp. 627-  
656. 

Mroz, Z., 1967, "An Attempt to Describe the Behaviour of Metals under Cyclic 
Loads Using a More General Work Hardening Model," Acta Mechanica, Vol. 7, 
pp. 199-212. 

Nagtegall, J. C., and de Jong, J. E., 1982, "Some Aspects of Non-lsotropic 
Work-Hardening in Finite Strain Plasticity," Proceedings of the Workshop on 
Plasticity of Metals at Finite Strain: Theory, Experiment and Computation, E. H. 
Lee and R. L. Mallet, eds., R.P.I., Troy, NY, pp. 65-102. 

Paulun, J. E., and Pecherski, R. B., 1985, "Study of Corotational Rates for 
Kinematic Hardening in Finite Deformation Plasticity," Archives of Mechanics, 
Vol. 37, pp. 661-667. 

Wang, C. C., 1970, "A  New Representation Theorem for Isotropic Functions: 
An Answer to Professor G. F. Smith's Criticism of My Paper on Representations 
for Isotropic Functions," Archive for Rational Mechanics and Analysis, Vol. 36, 
pp. 198-223. 

Wineman, A., and Gandhi, M., 1984, "On Local and Global Universal Rela- 
tions in Elasticity," Journal of Elasticity, Vol. 14, pp. 97-102. 

Xia, Z., and Ellyin, F., 1993, "A Stress Rate Measure for Finite Elastic Plastic 
Deformation," Acta Mechanica, Vol. 98, pp. 1-14. 

Ziegler, H., 1959, "A Modification of Prager's Hardening Rule," Quarterly 
Journal of Applied Mathematics, Vol. 17, pp. 55-65. 

Journal of Applied Mechanics SEPTEMBER 1995, Vol. 62 / 739 

Downloaded 04 May 2010 to 171.66.16.28. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



V. Bhatt 

J. Koechling 

Sibley School of Mechanical 
and Aerospace Engineering, 

Cornell University, 
Ithaca, NY 14853-7501 

Partitioning the Parameter Space 
According to Different Behaviors 
During Three-Dimensional 
Impacts 
The equations of motion that define three-dimensional rigid,body impact with finite 
friction and restitution cannot be solved in a closed form. Previous work has shown that 
for general shapes and initial conditions, the direction of sliding velocity keeps changing 
continuously throughout the duration of impact, The flow patterns defined by the trace 
of the sliding velocity can be classified into a finite number of qualitatively distinct 
physical behavior. We identify three dimensionless parameters that completely specify 
the sliding behavior, and determine regions in this parameter space that correspond to 
each of the different flow patterns. The qualitative behavior during impact can now be 
determined based on the region which contains the parameters for a given impact 
configuration. The analysis is also used to study the sensitivity of the sliding behavior to 
changes in shape or configuration of the body and to rule out the occurrence of certain 
ambiguities in the post-sticking behavior during impact. 

I Introduction 
Routh (1877) first suggested a general rigid-body impact 

model that incorporated finite friction and restitution. He 
obtained a "closed-form" geometric solution for the case of a 
laminar body constrained to move in a plane. In extending 
Routh's model to the case of three-dimensional impact, Batlle 
and Condomines (1991), Stronge (1993), and Bhatt and 
Koechling (1993a, 1993b) have variously shown that for gen- 
eral shapes and initial conditions, the equations of motion do 
not have a closed-form solution, and need to be numerically 
integrated. 

Bhatt and Koechling (1994a, 1994b) study the qualitative 
behavior of the contact velocity during impact, by looking at 
the flow associated with the differential equations defining 
the velocity components. They analyze the flow in the tan- 
gent velocity space, and identify all possible qualitative slid- 
ing behavior during impact. The invariant directions lie along 
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the fixed points of the differential equations, and the direc- 
tion of flow on them heavily influences the global sliding 
behavior. Finer details of the flow like the local maxima and 
minima also lie along constant directions which are called the 
flow change directions. Both the invariant and the flow change 
directions are obtained as real roots of quartics, and are 
therefore finite in number. By considering all combinations 
of the number of invariant directions, the sign of flow along 
them, and the number of flow change directions, every possi- 
ble qualitative flow pattern for the sliding velocity can be 
enumerated. 

We identify the mass parameters at the point of impact 
with the qualitative flow patterns for sliding velocity pre- 
sented in Bhatt and Koechling (1994b). Three independent 
nondimensional parameters suffice to uniquely define the 
governing equations and consequently the flow patterns. By 
mapping each point in this parameter space to a flow pat- 
tern, the problem of determining the sliding behavior a priori 
can be reduced to the much simpler problem of finding the 
region which contains the contact parameters for a given 
impact configuration. 

We define three separate partitions of the parameter 
space. The first is based on the number of invariant direc- 
tions, the second on the number of invariant directions with 
flow directed outward, and the third according to the number 
of flow change directions. 

By analyzing the coefficients of the quartic for invariant 
directions, we show that there always exist two or four 
invariant directions for the flow. A partition of the parameter 
space is defined by the surface on which the number of 
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Fig. 1 Coordinate system for the rigid body. The x and y-axes are 
chosen to eliminate the cross-coupling term a12 In the tangential 
direction. 

invariant directions change from two to four, and we deter- 
mine the algebraic expression for it. The global flow behavior 
is influenced by the direction of flow on the invariant direc- 
tions, which can be either towards or away from the point of 
sticking. There can only be zero or one invariant directions 
with the flow directed outward, and the second surface of 
partition in the parameter space differentiates between these 
two cases. There can be four, two, or zero flow change 
directions, and the third surface of partition defines regions 
in the parameter space corresponding to each of these cases. 

Since the qualitative nature of the sliding velocity flow is 
uniquely defined by the number of invariant directions, in- 
variant directions with outflow, and the flow change direc- 
tions; by intersecting the three surfaces of partition defined 
above, we can divide the parameter space into regions with a 
one-to-one correspondence with the flow patterns. Bound- 
aries between these regions correspond to a transition be- 
tween flow patterns and represent the "bifurcation surfaces." 

Given a rigid body and its impact configuration, we can 
find the dimensionless parameters which identify it with a 
unique sliding behavior during impact. Sensitivity of the 
sliding behavior to changes in the mass distribution, or con- 
figuration, depends on the proximity of the mass parameters 
to the bifurcation surfaces. 

2 Flow in the Tangent Velocity Space 
In previous work Bhatt and Koechling (1994a, 1994b) 

identified the possible behavior of the sliding velocity during 
impact. Some relevant points from those articles are recapit- 
ulated here. 

2.1 Defining the Flow. Figure 1 shows the coordinate 
system for the impact problem. The z-axis defines the com- 
mon normal to the impacting surfaces, and the x and y axes 
define the common tangent plane. The impulse-momentum 
change law which governs the in2pact process is AV = M -~f', 
where V is the velocity vector, P the impulses, and M -  l the 
inverse inertia tensor, at the point of contact. Since the 
choice of orientation of the x and y-axes is arbitrary, we can 
choose them such that there is no coupling between the 
components of V and f~ along those two axes. If Rot(z, 0) is 
the matrix that rotates the coordinate system by 0 about the 
z-axis, we get 

AV = A-1P (1) 

AV = Rot(z,  0)A'V AP = Rot(z, 0 ) A I  ~ 

A -1 = Rot(z, 0 )M-1Ro t ( z ,  0) r. 

If aij  are the elements of A -1 and m i j  the elements of M-1,  

a12 = (mll  --,0'/22 ) cos 0 sin 0 + rnl2 cos 2 0 - m21 sin 2 0. 

To remove the coupling along the tangent axes, we need 
a~2 = 0, which is satisfied if 

0 = -~ atan (m22 _ mll)  + q-~ (2) 

where q is an integer, and we use the symmetry of M to set 
m12 = m2r In the transformed coordinates, the impulse- 
momentum relation for the sliding velocity are 

V x = Vxo + n i l e  x + a l 3 P  z 

Oy = Vy 0 + a22Py + a23P z (3) 

where vx, ve is the relative sliding velocity and Px, P , ,  Pz the 
net accumulated impulse at the point of contact. ~he sub- 
script 0 refers to the initial value of the contact velocity. 

Using Coulomb's law with a friction coefficient of /x, and 

the rescaling d r  = ( ~ /  ~ + Vy 2 ) d P  z, 

d P  x dPy 

d r  Vx d r  vy.  (4) 

If we e x ~ s  the sliding velocity in polar coordinates, v r 

= ~/v~ + v~ and v o = atan (Vy/Vx) ,  and differentiate Eq. (3) 
with respect to r, we get the following flow equations: 

dvr ( 
-- o r - - a l l  COS 2 V 0 - -  a22 sin 2 v o 

a13 a23 ) 
+ - -  COS v o + - -  sin v o (5) 

/x /x 

dv  0 a 23 
dr  (all a22 ) cos v 0 sin v 0 + cos v 0 /z 

a13 
sin v o . 

/x 

( 6 )  

2.2 Identifying the Parameter Space. The coefficients 
all, a22, al3 / /x ,  and a23/ix  in Eqs. (5)-(6) determine the 
behavior of the sliding velocity. If we rescale the independent 
variable ~- to z ' ,  such that d r '  = ( a 1 3 / i x ) d r ,  

dv  r 
d T  = vr( - co s  2 v0 - 6 sin 2 + cos  + 8 sin -: Y 

(7) 

dvo 
- -  = - -  - -  d r '  (A qb) cosvo sin v o + 6 cos  v 0 sinv o g (8) 

6 = a2--.~ A = /zalm q~ = /J'a2----~ 

a13 a13 a13 

6, A, ~b are dimensionless parameters that now define the 
flow, and consequently the sliding behavior. This three-di- 
mensional parameter space is enough to capture all possible 
behavior for the tangent velocity. 

If a13 = 0, we can rotate the tangential axes by 7r/2 
(increment q by 1 in Eq. (2)), interchanging the x and y-axes 
and consequently the magnitudes of a13 and a23. For the 
case when al3 = a23 = 0, every direction is invariant and the 
problem reduces to the planar form. 

all and a22 are always positive, and therefore A and 4' are 
either both positive or both negative depending on the sign 
of a13. 8 can be either positive or negative. Therefore, for 
real bodies, parameters in only four of the octants of the 
parameter space are possible. A change in the sign of 6 
reflects the flow about the v 0 = 0 line. The change in sign for 
both A and ~b is equivalent to a reflection about the v r = 0 
point. Due to these symmetry properties, the positive octant 
of the parameter space can be reflected about v r = 0 and 
v 0 = 0 to define the other three octants where the parame- 
ters for real bodies can lie. 
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Table 1 The possible flow patterns and the corresponding properties of the flow 

Invariant Flow Change No. of No. of No. of In Flow Out flow 
Case directions directions Saddles Nodes Separatrix direction direction 

0a 4 4 4 0 2 2 2 
la, b 4 4,2 3 1 2 3 1 
2 a, b, c 4 4, 2, 0 2 2 2 4 0 
3 a, b 2 4, 2 2 0 1 l 1 
4 a, b, c 2 4, 2, 0 1 1 1 2 0 

We can further restrict the region in the parameter space 
that we need to analyze by assuming that [a231 < la131. If this 
is not true, we can rotate the x and y-axes by 7r/2, effectively 
interchanging a13 and a23. The solution behavior over the 
whole parameter space is therefore reflected in 

a_>O, 4 ) > 0 ,  1_>8>_0 .  (9) 

2.3 Invariant Directions. The invariant directions (rio) 
are solution curves for the flow along which v o does not 
change. They are obtained as real roots of dvo/dz '  = g  = 0 
in Eq. (8). The resulting trigonometric equation can be 
written as an algebraic quartic by substituting a = tan rio. 

0 , 4 - 2 8 o / 3 +  ( 1 +  8 2 -  ( A -  ~ ) 2 ) 0 " 2 _ 2 8 0 " +  8 2 = 0  

(10) 

sign(-(-a---~)ats-a  ] = sign(cos to) (11) 

2.4 Flow Change Directions. At the flow change direc- 
tions 030), the radial component of the flow changes sign. By 
setting dvr/dr '  = f = 0 in Eq. (7), we get the following quar- 
tic in fl = tan t30, whose real roots give the flow change 
directions. 

( 8 2  - -  ~ b 2 ) ~  4 -t- 2 8 f l  3 -'l'- ( 1  "t- 8 2  - -  2 a ~ ) f l  2 

+ 28fl + (1 - a 2 )  = 0 (12) 

( a + c b f l 2 )  = s i g n ( c o s ~ o )  (13) 
sign 1 + 8fl 

2.5 Possible Flow Patterns. Based on the number of 
invariant directions and flow change directions, the possible 
flow patterns can be determined according to Table 1 and 
Fig. 2 (Bhatt and Koeehling, 1994b). The global behavior is 
dependent on the number of invariant directions and the sign 
of flow along them, and is given by the cases 0-4. The 
number of flow change directions (4, 2, or 0), define the local 
maxima and minima for the flow, resulting in up to three 
subcases (a, b, or c, respectively). In Section 4.1, we show 
that case 0 cannot occur for any set of real parameters. 

3 Regions With Different Number of  Invariant Direc- 
tions 

Since the invariant directions are determined by the real 
roots of the quartic in Eq. (10), they can be zero, two, or four 
in number. The number of invariant directions changes at 
points in the parameter space which correspond to a double 
root of this quartic, the condition for which can be alge- 
braically determined to get the surface of partition in the 
parameter space. 

To determine the boundary between different number of 
invariant directions, we assume that Eq. (10) has a double 
root at P0, and a ± ib are the other two roots. If b is real, 
the double root corresponds to a transition between zero and 

Vr Vr 
(0) 4 saddles, 0 nodes (2b) 2 saddles, 2 nodes 

Vr Vr Vr 
(la) 3 saddles, 1 node (2c) 2 saddles, 2 nodes (4a) 1 saddle, 1 node 

> VOs  

Vr vr vr 
(t b) 3 saddles, l node (3a) 2 saddles, 0 nodes (41)) 1 saddle, 1 node 

vr vr Vr 
(2a) 2 saddles, 2 nodes (3b) 2 saddles, 0 nodes (4e) 1 saddle, 1 node 

Fig. 2 The possible flow patterns for the tangential velocity 

two real roots, otherwise it gives the boundary between 
regions with two and four real roots (or invariant directions). 

In Appendix A we show that there is only one surface that 
corresponds to a double root of the quartic for invariant 
directions. 

( A -  ~b) 2 = (8 2/3 + 1) 3 (14) 

On this surface 8 = -p03 and b 2 = -p02(1 + p02 + po4), which 
means that b is imaginary and therefore the surface forms a 
boundary between regions with two and four invariant direc- 
tions. The case of zero invariant directions does not exist. 
Figure 3 shows this partition in the parameter space. Since 
the boundary depends only on 8 and I A -  ~bl, it can be 
captured on a two-dimensional plane. Expressed alge- 
braically, 

for 4 invariant directions: [A - ~bl > (8 2/3 + 1) 3/2 

for 2 invariant directions: Ih - 4~] < (8  2/3 + 1) 3/2. (15) 

4 Invariant Directions With Outward Flow 

From Fig. 2 we know that there can be at most two 
invariant directions with the flow directed away from the 
point of sticking. The direction of flow on an invariant 
direction changes when a flow change direction coincides 
with an invariant direction. This happens for ~o values such 
that f(~o) = g(~o) = 0. Appendix B shows that this happens 
when v0 satisfies 
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Fig. 3 Partition of the parameter space into regions with different 
number of Invarlant directions. The space is two-dimensional since 
only 8 and IA - ~bl affect the number of real roots. We do not have 
the case where there are 0 Invariant directions. 

2 

1.5 

.e- 1 

0.5 

Invarient directions with outflow 

5-0.15 

£ 

~o 

2 

~o 
o 

0.5 1 1.5 

Fig. 4 Partition of the parameter space into regions with different 
number of invariant directions with outward flow. The figure shows 
a slice of the parameter space at 8 = 0.15. 

1 3 
c o s 5 0 = - ~  s i n 5 0 = - 7 .  (16) 

Equation (16) is a valid solution only on the surface in the 
parameter space where the trigonometric identity sin 2 50 + 
cos 2 50 = 1 is satisfied. This gives the following boundary in 
the parameter space on which the number of invariant direc- 
tions with outflow changes. 

+ = 1 ~ a V/4, 2 -- 32 

The surface of partition exists only for 4, > 3, and its 
asymptotes are 

a s 4 , ~ m ,  A - , 1  a s A - * %  4 , ~ 3 .  

Table 1 states that the flow can be directed outward on 
zero, one, or two invariant directions. However, there is only 
one surface of partition between regions with different num- 
ber of invariant directions with outward flow, and therefore 
only two of these three cases are possible. 

To find out which two of the three cases exist, consider the 
line A = 4,, for which there are two invariant directions given 
by cos v o = + 1/1/1 + 32 and sin v o = ± 3 / ! / 1  + 32. From 
Eq. (7), the sign of flow along them is given by the sign of 

- A  ± ~/1 + 62 . 

For A < ~ + 62 the flow is outward along one of the 

invariant directions, while for a > ~/1 + 62 it is radially 
inward along both. Since the boundary of partition (Eq. (17)) 
on this line is at a = 4, = ~/1 + 32, it has regions with either 
zero or one outflow direction on either side of it (Fig. 4). 
Therefore, the case with two invariant directions with out- 
flow (Case 0 in Table 1) does not exist. 

4, 
For 0 invariant directions with outflow: a > 

~ / 4 , 2  62 

For 1 invariant direction with outflow: 

4, 
A <  or 4 , < 8 .  (18) 

~/4,2 -- 32 

4.1 Resumption of Sliding. If the flow reaches the point 
of sticking, the condition for the instantaneous resumption of 
sliding is given by (Bhatt and Koechling, 1994b) 

2 2  2 2  1 32 
a13a22 + a23all  

2 2 > ~ 2 ~  
a11a22 ~5 + ~ > 1 

4, 
~ A < .  or 3 > 4,. (19) 

 /4,2 _ 32  

Since sliding resumes along an invariant direction on which 
the flow is directed outward, there would be ambiguities if 
there were zero or two such invariant directions when the 
conditions for the resumption of sliding are satisfied. From 
Eqs. (18) and (19), we see that the condition for resumption 
of sliding automatically ensures that there is always one and 
only one invariant direction with outflow, and therefore no 
ambiguities arise. 

5 Different Number of Flow Change Directions 
The flow change directions are given by the roots of the 

quartic in Eq. (12). Using a development similar to that used 
to get the partition for invariant directions in Section 3, we 
look for the surface in the parameter space that corresponds 
to a double root of the quartic. This surface forms the 
boundary between regions with different number of flow 
change directions. Appendix C shows that the equation for 
this surface of partition is 

16(4, 2 - 32)A 4 - 84,(4452 - 432 + 1)A 3 

+(164, 4 - 8324, 2 - 84, 2 - 834 + 2032 + 1)A 2 

-24,(4324, 2 - 164 ,2 - 434 + 1932 - 4 )a  

- ( 1 6 4 ,  4 - 344, 2 - 20324, 2 + 84, 2 + ( 3 2  +_1) 3) = 0. (20) 

The surface of partition defined by Eq. (20) is illustrated 
for different constant 3 slices in Fig. 5. The boundary be- 
tween regions with 0 and 2 flow change directions has the 
following asymptotic behavior: 

a s 4 , ~ ,  h a l ;  a s h ~ %  4 , - ~ 8 ;  

and lies inside the region with 0 invariant direction with 
outflow defined by Eq. (18). 

The boundary between two and four flow change direc- 
tions defines the "triangular" region which becomes smaller 
as 6 increases from 0. The value of 3 c for which the region 
with four flow change directions disappears for all 1 >_ 3 > 3c, 
can be calculated by noting that at 3 = 3~, there is a double 
root h = h~ for 4, = 0 in Eq. (20): 

1632A4 + (83~ 4 - 206e 2 - 1)h~ 2 + (3 )  + 1) 3 = 0 

1 3~/3- 

= 3 ~ = - ~ - ,  ac = 4V~'  

Therefore, for 1 > 3 > (1/1/8), the region with four flow 
change directions does not exist. 
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Fig. 5 Partit ion of the parameter space, at different values of 8, 
according to the number of flow change directions. For values of 

< (1 / v/8), there are regions with 0, 2, and 4 flow change dlrec- 
tions. For 8 > (1 / ~/8), only regions with 0 or 2 flow change direc- 
tions exist. The numbers on the plot correspond to the number of 
flow change directions. 
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Fig. 6 Partition of the parameter space based on the global 
asymptotic behavior of the flow. The numbers In each region corre- 
spend to the cases In Table 1. At the solid curve, the number of 
invarlant directions with outflow changes. The dashed l ine is the 
boundary between different number of invarlant directions. 

6 Partitioning the Parameter Space 
The flow patterns are uniquely defined by the number of 

invariant directions, invariant directions with outflow, and 
the flow change directions (Table 1). In the preceding sec- 
tions, we have defined partitions of the parameter space 
based on each of the three criteria. The regions in the 
parameter space defined by these partitions can now be 
intersected to get a partition of the parameter space accord- 
ing to the flow patterns. 

The asymptotic behavior of the flow depends only on the 
number of invariant directions and the sign of flow along 
them (Cases 1-4 in Table 1). By intersecting the regions for 
different number of invariant directions defined by Eq. (15), 
and the invariant directions with outward flow defined by Eq. 
(18), we find a first level partition of the parameter space 
based on the asymptotic flow behavior. Figure 6 shows this 
partition for 8 = 0.06 slice in the parameter space. 

Each of the regions in Fig. 6 can be subclassified according 
to the number of flow change directions. The flow change 
directions define the local maxima and minima, and add 
further information about the ~tructure of the flow to the 
asymptotic flow behavior. Depending on whether there are 
four, two or zero flow change directions, each of the cases 
1-4 are subclassified with the labels a, b, or c, respectively 
(Table 1). Figure 7 illustrates how the regions in Fig. 6 are 
divided into subclasses by intersecting them with the parti- 
tion based on the flow change directions (defined by Eq. (20) 

2. 

-o-1. 

O. 

8=0.06 

2e 
, ,  

4c 

, ,*" 2c 

2 

5 -  0.06 

0,5 " 4c ' ~  
0.4 

3b -e-0.3 
0.2 o*'2b 
0.1 

3s 

0 1,2 114 
Fig. 7 Subpart l t lon of the regions shown in Fig. 6. The thick 
dashed and solid lines are the boundaries between different num- 
ber of Invarlant directions and invarlant directions with outflow, 
respectively. The thin curves are the boundaries for different num- 
ber of flow change directions. The f igure on the right shows the 
details of the partition structure. 

8 = 0.085 ,5 = 0.095 

00 ' iL 4C  / 0 ' ~ - k  'C / 

g=0.2 '5=0.36 

0.~[ 1 1.5 2 1 1.5 2 

Fig. 8 Partition of the parameter space at various values of 8, 
showing the successive disappearance of regions 2a, 4a, la,  3a. 

and shown for the 6 = 0.06 slice in Fig. 5). For the value of 
6 = 0.06, all the ten possible flow patterns exist. 

As ~ is increased from 0, the region with four flow change 
directions shrinks until it disappears for 3c > (1/~/8). After 
this limit, cases la, 2a, 3a, and 4a are not possible. The 
sequence in which these regions disappear is, 2a at 

= ~ 3 7  + 21V'3-- 33/4 ~/299~/3- + 518 = 0.08255, 4a at 6 = 

(5v~- - 11)/2 = 0.09017, la at 6 = 0.17653, and 3a at 8 = 
(1/~/8) = 0.35355. Except for the limit of la, which involves 
solving a quintic in 8, the other limits can be solved for 
symbolically. Figure 8 shows the successive disappearance of 
these regions as 6 is increased. 

6.1 Bifurcation Surfaces. Each surface of partition in 
the parameter space represents the transition of one flow 
pattern into another. This happens at the point of coinci- 
dence of two invariant directions, or two flow change direc- 
tions, or an invariant direction and a flow change direction. 
Transitions between regions that share a common surface 
represents one of the preceding degeneracies. Transitions 
between regions that share only a curve represent two, and 
for regions that share only a vertex represents the simultane- 
ous existence of all three degeneracies. The flow patterns are 
structurally stable as long as the parameters, after taking 
uncertainties into account, are clear of these degeneracies. 

7 Discussion and Conclusion 
The trace of the sliding velocity at the contact point 
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defines flow patterns that show the evolution of impact. We 
identify three dimensional parameters (which are functions 
of the system inertia, orientation, and contact friction) that 
govern the defining equations for the sliding behavior of the 
contact point. A partition of this parameter space into re- 
gions that correspond to each of the possible sliding velocity 
flow patterns is then obtained. By doing so, we reduce the 
problem of determining the qualitative sliding behavior to 
the much simpler problem of determining which region of 
the parameter space the' given set of contact parameters lie 
in. 

Apart from simplifying the procedure for determining the 
flow patterns, the analysis can be used to study the sensitivity 
of the flow patterns to small changes in the mass parameters, 
impact orientation, or contact friction. As long as any poten- 
tial error in determining the dimensionless parameter space 
is clear of any boundaries ("bifurcation surfaces"), small 
changes will not affect the overall flow pattern. The analysis 
is also used to rule out the existence of ambiguities in the 
direction of the initial sliding velocity, when sliding resumes 
after instantaneous sticking. 

Using the results presented in this article, any general 
three-dimensional rigid-body impact problem with finite fric- 
tion can be reduced to three dimensionless parameters, and 
the qualitative behavior determined using simple algebraic 
inequalities. 
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A P P E N D I X  A 

Double Roots of the Invariant Direction Quartic 
To look for double roots of the quartic in Eq. (10), let us 

assume that the double root is P0 and the other two roots of 
the quartic are a 5: ib. The form of the quartic corresponding 
to this double root is 

a 4 + (- -2p0 -- 2 a ) a  3 + (po  2 + 4apo + b 2 + a2)0¢ 2 

+(_2ap02 - 2bZpo - 2aZpo)a + (b2p 2 + a2pZo) = O. 

Comparing the coefficients with those of the quartic for the 
invariant directions (10), we get 

- 2 p o -  2a = - 2 8  

b2p~o + a2p~ = 62 

po 2 + 4apo + b 2 + a  2 =  1 + a 2 -  ( h -  qS) 2 

- 2 a p  2 - 2b2po - 2a2p0 = - 2 8 .  

Substituting a = 6 -  P0 from the first equation into the 
other three, 

b 2 =  1 + 2 p  2 - 2 6 p o -  ( A -  qS) 2 (21) 

6 
b z = ~0(1 + p 2  _ 6po) (22) 

b 2 = ~02(62 + 26p3 _ 62p02 _ p 4 ) .  (23) 

Equating the right-hand sides of Eqs. (22) and (23), 

6 2 + 6 ( P 0 3 - p 0 ) - p 4 = 0 =  a = p 0 o r 6 =  _p3. (24) 

Equating the right-hand sides of Eqs. (21) and (22), 

2p 3 - 3 6 p o  2 + p o ( 1 + 6 2 - ( a - q ~ ) 2 ) -  6 = 0 .  (25) 

If we substitute for the value of P0 from Eq. (24) in (25), we 
get the curve in the parameter space on which double roots 
exist and which forms the boundary of the regions with 
different number of invariant directions. 

6 = p 0  6 = _p3 

- ( A - 4 ~ ) 2 6 = 0  p 0 6 + 3 p 0 4 + 3 p 0 2 + 1 - ( A -  6) 2 = 0  

6 = 0 o r ( A  -- ~ b ) =  0 ( a -  ~b) 2 =  (3  2/3 + 1) 3 (boundaries) 

(26) 

Even though the boundaries 6 = 0 and A - 6  = 0, for 
6 = Po represent a "double root" for Eq. (10), they do not 
represent the coincidence of invariant directions. This occurs 
because the same a represents two different flow directions 
that are ~r radian apart. To disambiguate these, we have to 
consider Eq. (11) in conjunction with Eq. (10). We can then 
show that on "boundaries" associated with 6 = Po, there is 
no double root. This agrees with our observation that the 
parameter space is symmetric under a change in sign of 6 or 
both a and ~b, and therefore, 8 = 0 and A - ~b = 0 cannot 
have different number of invariant directions across them. 

A P P E N D I X  B 

Coinciding Flow Change and lnvariant Directions 
If the invariant and flow change directions coincide along 

some direction, v0, then f(D o) = g(b o) = 0 in Eqs. (7) and 
(8). Treating cos D 0 and sin D 0 as independent variables, we 
can solve the two equations simultaneously for four sets of 
cos v0 and sin b0: 

- 1 5 : i 6  6 5 : i  
cosb 0 = s i n D  0 = 0  cosb 0 - - s i n ~ 0  

4 , - a  4 , - a  
1 8 

cOSVo=-~s inD e =  7 

The first three sets give sin 2 ~0 + c°s2 ~0 = 0, and therefore 
do not constitute a solution for real D o. The only direction 
along which the invariant and flow change directions coincide 
is given by cos ~0 = 1/a and sin ~e = 8/4~ at the points in the 
parameter space where the trigonometric identity sin 2 Vo + 
cos 2 D o = 1 is satisfied. 

A P P E N D I X  C 

Double Roots for the Flow Change Direction Quartic 
Following the development for finding the boundaries for 

invariant directions in Appendix A, we look for the double 
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root of Eq. (12). The equations for the flow change direction 
that correspond to Eqs. (21)-(23) are 

b2 = l + 62 - 2h6 + 2Po6 ( 6 )2 
62 _ 62 + 2po 2 - 62 - 6 2  (27) 

b 2 = 

b 2 6 / P o + P ° 6 (  6 )  2 
62 _ 62 62 - 62 (28) 

(1-A2)/po2-26Po ( 6 ) 2 .  
62 _ 6 2  - p o  2 - 62 - 62 (29) 

Equating the right-hand sides of (27) and (28) we get (30), 
and Eqs. (27) and (29) give (31) 

2(62 - 62)p3o + 36p~ + (1 + 62 - 216)po + 6 = 0 

(30) 

3(63 - 62)po 4 + 46po 3 + (1 + 62 - 2A6)p~ 

+ (h  2 -  1 ) = 0 .  (31) 

Taking (6(62 - 6 2 ) p 0  - 6 )  × Eq. (30) and subtracting 4 ( 8 2  

- 62) × Eq. (31), we get the following quadratic that can be 
symbolically solved to get the value of Po, 

((4h6 - 262 + 1)(62 - 62) - 362)p 2 + (26A6 + 5 6 3  

- 6 8 6 2 - 6 ) p  o+4(A 2 - 1 ) ( 6 2 - 8 2  ) -  62=0. (32) 

We can solve Eq. (32) for Po and substitute the value in Eq. 
(30). If we take the resulting expression, rationalize it, and 
factorize symbolically using MACSYMA (symbolic algebra 
package), we get the following equation for the boundary of 
the region with different number of flow change directions: 

16(62 - -  6 2 ) ~ .  4 - 86(462 - 462 + 1) A 3 

+(1664 - 86262 - 862 - 8 6 4  + 2032 + 1)h 2 

-26(46262 - 1662 - 464  + 1962 --4)A 

- - ( 1 6 6 4  -- 6462 -- 206262 + 86 z + (62 + 1) 3) = 0. 
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A General Formulation of the 
Theory of Wire Ropes 
This paper presents a general formulation of the nonlinear and linear analysis of 
wire ropes. In the formulation, wires, strands, and wire ropes are all considered as 
a kind of  identical structure characterized by seven stiffness and deformation con- 
stants, and as such they can be used, in the same way, as component elements in some 
layered general structures. Based on such a point of view, the general formulation thus 
developed can be used to analyze wire ropes of various complex cross sections, and 
to analyze simple wire strands as well. 

1 In troduct ion  

A wire rope is a structure made up of layers of strands 
wrapped helically around a central straight strand core, while a 
strand is a structure made up of layers of helical wires wound 
around a central core of a straight wire. Therefore, in a wire 
rope, only the central wire core of the core strand is straight. 
The outer wires of the core strand and the central core wires 
of all other strands are single helices, while remaining wires in 
outer strands take on the forms of a double helix. 

The stress and strain analysis of wire ropes was once consid- 
ered too complex to be dealt with by the theory of elasticity 
(Suslov, 1936), and therefore, various assumptions were made 
regarding the number and types of the loads acting on each 
wire in the strand in order to obtain a solution. For example, 
in a paper by Hall (1951), assumption was made that all rope 
loads were equally distributed among the individual wires and 
only the axial force in each wire was considered. Hruska (1951, 
1952, and 1953) also assumed that the wires in the strand were 
subjected to simple tension only, and then tried to estimate the 
magnitude of the radial force and the resultant end moment of 
the strand. Hruska's work was extended by Leissa (1959) and 
by Starkey and Cress (1959) to take the contact stresses be- 
tween the wires into consideration. Then, Phillips and Costello 
( 1973 ) introduced a new point of view in examining the stresses 
in the wire ropes. They regarded the strand as a collection of 
helical wire springs, and used Love's general theory of the 
bending and twisting of thin rods and spiral springs (Love, 
1927) to solve strand problems, so that most of the assumptions 
made or implied previously can be removed. While considerable 
progress has been made in the development of various theories 
of wire rope, most investigations have been concentrated on 
strands of single helical wires, only a few dealing with wire 
rope with complex cross sections (Velinsky et al., 1984; Phillips 
and Costello, 1985; for example). One of the difficulties in- 
volved in the wire rope analysis is that it no longer can be 
considered as a collection of helical wires. First of all, most 
wires in the wire rope are double helices. Secondly, there are 
so many wires with different geometric and physical parameters 
involved that the conventional analysis method, analyzing the 
wires one by one, turns out to be too complex. This paper 
presents a simple and well-organized approach to circumvent 
such difficulties. As is previously mentioned, a strand is a struc- 

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY 
OF MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED 
MECHANICS. 

Discussion on this paper should be addressed to the Technical Editor, Prof. 
Lewis T. Wheeler, Department of Mechanical Engineering, University of Houston, 
Houston, TX 77204-4792, and will be accepted until four months after final 
publication of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS. 

Manuscript received by the ASME Applied Mechanics Division, Dec. 6, 1993; 
final revision, May 10, 1994. Associate Technical Editor: W. K. Liu. 

ture composed of layers of helical wires, while a wire rope is 
a structure composed of layers of helical strands. Thus, the 
frame structure of the strand and the wire rope is in fact identi- 
cal. The difference consists only in the components which con- 
struct the frame structure. That is, if we take a single-layered 
or multilayered strand and then replace its basic components, 
the wires, with strands or even wire ropes of any structure, we 
obtain a wire rope with various complex cross sections. Based 
on such a point of view, a general formulation is developed in 
this paper for layered structures with generalized components 
characterized by seven stiffness and deformation constants. By 
specifying these constants, various strand and wire rope prob- 
lems can be solved as special cases. 

2 The Genera l  F o r m u l a t i o n  o f  a L a y e r e d  Structure  

Consider a structure which is composed of a central straight 
core wound around by n layers of surrounding helical compo- 
nents. It is assumed that a typical surrounding layer in the 
structure, say the layer i, is made of mi components of identical 
cross section, which is symmetric with respect to a series of 
axes, and these components are symmetrically arranged in the 
structure cross section with identical helix radius ri : It is further 
assumed that under a wrench load, the frictional forces between 
the surrounding components and the central core can be ne- 
glected and that after deformation the components take the 
shape of another helix. Under these assumptions, the structure 
can be regarded as a collection of helical components, and 
Love's theory can be Used in analysis. Obviously, if the compo- 
nents are wires, the structure considered is a wire strand. If the 
components are wire strands, the structure becomes a wire rope. 

Consider a single helical component in the i layer. As is 
shown in Fig. 1, the resultant forces and moments on a cross 
section consist of a tensile force T~, a binorrnal shear force N~, 
a binormal bending moment Gi, and a torsional couple Hi, 
while along the central line of the component acts distributed 
contact force Xi. These resultants and the contact force should 
satisfy the equilibrium condition (Phillips and Costello, 1973): 

{ T~i - Ni~i + Xi = 0 

H~Ri GiY~ - Ni = 0 
( l )  

where ei and ~i are the curvature and the twist of the deformed 
component central line. 

The initial curvature and twist are determined by the helix 
radius ri and the helical angle ai of the component. Let ki be 
the tangent of the helical angle: 

k~ = tan a~. (2)  
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Fig. 1 Resultants and contact force that act on a component 

Then 

The deformed curvature zi and twist 7 ,  can be found from the 
deformed helix radius 6 and helical angle ni similarly. 

The deformation of the component is characterized by the 
increments A K ;  ,and AT; of the curvature and twist, and the 
axial strain (, , 

where h and 8 are the height and the twist angle of the structure, 
and therefore, are the height and twist angle of all the compo- 
nents. In terms of these two strains, we can find the geometric 
parameters of the deformed component: 

K~ = ~ ~ ( 1  + X i ) d l  - k?e , (2  + e , )  

' f i  = r i ( l  + e i ) ( l  + x i )  I- ( 1 1 )  

and consequently, by Eqs. ( 1 )  and (6)-(8): 

where li is the length of the component. We assume in the 
analysis that the radial strain of the cross section, G i ,  and the 
resultants of the component can be expressed in terms of the 
strains as follows: 

Xi = - ~ ~ ( l  + x i ) d l  - k : e i ( 2  + e i )  
5i = -(pi<i + q r A ~ z  

Ti = a&, + b i A r i  
' [a,  - c i r i ( l  + e i ) ( l  + x,)]<, 

where a , ,  bi , ci , d, , and Ai are stiffness constants, while pi and 
qi are lateral deformation coefficients of the component. These 
seven constants will be specified later. 

Investigation shows that the increments A K ~  and A T ,  are not 
parameters convenient in the general Ihe prob- To keep the component in the shape of a helix, the end force 
lem. Therefore, instead of these two increments, we introduce torque are needed, and they are 
two component strains as follows: 
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F~ = ~ 1  k~(1 + e ' ) 2 ( [  ark,(1 +e~) ] 
1 + k~ 41 ~k~e---~(2 + el) + citci(1 + Xi)41 - ki2ei(2 + ei) ~, 

I biki(1 + ei) + diKi(1 + Xi)41 - k~ei(2 + 
+ ~-~(e~ + Xl + e~xi) 41 - - - i ~  + ei) 

- A : ~ K i ( 1  + e/)(1 + Xi)[(I  + Xi)41 - k~ei(2 + ei) - 1]} 

/1 k~(1 + e~) 2 ~ [  a : J 1  - k~e,(2 . . . .  + e~) + c~k~(1 + e~) 3 ] 
Mi 

=3~ - - i - ~ - - -  t [ - - ~ - 7 - ~ - -  (1 + k ] - ~ - - - - ~ P e i ~  + e~)J ~i 

. . . . .  V biri41 - k~ei (2 + e,) d~k~(1 + e,. )3 
-~ 7~tei + X~ + e ~ x ~ ) l - -  -7 . . . .  + - -  ----=--7- - - - z - - - -  - - -  

L l + Xi (1 + k : )q l  - k:ei (2 + ei) 

+A~Ki[1 + k ~ l ~ ) 2 l [ ( 1  + X , ) 4 1 -  k~e~(2 + e~) - 1 ] )  

(16) 

if use is made of Eqs. (12) and (13). 
Equation (16) represents the force-strain relationships of a 

helical component. The central core is a special component, 
because it is straight. The force-strain relationships of the central 
core will be expressed as 

Fo = Fo(e, 6 )  
(17) 

Mo Mo(~, 40 

where Fo(e, ~b) and Mo(e, ~b) are known functions, which will 
be discussed in the following section, and e and ,/~ are the axial 
and rotational strains of the central core, and thus are the axial 
and rotational strains of the structure due to deformation com- 
patibility conditions: 

The force and torque applied on the structure are the resul- 
tants of all the forces and torques carried by the central core 
and the components. Suppose that the structure is composed of 
n layers and that in each layer there are rn~ components. Then, 
by Eqs. (16) and (17), the resultants: 

It is seen that the resultant force and torque are functions of 
3n + 2 strains, that is, functions of the two structure strains 
(e, ~b) and 3n component strains ( ~i , el, X~ ), i = 1, 2 . . . . .  n. To 
solve the problem, therefore, we need to find 3n compatibility 
conditions. 

There are two kinds of compatibility conditions that the cen- 
tral core and the components have to meet. First, the axial 
and rotational deformations of the central core and the helical 
components should be the same so that the structure can deform 
as a whole. By Eqs. (9) and (18), this requirement yields 2n 
compatibility equations which establish relationships between 
the structure strains and the component strains: 

{• = ei + (1 + ei)~i 

1 (20) 
=~ir i [X i  + ( 1  + X i ) ~ ]  i =  1,2 . . . . .  n .  

Secondly, on a cross section, all the layers should contact 
each other during the deformation. This requirement leads to n 
compatibility conditions between the component strains. Differ- 
ent from the first kind of compatibility conditions, these n condi- 
tions rely on the lay structures. 

For simplicity, the cross section of a component is assumed 
to be circular in the following analysis, and two kinds of lay 

F = Fo(e, qb) 

+ ~ rn~ 1 k~(1 + e~) 2 a~kj(1 + e~) + c;K~(l + Xi)41 - k~ei(2 + e~) ~ 
~=, 1 + k~ 2 41 - k~2e~(2 + e~) 

I bik ,( l  + e i )  +diKi(1  + X i ) 4 1 - k i 2 e i ( 2 + e i ) ]  + 7-i (ei + Xi + eixi ) 41 ~" k~-'-ei (2 + e, ) 

- AiriKi(1 + e/)(1 + Xi)[(1 + Xi)41 - ki2ei(2 + ei) - 1]} 

M = Mo(e, qb) 

+ ~ m i ~ f l k ~ ( l + e i ) 2 { [ a i r i 4 1 - k i 2 e i ( 2 + e i ) +  c i k ~ ( l + e i ) 3  ] ' i  
i=l 1 + k~ 1 + Xi (1 + k i 2 ~  --  k~e,(2 + e,) 

+7_(e ,  + X ,  + e i x i ) [ b , r , 4 1 - k ~ e i ( 2 + e i )  dike(1 +ei )3  ] 
-i ~ ~  + (1 + k ~ ) ~  -- kiZei(2 + e~) 

[ k~(_l _+ e,) 2 ] } 
+A,x~ 1 + 1 +k~ j [ ( 1  + X ~ ) 4 1 - k ~ e ~ ( 2 + e , ) -  1] . 

(19) 
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Fig, 2 Close-packed lay 

structure, the close-packed lay and the resting lay, will be dis- 
cussed. 

Close-packed lay is a lay structure where components in the 
layer are closely packed so that the helix radius of the compo- 
nents assumes a least possible value (Fig. 2). As a result, any 
component in a close-packed layer will contact two components 
in the layer beneath it, or conversely, two components in this 
layer will contact only one component in the inner layer. 
Whether or not the components in the same layer contact each 
other is irrelevant in this definition. The only exception is the 
first layer where the components should touch each other to 
form a minimal helix radius. For the close-packed lay, the helix 
radii can be found as 

R1 / 2 ~ 7[- -~/k rl = kl 1 + (1 + k~)cot  2ml 

71" 
ri = ri 1 c o s - - +  (RH + R i )  2 -  r~- ls in  2 ~ 

mi mi 

i = 2 , 3  . . . . .  n. 

(21) 

The helix radii after the deformation are expressed similarly. 
Then, one can find the radial and axial strains of the compo- 
nents, 

Q 

Fig. 8 Resting lay 

A layer is called resting, if the component in this layer con- 
tacts only one component in the layer beneath it and vice versa, 
and the centers of these two contact components are located on 
one radius (Fig. 3 ). Contrary to the close-packed lay, the resting 
lay will form a maximal helix radius. For the resting lay, the 
helix radii are 

{ rl = Ro + R1 

r~ r~_ i ÷ Ri-1 ÷ Ri i = 2, 3 . . . . .  n 
(24) 

and the radial and axial strains of the component can be found 
as 

) [ 1  - k~el(2 + el) _ 1 ~l rl (1 + el . 

1 + X l  "V r l  z + R ~ e l ( 2 + e l )  

1 ( [ r , x ] l - k 2 i e i ( 2 + e i ) _  r ~ _ l X / 1 - k 2 _ l e i _ l ( 2 + e i _ , ) ]  2 

~i : ei 1 + x i  1 ÷ X i - I  

(Ri + Ri- i )  2 - (ri - ri-l) 2 )1/2 Ri_l 
(1 + Xi 1)(1 + X~) x/[1 - k~_~ei_l(2 + e,_t)][1 - k~aei(2 + ei)] R, + 

1 I- . . . . .  r , ( l  + e~) / 1 - k12el(2 + e~) ] 
,~1 = - -  I l -- q l ' r l t e l  1- Xi + e i x t )  - 7 - . - -  - - ~ 1  2 -- ~2  . . . .  ] 

Px L t t X~ v r j  + Kle l l ,  z + e l )  3 

1 { Ri_ 1 
~ ~. 1 + ~ [1 - P ~ - , ~ - t -  qi_~r~_~(ei_~ + Xi-i + eHX~-,)] - q~r~(e~ + X~ + e~x,) 

1 [ ( r i ~ l  - k ~ e i ( 2  + e l )  ri-,~l - k i ~ , e H ( 2  + e i - , ) ~ 2  
- L 

2 ?. r 2 / 7  1/2 (R, + R, 1) ( ,  , 1) 2 2 1 
+ - 1 ) - _ L Z _ ~ ! . -  ~ / [ 1 - k i _ ~ e ~ _ l ( 2 + e , _ l ) ] [ 1 - k i e ~ ( 2 + e ~ ) ] l  ~, / = 2 , 3  . . . .  n. 

(1 + X i - l ) ( 1  + ) ( i )  J J ' 

- - - ( 1  + ~ , - l )  - 1 

i = 2 , 3  . . . . .  n (22) 

(23) 
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1 [ r o / 1 - k ~ 2 e l ( 2 + e ~ ) _ R o ( 1  + ~ o ) ] _  1 
~1 = R1 1 + Xi 

1 F r J1  - k~2e~(2 + e,)  r, 1~/1 - k~_~ev_,(2 + e l l )  

~ = R ;  L 1 + Xi - 1 + Xi-~ 
- R i - ~ ( 1  + ~i-1)] - 1 

~1 = klrl[RoPo(1 + el)  + R i p 1 ]  ~- R0qo(1 + Xl) rl 1 - I + Xl 

) t - (RoPo + Rlql~-I)el -- (Roqo  + R1ql7-1 X1 - Rlql~-leix1 
\ klrl 

=_1~1 + R~ 
Pi [ ~ [1 - Pi-I~i-I -- qi-17-i-l(ei-i + Xi-i + ei- lXi- l)]  

1 [ r ~ / 1 - k ~ e ~ ( 2 + e ~ ) _ r H ~ / 1 - - k ~ _ l e H ( 2 + e ~  1 ) ] }  
-- qiT'i (ei + Xi q'- eixi ) - ei  1 + Xi 1 + Xi-J 

i = 2, 3 . . . . .  n (25) 

i = 2 , 3  . . . . .  n. 

(26) 

Note that different layers can have different lay structures in 
the structure. 

Now the force-component strain relationships, Eq. (19), to- 
gether with 3n compatibility conditions, Eqs. (20) and (23), 
or Eqs. (20) and (26), form 3n + 2 equations with respect to 
two force resultants, (F, M), and 3n + 2 strains, (e, ~b) and 
((~, e~, X~), i = 1, 2 . . . . .  n. If any of the following sets, 
(F, M), (e, ~b), (F, ~b), or (M, e), is given, these equations can 
be solved to give all the unknown quantities, and the problem is 
solved. For convenience, we will use the following notations 

F = F(e, qS) 

M = M(c, ~b) (27) 

to represent the above 3n + 2 equations. The two functions, 
F(e ,  qS) and M(c, ~b), in Eq. (27) represent the nonlinear force- 
strain relationships of the structure. 

t !;i = - [ qi~-i + (Pi - 2qi~-i ) hi] c 

- [kiriqi~-i + (Pl - 2qiTi)/zi]~ (28) 

{ ~  - - (1  - k,)e - #~b (29) 

i hie + (kiri -- /zi)qb 

Where, for close-packed lay: 

1 2 2 2 - k__L~ RI/r____ L + qlT___L 
kl = -- kl 2 + R2/r~  + Pl - 2qlT1 

(30) 
kirl(1 - ql~-l) 

#1 k~ + R~ / r l  2 + Pl - 2qlT1 

: Ki { '~ 
hi fl "1- RiKi(Pi -- 2qiTi) [ (k; :r i f  - RiqiTi) - (ki2-1ri-lgi + Ri-lqi- lTi- l)]  

- - [ R i - l ( P i - 1 -  2qi-ITi- ,)  - K~_, g' 3]ki-l~J 

#i = ~  + Ri~i(pi  - 2qi'ri) [kir~(frl  - RiqiT-i) - ki- lr i- l(giri- i  + Ri-lqHTi-1)] 

- - [ R i - l ( p i l - 2 q , - t T i - , ) _  Ki--lgi J]~i-l~J i =  2 ,3  . . . . .  n 

(31) 

3 Linear Theory 

If the strains are small so that the nonlinear terms can be 
neglected in comparison with the first-order terms, the compati- 
bility conditions, Eqs. (20), (22), (23), (25), and (26) can be 
linearized to give component strains in terms of the structure 
strains: 

in which 

{~ = (rl 2 - r~_,) + (R, + R,_,) 2 
- -  

(r~ - r/2_l) -- (R, + R,_,) 2 

gi 2(Ri  + Ri- l)r i- i  

and for resting lay: 

(32) 
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X 1 = KI (k~rl - Roqo - Rlqlr l )  
1 + RiKl(pl -- 2qlTl) 

KI #l = [klrl(rl - Rlqlr~) - Roqo] 
1 + R ~ ( p l  - 2q~r~) 

(33) 

Ki { 
Xi = 1 + RrKi(Pi - 2qr~-i) [(k~ri - RrqtT-i) - (ki2-1ri-i 

Kr _ 2qiT-r)  ( #i = [ kirr ( ri - Rrqiri ) - kr-lri-l ( ri-1 
1 + RrKr(pr 

Ki-1 

+ R i_ lqr_ l r r_ l  )1 

-Ic Rr_lqi_lT"i_l)  ] 

i = 2 , 3  . . . . .  n. 

(34) 

As a result, Eqs. (12),  (13),  and (14) can also be linearized 
and expressed directly in terms of the structure strains 

T r = [ b i t  i -t- (a i  - 2 b i T i ) ~ . i ] £  

+ [kirrbi~-i + (at - 2biTi)#r]qb ( V  
+ Aik~) 

+ ( c ~ - 2 d r  + A r ( 1 - k ~ ) ) k ~ l e  

f- 

+ Ikrri(di  - Ai)  

(35)  

Then, Eq. (19) yields the linear force-strain relationship 

F = ae + bib 

M = ce + d~b 
(38) 

where a, b, c, and d are the extensional-torsional stiffness 
constants of  the structure 

a = ao + ~ miTi 

r=l " - ~  
n 

rni 7- r 
b b o + X - ~  

n 
mr Fi 

C CO + 

-I- [a i ? 2brT-r + 

mr Fr 
d do + 1 ~  

-t- [ai -- 2biT-r + 

(krri[brk~ + (dr - A r ) K r ]  + [K~ - 2 b r k i  + ~ -  2drKr + A i ( 1 -  k~)Kr]#r } 

{~-i[bi + drk~'i - Ai(1 + 2k~)7"i] 

(c, - 2d,~-r)k~-, - At(1 - k~)( l  + 2k~)KZlk, } 

- -  {krr~[br~-~ + d~k~ "2 + a i (1  + 2k~)K~] 

(c, - 2d¢'cr)k~r~ - A t ( 1  - k~)(1 + 2k~)K~]#i }. 

(39) 

Gi = -Ai~ci{[k~ + (1 - k~)ki]e 
- [k~r~ - (1 - k~)#~l~b} 

Hi = [di~-i + (ci - 2di 'r i)ki]e 
+ [kiridi~-i + (Cg - 2dtri)/.zr]q5 

(36) 

In Eq. (39),  ao, bo, co, and do are the extensional-torsional 
stiffness constants of the central core. 

Note that in the analysis if  we assume that the cross section 
of  the structure can be taken as a circle which encloses all the 
helical component layers, the radius R of the structure cross 
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section will be the sum of the helix radius rn and the radius Rn 
of the outermost component: 

R = r , + R ,  (40)  

Then, the radial strain of  the structure can be found as 

AR 
. . . .  (pc + qq~) (41) 

R 

where 

p = -~ (kZ,,r. + Rnq,,7".) 

+ [ R . ( p . - 2 q . r . ) - l ] k .  t 

1 t q = -~ k,,r.(r. + R .q .%)  

+ [ R . ( P , , - 2 q . r , , ) - l ] # . } .  

(42)  

In the above development, we considered a general structure 
made up of  n layers of  helical components. The components 
can be of any structure, as long as they are characterized by 
seven stiffness and deformation constants: a~, b~, c~, d~, A~, ps, 
and q~, as are shown in Eqs. ( 5 ) - ( 8 ) .  It is interesting to see 
that the linear theory yields six similar constants a,  b, c, d, p,  
and q to characterize the general structure considered. There- 
fore, if  the bending stiffness of  the general structure is defined, 
it can also be used as components in a more generalized struc- 
ture. It is based on such a fact that a general formulation of the 
wire rope problems can be achieved. 

Costello (1977) studied the bending of a helical spring and 
then assumed that the bending stiffness of a cable was the sum 
of the stiffness of  the component wires, the interaction between 
the component wires being neglected. Following the same line, 
we assume the bending stiffness of  the general structure to be 

4 S t r a n d s  

If the components of  the general structure are wires, the 
structure becomes a strand. The seven characteristic constants 
a r e  

'ai = 7rEiR~. 

bi = 0 

ci = 0  

7rEiRi 4 
dr-  

4(1  + ui) 

(44) 

~-E,R, 4 
A i -  

4 
(45) 

and 

Pi = ui 

q~ = 0. 
(46) 

The nonlinear force-strain relationships can be expressed as 

{ f ,  = F~(~, ,~) 
(47) 

which indicate the following 3n + 2 equations: 

M - 

" m, TrEiR~-~Ki 14(1  +_e,)  
F = 7rEoR~e + E 4 l ~ i  2 L RiZK~ z ~i 

i=1 

+ (1 + Xi)[(1 + ei)-- (1 + Pi(ei + Xi + eixi))~l -- ki2ei(2 + ei)] ~1 - ki2ei(2 + e i ) } l  q- tJi 

7r EoR o 4 
4~+ 

4(1 + Uo) 

+ [1 + k2(2 + 

k, 4 
+ ( 1 +  

1 + u i  

miTrEjRi4K~ ( 4 1 - k~ei(2 + e~) ~; 
~=~ 4(1 + k~) 3/1 R~-K~ z 1 + X~ 

2e, + e~Z)][(1 + X~)~/1 - k~e~(2 + e~) - 1]x/1 - k~ei(2 + e~) 

ei)3(ei + Xi + eixi)} 

( 4 8 )  

" 2miAiki~/1 + k~ 
A = ~ . ( 2  + ui) + 2 k  2" 

i=0 

(43) 

We can now discuss the strand and wire rope problems, based 
on the general formulation obtained. 

I e = e~ + (1 + ei )~i 

~[qb 1 
= ~ [Xi + (1 + Xi)~i] i = 1 ,2  . . . . .  n 

(49) 
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• [ r1_(l_ _+_ _el)/1 - k~e,(2 + el) l 
~, =-~-u, 1 -  l + Xl .Vr~ + R~e,(2 + e,) j 

1 { [ ( r i ~ / l - k ~ e i ( 2 + e , ) _ r i _ , ~ l - k ~ _ , e i _ , ( 2 + e i _ i ) )  2 
~i = ~ Ri + Ri- l(1 -- ui-,~i-,)- 1 + Xi 1 + Xi-, 

+ (Ri + R , - l ) 2 - - ( r ,  --ri-,)2 /[1 - k~_ ,e ,_ l (2+e ,_ , ) ] [1  - k ~ e , ( 2 + e , ) ]  i =  1,2, . n 
(1 + Xi - t ) (1  + Xi) " ' 

for close-packed lay, and 

rl 1 -- uoRo el - -  x/1 - k~el(2 + el) , 
l uoRo(1 -Jr el) + ~lRj [ rl 1 + XI 

'l I 1 ~i ~ Ri  + R i - l ( 1  - / - / i - l ~ i - i )  - rill1 - k ~ e i ( 2  + e i )  + 
uiRi 1 + Xi 1 + Xi-l 

i = 1 , 2  . . . . .  n 

(50) 

(51) 

for resting lay. 
The linear theory yields hi = 

{FM~=a,~e+b~q~ 
= c,e + d, qb (52)  /zl = 

where 

1 (kZ - uoRo / 
1 + k~ + ujRl/rl  rl / 

k jr1 

1 + kl 2 + ulRl/ri  

(56)  

a., = 7rEoRo 2 + 4 1 ~ 2  1 + u'---~ + ui 
i = l  4)] 

b, = - kiri + + ki 2 #i 

c , =  - k~)~,~ 1 +  k~ k~ + l + k~ 
i=t4(1 + 1 + ut 1 + ui 

4)] 
R z K----~2 hi 

d.,. 4(1 + Uo) + = 4(1 + k~) 3/2 1 + 2k~ + 1 + u-------~ 
4)] _ 2u___Z__' k 4 _ #/ 

+ k~ 1 + ui R~t¢~ 

(53) 

in which 

~k i - -  

iI -~ -- 1 u, + k~ + R21/r~ ( 1  -- k~ - RlZ]r~ ] 

klrl 
1 2 2 ul + k~ + R l / r l  

~' [ (k~r, fi - k~-lri-lgi) 
f + uiRiKi L 

K, [ 
- , f  - ki_lr2i_lgi) ]'Zi ft' + lJiRit¢-i (kir2 

- ( u i - l R , - , - e : i - l g i )  ~'i-1] i = 1 . 2  . . . . .  n 

for close-packed lay, while 
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(54)  

(55) 

~ki = Ki [(ki2r, - k~_,ri_,) 
1 + l , / i g iK  i 

1 + uiRiKi (kir~ - ki_lriZ_l) 

- -  Mi_lRi_ 1 - -  hi_ 1 
Ki-I 

(57)  

for resting lay. 
The radial deformation coefficients and the bending stiffness 

of the strain can be found from Eqs. (42)  and (43):  

I r - F 2  / 2 u,,R, \ 1 p.,=~Lk,-kl+k,- rn )XnJ 

q, -~ k . r , -  1 +k~  - u  " 

(58) 
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A~ = ~ miTrEiRi4kJ1 + k~ 
• ~=0 2[(2 + ui) + 2k/2] ' 

(59) 

5 Wire Ropes 
If the components of the general structure are strands, the 

structure becomes a wire rope. In the case of large deformation, 
the force-strain relationships of the central strand are repre- 
sented by Eq. (47), where the subscript s should now be consid- 
ered as a variable representing the layer number of the wire 
rope. Therefore, for the central strand, we can write 

Fo = Fo(e, ~b) 
(60) 

Mo = Mo(c, ~b). 

For the surrounding helical strands, the axial and rotational 
strains are ~, and AT,, which are usually small. Therefore, the 
surrounding helical strands can be characterized by the linear 
theory, that is by the seven constants, a,  bs, Cs, d,, As, Ps, and 
q,, found from Eqs. (53), (58), and (59). Note that the strands 
in different layers can have different structures. In other words, 
these seven constants should first be determined for all the 
component strands, and the wire rope problem can be solved 
using the general formulation previously obtained. 

A general program has been developed to solve various wire 
rope problems. The core of this program is a subroutine which 
makes use of the formulation derived in this paper and yields 
the nonlinear solutions and the seven characteristic constants 
of a general structure. Following the input information, the 
program starts by analyzing the component strands one layer 
after the other to find, using the subroutine, the characteristic 
constants of all the component strands. After that, a call of the 
subroutine again solves the wire rope problem. Note that a wire 
rope is also characterized by seven constants, by Eqs. (39), 
(42), and (43). Therefore, wire ropes can also be used as 
components in more complex structures, and the problems can 
be solved similarly. 

6 Conclusions 
The difficulty with the wire rope analysis is that there are 

many wires with different geometric and physical parameters 
involved that even numbering the wires can be complicated. 
The conventional method, analyzing the wires one by one, turns 
out to be too complex and inconvenient for computer pro- 

graming. This paper points out that the wire, the strand, and 
the wire rope can be considered as a kind of identical structure 
in the analysis, only with different values of stiffness and defor- 
mation constants. In this way, if we consider a general structure, 
which is composed of a central core and layers of surrounding 
helical components, and then choose any wires, strands, or even 
wire ropes to be its component elements, we can create a wire 
rope structure of any possible cross section, and the wire rope 
thus formed can be solved using the same general formulation. 

Because of the complexity of the problem, a program is re- 
quired in the analysis. In the case of a strand structure, the 
seven stiffness and deformation constants of the component 
wires are readily known, and the program solves the strand 
problem directly. In the case of a wire rope structure, the seven 
stiffness and deformation constants of all the component strands 
need to be determined first, using the program, based on the 
seven stiffness and deformation constants of the component 
wires of these component strands. Then, the wire rope can be 
considered as a generalized strand, and solved similarly. In this 
way, various strand and wire rope problems can be attacked 
with one general formulation and one program. The advantages 
of the presented approach are self-evident. 

References 
Costello, G. A., 1977, "Large Deflection of Helical Spring due to Bending," 

ASCE Journal of  Engineering Mechanics, Vol. 103, No. EM3, 481-487. 
Costello, G. A., and Sinha, S. K., 1977, "Static Behavior of Wire Rope," 

ASCE Journal o f  Engineering Mechanics, Vol. 103, No. EM6, 1011 - 1022. 
Hall, H. M., 1951, "Stresses in Small Wire Ropes," Wire and Wire Products, 

Vol. 26, pp. 228, 257-259. 
Hruska, F. H., 1951, "Calculations of Stresses in Wire Rope," Wire and Wire 

Products, Vol. 26, pp. 766-767, 799-801. 
Hruska, F. H., 1952, "Radial Forces in Wire Ropes," Wire and Wire Products, 

Vol. 27, pp. 459-463. 
Hruska, F. H., 1953, "Tangential Forces in Wire Ropes," Wire and Wire 

Products, Vol. 28, 455-460. 
Leissa, A. W., 1959, "Contact Stresses in Wire Ropes," Wire and Wire Prod- 

ucts, Vol. 34, pp. 307-314, 372-373. 
Love, A. E. H., 1927, A Treatise on the Mathematical Theory of  Elasticity, 4th 

ed., Dover, New York. 
Phillips, J. W., and Costello, G. A., 1973, "Contact Stresses in Twisted Wire 

Cables," ASCE Journal o f  Engineering Mechanics, Vol. 99, No. 2, 331-341. 
Phillips, J. W., and Costello, G. A., 1985, "Analysis of Wire Ropes with 

Internal-Wire-Rope Cores," ASME JOURNAL OF APPLIED MECHANICS, Vol. 52, 
510-516. 

Suslov, B. M., 1936, "On the Modulus of Elasticity of Wire Ropes," Wire 
and Wire Products, Vol. 11, pp. 176-182. 

Velinsky, S. A., Anderson, G. L., and Costello, G. A., 1984, "Wire Rope with 
Complex Cross Sections," ASCE Joul~al of Engineering Mechanics, Vol. 110, 
No. 3, 380-391. 

Journal of Applied Mechanics SEPTEMBER 1995, Vol. 62 / 755 

Downloaded 04 May 2010 to 171.66.16.28. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Loc Vu-Ouoc 
Mem. ASME. 

I. K. Ebcioglu 

Department of Aerospace Engineering, 
Mechanics and Engineering Science, 

University of Florida, 
Gainesville, FL 32611 

Dynamic Formulation for 
Geometrically Exact Sandwich 
Beams and One-Dimensional 
Plates 
A new theory of sandwich beams/one-dimensional plates is presented with finite 
rotations and shear allowed in each layer. The layers, variable in number from one 
to three, need not have the same thickness and the same length, thus allowing for ply 
drop-off. Restricting to planar deformation, the cross section has a motion identical to 
that of a multibody system that consists of rigid links connected by hinges. Large 
deformation and large overall motion are accommodated, with the beam dynamics 
referred directly to an inertial frame. An important approximated theory is developed 
from the general nonlinear equations. The classical linear theory is recovered by 
consistent linearization. 

1 Introduction 
Multilayered structures have widespread applications in engi- 

neering. Laminated composite structures, initially developed for 
use in the aerospace industry, have played an increasingly im- 
portant role in robotics and machine systems that require high 
operating speed. The low weight and high stiffness offered by 
laminated composite structures help reduce the power consump- 
tion, increase the ratio of payload/self-weight, and would con- 
tribute to improve the accuracy in the motion characteristics 
and the reduction in the level of acoustic emission of these 
systems. It is shown from computer simulations with experi- 
mental corroboration that the low weight/stiffness ratio of lami- 
nated composites is essential for obtaining high performance in 
slider-crank and four-bar linkage systems (Sung et al., 1986; 
Thompson and Sung, 1986). More recently, considerable atten- 
tion has been given to a class of smart structures with embedded 
piezoelectric layers as sensors and actuators (see, e.g., Evsei- 
chik, 1989; Tzou, 1989) or interferometric optical fiber sensors 
(see, e.g., Sirkis, 1993) for monitoring the strain level and for 
vibration control. Large overall motion of multilayered struc- 
tures can be found in robot arms or space structures with embed- 
ded sensors/actuators. Yet another example of multilayered 
structures can be found in the damping of structural vibration 
by the use of viscoelastic constrained layers (e.g., Alberts, 1993; 
Dubbelday, 1993; Rat,  1993). 

Several formulations to model the dynamic response of multi- 
layered structures have been proposed (see, e.g., Yu, 1989). 
Particularly for sandwich structures, an account of the classical 
formulations (among other topics ) is given in Plantema (1966). 
The bending stiffness of the core layer was often neglected; 
only shear is accounted for. The transverse shear effects of the 
outer layers were first considered in Yu (1959), who was also 
the first to employ the hypothesis of continuous piecewise linear 
deformed sandwich cross section (Toledano and Murakami, 
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the occasion of his 60th birthday. 

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY 
OF MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED 
MECHANICS. 

Discussion on this paper should be addressed to the Technical Editor, Prof. 
Lewis T. Wheeler, Department of Mechanical Engineering, University of Houston, 
Houston, TX 77204-4792, and will be accepted until four months after final 
publication of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS. 

Manuscript received by the ASME Applied Mechanics Division, Nov. 5, 1993; 
final revision, Apr. 1, 1994. Associate Technical Editor: J. N. Reddy. 

1987). Most formulations so far have incorporated the geomet- 
ric nonlinearity as higher-order deformation (see the review 
paper by Chia, 1988), and are not suitable for problems that 
include the large overall motion such as the slider-crank mecha- 
nism or the four-bar linkage systems. On the other hand, formu- 
lations proposed for studying the large overall motion of lami- 
nated composite structures in general bypass the kinematic de- 
scription of the deformation in different layers to use the 
classical single-layer Euler-Bernoulli beam theory, and make 
use of a constitutive law which is a weighted average of the 
constitutive laws of the layers (see, e.g., Thompson, 1987). 

We propose here a new theory of geometrically exact sand- 
wich beams, 2 also applicable to one-dimensional plates, ac- 
counting for bending stiffness and shear deformation in all lay- 
ers. In the present work, each layer can have arbitrary thickness, 
with no a priori assumption made on the distribution of mass 
over the layer cross section. The deformed cross section is 
piecewise linear, and admits finite rotations in the layer cross 
sections. The continuity of the displacement field at the layer 
interfaces is enforced. The beam deformation being restricted 
to be planar, the motion of a typical cross section is the same 
as that of a multibody system consisted of three (planar) rigid 
links, connected to each other by hinges, and moving in the 
plane without any a priori restriction on the magnitude of mo- 
tion. 3 With the kinematics of its deformation described by exact, 
fully nonlinear expressions, the formulation of this multirigid/ 
flexible-body system can be employed to model problems in- 
volving large deformation in very flexible multilayered struc- 
tures, and/or large overall motion as typified by the large rota- 
tion maneuvers of flexible composite robot arms or satellite 
appendages with embedded layers of sensors and actuators. 

With the dynamics of motion referred directly to the inertial 
frame--bypassing the need for a floating reference frame as 
employed, e.g., in Thompson and Sung (1986) - - t h e  resulting 
equations of motion are fully nonlinear. Of particular interest 
is the case where the core layer admits finite rotation (thus large 
deformation and/or large overall motion), but rotations in the 
outer layers are infinitesimal relative to the core layer rotation. 4 

2 For backgrounds on the theoretical and computational formulation of single- 
layer geometrically-exact beams, the reader is referred to, e.g., Simo & Vu-Quoc 
(1986), Vu-Quoc (1986), Simo & Vu-Quoc (1991). 

3 See Figure 2.2 and Kamman & Huston (1984) for the dynamic formulation 
of a chain of rigid links. 

4 This situation is closely related to, but not exactly the same as, the one in 
Danielson & Hodges (1988), where the (single-layer) beam cross section deforms 
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beam/one-dimensional plate. Profile of a sandwich structure. The 
and the position of the layer midpoints are indicated. 

Such cases can be found in flexible multilayered structures per- 
forming large overall motion (but not large deformation), e.g., 
robot arms. For this case, the nonlinear approximated equations 
of motion are consistently deduced from the fully nonlinear 
equations. Finally, we obtain the linear equations of motion in 
the case where all rotations are infinitesimal, and of the same 
order. These linear equations include those obtained in Yu 
(1959) as a particular case. The present result is more general 
in that we do not make the a priori assumption of zero axial 
motion as in Yu (1959). 

The beam can admit a variable number of layers from one to 
three, with the number of unknown kinematic quantities varying 
from three to five. In the case of a single layer, we recover the 
equations of motion in Simo and Vu-Quoc (1986). In addition, 
the length of each layer can be arbitrary; such is the case of an 
important class of multilayered structures having ply drop-off 
The computational formulation and numerical simulations, with 
application to multilayered beams with ply drop-off are given 
in Vu-Quoc and Deng (1995). 

2 Kinematics of Deformation 
Shown in Fig. 1 is the profile of a sandwich beam with three 

layers: The bottom layer (1) ,  the core layer (2) ,  and the top 
layer (3) .  Each layer may have a different thickness. The thick- 
ness of layer (1) - - f o r  I = 1, 2, 3 - - i s  denoted by (~H := 2(t~h. 

The material configuration is defined by means of the material 
basis vectors { E~, E~ }, with the associated coordinates (X t, 
XZ). The undeformed beam lies along the X ~ axis. The spatial 
configuration is defined by the basis vectors {el, ez }, with e3 
normal to the previous two vectors according to the right-hand 
rule. For convenience, it is often chosen such that E~ =- e, for 
a = 1, 2. The time parameter is denoted by t ~ ~+ ,  with ~ ~+ 
:= [0, +to[. Let £~ = ]0, L[ denote the interval, with the axial 
coordinate X ~ , covering the length of the undeformed beam, 
and °~ the interval, with the transverse coordinate X 2, represent- 
ing cross section of the sandwich beam. Let (2 = £ × ~[ C ~ 
denote the domain of the undeformed beam. We define (t)'Zl := 
]((t)Z - (t)h), ((t)Z + (t~h)[ as the cross section of layer (1), 
where (~)Z designates the X Z-coordinate of the midpoint of layer 
(/).6 Setting the origin of coordinate X ~ to coincide with the 
midpoint of core layer (2) (see Fig. 1 ), we have (~Z = - ((l)h 
+ (z)h), (~Z = 0, and (3/g = (z)h + (3)h; also ~ = U (~)~l = ] 

/ 

-- ( (1)H + (2)h) ,  ((2)h + ( 3 ) H ) [ .  W i t h  t he  d o m a i n  o f  layer (1) 
denoted by (~)f~ := ~' × (~fll, we have ~ = U (~)f~. 

l 

smoothly due to warping and without the presence of any "hinges" as in sandwich 
beams. 

Open intervals are written as ]a, b[. 
6 The midpoint of a layer cross section coincides with its centroid when the 

mass distribution is symmetric within the layer cross section. 

The deformation map for layer (I) ,  denoted by (t)~: (~)~ × 
•+ ~ ~2 is described as follows: A material point 7 X"E~ in 
layer ( l )  is mapped to a spatial point ( t )~(X ~, X z, t) E R:  
defined by 

( t)~(X 1 , X 2, t) := (~)~0(X l , t) 

+ (X 2 - (t~Z)(t)tz(X l, t), (2.1) 

forX j E g, a n d X  z ~ (~fl/, and for I = 1, 2, 3. In (2.1),  (t)~0 : 
g × R ÷ ~ ~z is the deformation map of the centroidal line of 
layer (l) .  Describing the orientation of the cross section of layer 
(l)  is a set of orthonormal basis vectors {(~)tj, (t)tz} attached 
to that cross section, such that (t)t,(X ~, 0) --- e~, for a = 1, 2, 
at t i m e t  = 0. 

The motion of the cross section is that of a multibody system 
consisting of a chain of three rigid links connected by hinges 
as shown in Fig. 2, with (t)~o being the position of the centroid 
of link (layer) (l) .  The following kinematic constraint equations 
express (~:I'0 and (3~0 in terms of (z)~0, which is chosen as 
a principal unknown function 

( t ) ~ o  = (z)~I~0- ( l ) h ( l ) t 2 -  (2~h(2)tz, (2.2) 

(3~o = (z~o + ~2~h(z~t2 + (3)h(3~t2, (2.3) 

and satisfy the continuity conditions across layer boundaries 

(t)cI,(X ~, ( , )Z + ,~h), t) 

= ~t+l)~(X 1, ((t+t)Z- (l+j~h), t), (2.4) 

f o r l =  1, 2 and for all X ~ ~ g a n d t ~  ~+.  
Let S --- X ~, and u (S ,  t) = u"(S, t)e, be the displacement 

vector of the material point S ~ 2~ on the undeformed line of 
centroids, then 

(2:I'o := [S + urn(S, t ) ]el  + uZ(S, t)e~. (2.5) 

Let (t~O(S, t) be the rotation angle of the cross section of layer 
(1), then 

(~)t,(S, t) = (~)A(S, t ) E , ,  (2.6) 

(~)A = ~)A~e~ @ E ~, 

= [COS (~)0 - s i n  (,~0] 
[(~)A~] : / s i n  (~0 cos (~0 _] ' (2.7) 

where (~)A is an orthogonal two-point tensor, whose matrix of 
components with respect to the basis e, @ E ~ is denoted by 

7 Summation convention on repeated indices applies, with Greek indices taking 
values in { 1, 2 }. 
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x2 (3) t~(3)O 

, ,, ,/" , , ~ / n  ,- • (2) t 1 

......... ..o...o...o~"-~ / (1)tl 

..." (2)~0 //'-'%'1~ / 
2 m e 2 .***...o° o,o,,,,° 

X 1 

Fig. 2 Multibody dynamics. Motion of cross section as a chain of rigid 
links. For clarity, the basis vectors (0t~ for layers I = 1, 2, 3 are not drawn. 

[(oA~], where in <t~A~, the superscript a denotes the row index 
and the subscript [3 the column index. Since we are using 
Cartesian coordinates, it follows that E" =- E, .  Thus, from 
( 2 . 6 ) - ( 2 . 7 )  we have <or, = u)A~ep (see, e.g., Marsden and 
Hughes, 1983; Vu-Quoc, 1986). 

The five principal unknown functions of (S, t) for a three- 
layer sandwich structure are the following kinematic quantities: 
u ~ , u z, <1)0, <~)0, and (~)0. Using (2 .2 ) - (2 .3 ) ,  and (2 .5 ) - (2 .7 ) ,  
we can relate the deformation maps u),I, of the three layers (1 
= 1, 2, 3) to the above five principal unknown functions. 

3 Equations of Motion 

3.1 Power of Contact and Assigned Forces/Couples. 
The mechanical power of contact forces/couples in a three- 
layer sandwich structure is given by 

~ f z  I l l  . 'P. := [ o ) n ' u ) y  + o)m(t)O,s]dS, (3.1) 
l=l 

where (on = u)n%~ is the resultant contact (internal) force for 
layer ( l) ,  (rim the resultant contact couple with respect to the 
centroid of the layer (l)  cross section, whereas 0)'Y and o)0, s 
are the strain measures conjugated to u)n and u)m, respectively 
(see Simo and Vu-Quoc (1986) for the single-layer case). In 
(3.1), the overhead dot . . . .  designates time differentiation, 
whereas the overhead symbol " m , ,  designates the time differ- 
entiation of a vector quantity, say, v, expressed in the cross- 
section basis {,)t~, u)t2 } of layer (1) while keeping this basis 
fixed in the following sense: 

[ll [ll 
<l)t~ ~ 0, and v = v~(ot,~ ~ v := 0~u)t~. (3.2) 

[1! 

Note that v can be re-expressed in the basis { el, e2} using 
(2 .6 ) - (2 .7 ) .  Using (3.2), the objective rates of the spatial 
strains for each layer l = 1, 2, 3 are given by 

(nY : -  OS (°tl = (oY  = \ OS J =: (ncI'°'s' 

(3.3) 

where we have made use of (3.2), and the subscript " , S "  
designates a differentiation with respect to S (see Simo and Vu- 
Quoc (1986) for the single-layer case). We record below some 
expressions for the rates of the basis vectors { (t)t~, (ot2 } which 
will be used frequently later 

u)tl,s = <oO,s(ot2, u)tzs = -(o0,s(ot l ,  (3.4) 
[1] it] 

(2) t 1 = ~b2t(2)t2, (z) t 2 = - ~b2t(2)tl, 

with 02l := <2)0 - (n0. (3.5) 

Note that the case for l = 2 in (3.5) is trivial, and corresponds 
to the definition of the special time differentiation in (3.2). We 
want to express the strain rates in (3.3) in terms of the five 
principal unknown functions. From (3.3),  (2 .2 ) - (2 .3 ) ,  and 

[l] 
(3 .4 ) - (3 .5 ) ,  the expressions for u) Y can be written as follows: 

I]] [U 
a)'Y = <2)~0,s + o)h(1)O,sa)tl + (2)h(2)O,s(z)tl 

-b  ( 2 ) h ( 2 ) O s f f J 2 1 ( 2 ) t 2 ,  (3.6) 

[31 [3] 
(3)~ = <2)~o,s-  <2)h(2)0,s<2)t~ 

- -  ( 2 ) h ( 2 ) O , s £ O 2 3 ( 2 ) t 2  - (3)h<3)0.s(3)tl. (3.7) 

Remark 3.1. In arriving at ( 3 . 6 ) -  (3.7), the order of differ- 
entiation as shown in the definition (3 .3)2--space first, time 
a f te r - -mus t  be observed, lest we would obtain incorrect results, 
which are different from (3 .6 ) - (3 .7 ) .  The reason for this non- 
commutativity is that the time differentiation ( . )m is not the 
total time derivative, and thus does not commute with the spatial 
derivative d(" )/dS.  • 

Next using (2 .5 ) - (2 .7 )  with E~ = e, ,  and (3 .4 ) - (3 .5 ) ,  it 
can be shown that 

[tl 
<2>~o.s = [a.ts + u~su)blei + [a~s - (1 + u~s)(nb]e2. (3.8) 

With the aid of formulae (3.3), (3.6), (3.8), and (2 .6 ) - (2 .7 ) ,  

the strain rates u )~  (for 1 = 1, 2, 3) can now be related to the 
five principal unknown functions. Next we want to arrange the 
terms in the expression for the power ~ as factors of the time 
rate of the five principal unknown functions ul ,  ~2, (l)~ ' (2)0 ' 
and <a)0. We first note that 

/,/2 nl /Al "~ //2 ,su) - (1 + ,sJu) = -[(2)'I'0,s × (nn ] ' e3 .  (3.9) 

We also introduce the following definition: 
3 

fi := ~ (on, (3.10) 
l=l 

where fi represents the resultant contact force on the cross sec- 
tion. After performing an integration by parts with respect to 
S, we obtain the following expression for the power of contact 
forces and contact couples 

~P~ = - f f i , s ' " d S + [ f i ' " ]  s=L f {  s=o -- (i)m,s , g 

+ [(2)@o.s X (1)n]. e3 + (~)h((1)n" <l)t~).s 

+ <2)h(z)Os(d)n'(2)t2) }(hOdS 

+ [{<~m + <,)h(u)n" , 4 , )  }(,)O]§_:~ 

- ~{(2)m,s + [(2,~o.s X (2)n]" e3 

+ (2)h(o)n,s -- (3)n,s)'(2)tl }<2)#dS 

+ [{(2)m + <2)h(( l )n-  ~3)n)'<z)tl}(2)0]s20 r 

I"  {(3)m.s + [(2)~0,s X (3)n]' e3 

-<2)h(2)O.s((3)n" (2) t2) -  (3)h((3)n" (3)tl),s}(3)OdS 

+ [{<3)m - <3)h(<~)n'<3)tl)}<a)b]~2o L. (3.11) 

A geometric interpretation of the moment term [(2)h((l)n - 
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(3)n I n 

1 

Fig. 3 Sandwich beams/one-dimensional plates. Geometric interpreta- 
tion of the moment [ (~)h (ran - (ran). (~}t~ ] at the extremities of layer (2) 
see the third boundary term in Eq. (3,11), 

(3 )n) . (z ) t~  ] at the extremities of the core layer ( 2 ) - - i . e . ,  the 
third boundary term in ( 3 . 1 1 ) - - i s  given in Fig. 3; similar 
interpretations can be made for the moment terms 
[(~)h((~)n. (~)tm)] and [(3)h((3)n" (3)t~)] for layers (1) and (3) ,  
respectively. 

Let ~(S,  t) be the resultant assigned forces for all layers, 
and (t),.7~(S, t) the resultant assigned couple associated with 
layer (1). The power due to assigned forces/couples for a three- 
layer sandwich structure is given by 

~/'.. := { ~ ' a  + ~ (~).~-(o)b}dS 
/=1 

3 

+ [ h . u + 5 " ,  ~ " ~=~ (~).~(~)0] s=o, (3.12) 
l - I  

where the moments 0).~ have a special meaning (different than 
that of (~)m) to be defined shortly. 

3.2 Rate of Kinetic Energy. Let (oP denote the mass per 
unit volume s in layer (1). Then the kinetic energy 7¢. and its 
rate are 

1 (,)p(,)'~' (~>'~df~ d~ 

7f=  ,=,~ f(t,a ( , )p( , ) ,~ ' ( t )~da.  (3.13) 

Using (2.1) and the kinematic constraint Eqs. (2 .2 ) - (2 .3 ) ,  the 
deformation maps (z),I, (for l = 1, 2, 3) can be expressed in 
terms of the principal unknown functions (2)'I~0, (~)0, (2)0, (3)0. 
One can then derive the expression for the rate of the kinetic 
energy in terms of the rates of the five principal unknown func- 
tions. The time rates of (t)'I' involve the time rates of the basis 
vector (~)t2, which are recorded as follows: 

(~)i~ = -(t)O(~)t~, (o~ = -[(~)0(ot ~ + (,)0)2(~)t2]. (3.14) 

It is convenient for the evaluation of the rate of the kinetic 
energy to introduce the following definitions. Combining (2.1) 
and (2 .2 ) - (2 .3 ) ,  we have 

(t)ff~ = (t)~o + X~(t)t2, for 1 = 1, 2, 3, (3.15) 

( 1 ) ~  : =  (2)tI~0 + ( 2 ) h ( ( 1 ) t 2  - -  (2)t2), (3.16) 

(2)~P := (2)~o, (3.17) 

(3)~P := (2)~o + (2)h((z)t2 - (3)t2). (3.18) 

The rate of the kinetic energy (3.13) is then written as 

d ~ =  ( , p ( , ~  + xa(t)~2) 
dt ,~( 

((t)~ + X2o)tz)dX2} dS q 

o)Ap( t )~"  (t)~ + (t)Ap[o)~P" .)t2 + (l)t2" (1)¢] 
I=1 

+ ,)A~(l)i2"o)i2}dS, (3.19) 

where we have made use of the following definition 

(t)A~ := f (t)p(X2)~dX 2, for k = 0, 1, 2. (3.20) 
ac I)/t 

For layer ( l) ,  (l)A ° is the mass per unit undeformed length, 
whereas .0)A~ is the mass moment of area, and (~)A 2 a the mass 
moment of inertia, of the layer cross section (~)7/with respect 
to the midpoint of the core layer (2).  Assumptions are made 
neither on the layer thickness, nor on the distribution of mass 
in each layer. For a symmetric distribution of mass in each 
layer cross section, (l)A 1 = (~)Z(~)A ° (in particular, (2)A~ = 0);  
however, for a general distribution of mass, o)A 1 ~: ,)Zo)A °. 

The expressions for ~/~' and for (t)/P can be readily obtained 
from (3 .15) - (3 .18) ,  (2.5), and (3.14). First, it follows from 
(2.5) and (3.17) that 

(2)¢ = ~2)~o = u,  and ~2)/P = ~2~o = ii. (3.21) 

Next, using (3 .15) - (3 .18) ,  we can regroup the terms in (3.19) 
as factors of the time rates u ,  (1)i2, <2)tz, (3)i2 as follows: 

d 7f = [ ~ o .. 1 - -  { (~)Az(o~p + ( i )Ap ( / ) t2 }  ° ~1 
dt ~=~ 

+ {~,)A°.(=)h.)ip + ~.A~(~,)~ + (~)h.)~i=) 
2 " + (i)Aeo)t2} " (~)[2 + {(2)h(-(,)A~,o)¢' 
0 " 1 "' 1 " Jr- (3)Ap(3)~) + (-(2)h(~)Ao(,)t2 + (2)A~ (2)~ 

1 " 2 " " 
+ (2)h(3)Ap(3)t2) + ( 2 ) A p ( 2 ) t z } ' ( z ) t 2  

+ { - ( 3 ) A ~ ( 2 ) h ( 3 ) ¢  + ( 3 ) A ~ ( ( 3 ) ¢  - -  ( 2 ) h ( 3 ) t 2 )  

+ (3)Ap2(3) t2} • ( 3 ) i 2 ] d S ,  ( 3 . 2 2 )  

which, by using (3.14)~, can be recast into the following form: 

d ~/C= [ f . u  + ~ . iC.)O]dS. (3.23) 
dt ~= 

We record below results that will help to arrive at the expres- 
sions for the inertia force and the couples , )C:  

(~)t..(t)t~ = 6,~, e~..)t~ = cos (~)0, 

e2" (~)t~ = sin (~)0, (3.24) 

(2)t~.0)t~ = (~)t~. (=)tl = cos q~2~, (3.25) 

--(2)t~" (t)tl = (otz'(~)tl = sin ~2~, (3.26) 

with 6.~ being the Kronecker delta, and for l = 1, 2, 3. Using 
(3 .24) - (3 .26) ,  one obtains 9 

~.(ot~ = (u '~ cos 0)0 + a '~ sin (~/0), (3.27) 

(o~. , ) t~  = - , ) 0 ,  (3.28) 

8 The mass density (t)P is assumed constant in time. 9 Recal l  that ~ 2 / : =  (2)0 - o l0  as def ined in (3 .5 ) .  
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(l)t2" (2)tl = --[(1)0 COS @21 + ((I)0) 2 sin tp21], ( 3 . 2 9 )  

(2)t2" (1)tl = -[c2)0 cos ~021 - (¢2)0) z sin ~02l], (3.30) 

for 1 = 1, 2, 3. From the expressions for (l)~ in (3 .15)-(3.18)  
together with (2.5), we arrive at the expression for the inertia 
force f from the first term of (3.22) 

3 

f = Z {(~)A°(I)/P + (l)A~(l)t~} 
1 = I  

3 

= ( Z  (l)A~)ti + [(2)h(,)A~ + (l)A~](l)t2 
1=1 

0 " + [ - ( z )h (x )A  ° + (~)A~ + (2)h(~)A,](2)t~ 

- [(~)h(3>A~ - ~ " (3)A,](3)t2. (3.31) 

The expressions for the inertia couple (1)C, for I = 1, 2, 3 follow 
from the use of (3.14)1, the definitions (3.16)-(3.18) ,  and 
(2.5) in the last three terms of (3.22) 

2 0 1 2 "" ( i )C = [ ( (2)h)  (pAp + 2(2)h(~)Ap + (l)Ap](1)O 

- [(2)h(~)A ° + (t)A~p](il - ( 2 ) h ( 2 ) t 2 ) ' ( n t x ,  (3.32) 
2 0 2 2 0 "" 

(2)C = [ ( (2)h)  ( l)Ap + (2)A; + ((2)h) (3)Ap](2)O 

+ [(2)h(t)A~ - (2)A~ - (2)h(3)a~°](O" (2)t~) 

+ (2)h[(2)h(~)A. ° + o)A~](o)t2" <2)t~) 

+ (~)h[(2)h(3)Ap ° - (3)Ap~]((3)t2 "(2)tl), (3.33) 
2 0 1 2 "" (3)C = [((2)h) (3lAp - 2(2)h(3)Ap + (3)Ap]o)O 

+ [(2)h(3)Ap ° - (3)A~](ii + (2)h(2)t2)'(~)t~. (3.34) 

One can recast the expressions in (3 .31)-(3.34)  in terms of 
the five principal unknown functions u ~, u 2, (~)0, (2~0, (3)0, 
using (3.14)2 and (3.27)-(3.30) .  

3.3 Balance of  Power: Equat ions  of  Motion.  We are 
now ready to employ the balance of (i)  the power of assigned 
forces/couples and (ii) the combined rate of kinetic energy and 
power of contact forces/couples 

d 
- -  7f + ~'/'o = ~/~, (3.35) 
dt 

for all admissible rates ~, (~)0, (2)0, ¢3)0. It follows from (3.23), 
(3.11), and (3.12) that the equations of motion for a three- 
layer sandwich structure are given by 

fi.s + n = f, (3.36) 

(~)ms + [(2)~I~o,s X (~)n]. e3 + (nh((t)n" (~)t~)s 

+ (2)h(2)O,s((x)n" (2)t~) + (l)fi'~ = ( i )C ,  (3.37) 

(2)m,s + [(~)'I%,s × (2)n]" e3 

+ ( 2 ) h ( ( l ) n , s -  (3)n,s)" (2)t! + (2)e ~3~ = (2iC, (3.38) 

(~)m,s + [(2)~o,s × (3)n]" e3 - (2)h(2)O,s((3)n" (~)t2) 

- (3)h((3)n'(3)t~),s + (~l~ = (3)C, (3.39) 

and the boundary conditions at S = 0 and S = L are 

fi = ~, (3.40) 

<l)m + <~)h((~)n" (~)tl) = <1).~, (3.41) 

(2) m + (~)h((~)n - (3)n)" (2)tl = (2l.ff2, (3.42) 

( 3 ) m -  (3)h((3)n" (3)tl) = (3).if(. (3.43) 

Relation (3.41) suggests that the assigned couple (1)o~ is effec- 
tively the resultant couple of the assigned forces in layer (1) 

with respect to hinge A shown in Fig. 2. Similarly, <3)~ is the 
resultant assigned couple in layer (3) with respect to hinge B 
in Fig. 2. The assigned couple <2),.7~ with respect to the midpoint 
of core layer (2) is interpreted in the same manner as shown 
in Fig. 3. In fact, by defining the layer internal moments (t)~C in 
a similar manner as in (3.41 ) -  (3.43), one obtains an alternative 
form for the balance of angular momenta (3 .37) - (3 .39) )  0 

Global balance o f  angular momen tum equation. Note that 
the third term in (3.38) has an equivalent form 

( ( l )n . s -  (3)n , s ) ' (2 ) t l  = [ ( ( l ) n -  (3)n)'c2)tl].s 

-- (2)0,s((Dn -- (3)n)'(z)h, (3.44) 

where we have made use of (3.4)1. We introduce the definition 
of the resultant moment of layer (l)  with respect to the midpoint 
of the core layer (2) denoted by (l/2)m as follows: 

(l/2)m := (l)m + (1)n'((l)h(l)tl + (2)h(z)tl), (3.45) 

(2/2l m := (2)m, (3.46) 

(3/2)m := <3)m - (3)n'((2)h(z)tl + (3)h(3)tl), (3.47) 

and 
3 3 3 

rh := ~ (,2)m, rh :=  ~ (t),~, C := ~ (1)C, (3.48) 
l : 1  I=1 I=1  

which stand for the resultant contact couple, resultant assigned 
couple, and resultant inertia couple with respect to the midpoint 
of core layer (2),  respectively. Using (3.44) in (3.38), then 
adding (3.37)-(3.39)  together, we arrive at the global balance 
of angular momentum equation 

rh s  + [(2)'cI~0,s X f i ] '  e3 + r~ = C (3.49) 

after making use of definitions (3.10) and (3.48). 

Remark  3.2. It should be emphasized that the present theory 
remains valid for multilayered structures with an arbitrary num- 
ber of layers (anywhere between one and three). In case of one 
layer, the equations are the same as those in Simo and Vu-Quoc 
(1986), which constitute a particular case. u In addition, the 
present theory can accomodate the important case of multilay- 
ered structures with ply drop-off. These points are clearly dis- 
cussed in Vu-Quoc and Deng (1995), where we present the 
computational formulation and the numerical results for the 
present theory. • 

4 C o n s t i t u t i v e  L a w s  

We define the material contact force (:/N and the material 
strain measure (z)U pertaining to layer ( l)  as follows: 

(l)N = (i)N~E~, (l~N := (t)Ar,~n, (4.1) 

(z)F = (t)F"E,, ,~F := (~)AT(z)y, (4.2) 

where the orthogonal two-point tensor (hA had been defined in 
(2 .6) - (2 .7) ,  and (t)n and (~)y are the spatial contact force and 
spatial strain measure, respectively. For layer ( l) ,  we employ 
the constitutive relations lZ 

(l)N = (t/D(t/F, (t)D = (t)D~E, @ E ' ,  

(t)m = (l)D~(oO.s, (4.3) 

10 See Vu-Quoc and Ebcio~lu (1993) for more details. 
~1 See Vu-Quoc and Ebcio~lu (1993) for more details. 
12 See, e.g., Chadwick (1976) or Marsden and Hughes (1983) for the tensor 

notation and rules of calculation. The matrix [q)D~] E R 3×3 in (4.4)-(4.5) has 
the representative element (t)Dj with the upper index i designates the row index, 
and the lower index j the column index. 
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[(oD}] := 0 (~)GA.~ 
0 0 (~)EI 

~ 3 X 3  (4.4) 

or  

[o)D~] := 

[ 0 
1 - (t)u- 

o) GA, 

0 

0) 
0 

2(~)Eo)h 3 

3(1 - (ou2) ' 

~3×3, 

(4.5) 
where for beams, o)EA,  (~)GA,, and (~)EI denote the extensional 
stiffness, shear stiffness, and bending stiffness of layer ( l) ,  
respectively, whereas for plates, (~)E and (~)u are Young's modu- 
lus and Poisson's ratio of layer l. The effects of stretching, 
shearing, and bending are uncoupled in the above constitutive 
relations (4 .3)- (4 .5)  as a result of choosing ,)'I'0 to be the 
deformation map of the centroidal line of layer (l) .  13 Of particu- 
lar usefulness is the relation between the spatial contact force 
o)n and the five principal unknown functions U 1 , U 2, (1)0 ,  (2 )0 ,  
and (3)0 given by 

(t)n = (~Ao)Do)Ar(t)T, (4.6) 

which are obtained from (4.1) and (4.3). The expressions for 
(~)y, for l = 1, 2, 3, in terms of the five principal unknown 
functions are obtained from using definition (3.3)~, together 
with the kinematic constraint equations (2 .2) - (2 .3) ,  and rela- 
tions (2 .6) - (2 .7)  and (3.4). Finally, we recall, however, Re- 
mark 3.2 on the variable number of layers and the case of ply 
drop-off in multilayered structures accomodated by the present 
theory. 

5 A p p r o x i m a t e d  Equat ions  o f  M o t i o n  

5.1 Infinitesimal Relative Rotations in Outer Layers. 
In this section, the rotation (2)0 of the core layer (2) remains 
finite, but the rotations of the outer layers (1) and (3) are 
assumed to be small relative to the core rotation (2)0, i.e., 

[~b2/I -- 1(2~0- (o01 ~ 1, cosqJ2l~ 1, 

sin ~02l ~ ~02l. (5.1) 

Also we shall assume that 14 

(t)O.s ~ (2)Os, (i)b ~ (2)0, (l)'O ~ ~2)0. (5.2) 

The five principal unknown functions are now u I , u 2, (z)0, qJ21, 
and ~'23. It follows from (5.1) that 

cos (l)0 = cos ((z)0 - O2t) ~ cos (2)0 + O2t sin (2)0, (5.3) 

sin (00 = sin ((2)0 - ~ )  ~ sin (2)0 - ~2~ cos (z)O, (5.4) 

and 

(,)A ~ [ ~ -  t~e~](2)A, +21 = {tp2,}~% @ e o, 

I0 -'/'~' ] [{02~}3]  := 02~ 0 ' (5 .5)  

(t)t. ~ [~7- (b2tl(2)t., (5.6) 

t3 i.e., we are restricting to the case where the centroid of a layer cross section 
coincides with the midpoint of that cross section. 

~4 It is important to realize that in general (5.2)2 does not imply (5.2)3, if the 
approximation is to remain consistent. Such case has been clearly illustrated in 
Vu-Quoc and Olsson (1993) (See Eqs. (2.3ab) and Remark 2.2 in the latter 
reference). 

where ~7 designates the identity two-tensor :7 := 6~e, @ e ~ 
with 6~ being the Kronecker delta, and {~2~ }~ designates the 
component of the tensor d~z~ along the basis tensor e, @ e t~. 
The approximation (5.6) will be used in (3.37)-(3.39)  to ob- 
tain the approximated stiffness operators (left-hand sides) of 
the moment equations. Application of ( 2.2 ) -  ( 2.3 ), ( 3.4 )2, and 
( 3.3 ) 1 in (4.2)2 yields the nonlinear expressions for the material 
strain measures 

o)F = (l)Ar(t)~o,s - El, for l = 1, 2, 3, (5.7) 

( l ) F  = (l)AT[(2)Oo,s + (2)h(2)O,s(2)tt] 

+ ( ( 1 ) h l t ) O s -  1)El,  (5.8) 

(3)F = (3)Ar[(z)~0.s - (2)h(z)0.s (z)tl] 

- ((3)h(3)O,s + 1)El,  (5.9) 

which then lead to their approximated expressions by using 
(5.5)1, (5.2)1, and by noting the skew-symmetry (O~) = -~2l ,  

(1) F '~ (2 )Ar [ f f  + ~21][(2)~I~0,S + (2)h(2)Os(a) t1]  

+ ( ( I )h(2)O,s  - 1)El =: (l)f', (5.10) 

(3)F ~" (2)Ar[27 + 1~23][(2)1I~0,s- (2)h(2)O,s(2) t l]  

- ((3)h(e)O,s + 1)Et =: (3)F. (5.11) 

The approximated constitutive laws (4,6) and (4.3)-(4.5  ) now 
take the following form: 

( i )n ~ [ f f  - (b2l] (2)A ( l)D ( l )F  , (5.12) 

(t)m ~ , )E l ( z )Os .  (5.13) 

Relations (5 .12)-  (5.13 ) are intended for the outer layers ( 1 ) 
and (3).  If one introduces, however, the identity (z)F ~ (2)F, 
then expressions (5.12)-(5.13 ) are also valid for the core layer 
(2) since ~/22 = 0 ;  hence, the approximation in (5.12)-(5.13)  
becomes exact equality for the core layer (2). It is now easy 
to obtain the approximated stiffness operators (left-hand sides) 
of the equations of motion (3.36)-(3.39)  by using the above 
approximations for the layer resultant forces/couples. 

Remark  5.1. Note the consistent approximation in (5 .3) -  
(5.4): The approximation (5.1) is only applied after the expan- 
sion of the trigonometric functions in (5 .3)- (5 .4) .  Also the 
results as in (5 .10)- (  5.11 ), had approximation been introduced 
first in (~)y to obtain 

(I)'Y ~ (2)~0,S + [ ( ( l )h (2)O.s  - 1)[ , ,7-  ~b2t] 

+ (2)h(2)O,sT](z)t1 =: (l)~', (5.14) 

(3)'Y '-~ (2)(Y-~o,s -- [((3)h(2)O,s + 1 ) [ 7 -  d~z3] 

+ (21h(2)O,sT](2)t1 =: (3)5', (5,15) 

which were then used to obtain an approximation for (t)F with 
the aid of (5.5)1, i.e., (2)Ar[~ + d~2t](t~; such result is not 
consistent with the expressions for (t)F and (3)F in (5 .10)-  
(5.11). [] 

We now turn our attention to the inertia terms, and consider 
first the inertia force f in (3.31). Using (5.6) in (3.14)2, to- 
gether with the approximation (5.2), we have 

(/)t2 '~ - - [ i f - -  1~2/][(2)0(2)tl + ((2)0)2(2)t2] 

= [c27- 1~21](2)t2, ( 5 . 1 6 )  

which then leads to the approximated inertia force 
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A A 

f ~ A  o.. o I " p ~ -  [(z)h(1)Ap + (l)Ap]~b21 p u +  [A l 

1 ~ °' + [(2)h(3)A°p - (3)Ap]q/23](2)t2, (5.17) 

where A ~ is defined as follows: 

~ .  3 

a ~  := ~ (,)A~. (5.18) 
l = l  

Next we look at the approximated inertia couples. As a result 
of ( 5 . 1 ) - ( 5 . 2 ) ,  the relations (3 .27 ) - (3 .30 )  are approximated 
by 

f i ' ( t ) t l  ~ i t '  [(z)t, - ~b2/(2)t2], (5.19) 

( l ) t 2 "  ( / ) t l  ~ - - ( 2 ) 0 ,  (5.20) 

(~)t2" (2)tl ~ - [(t)0 + ((o0)2q'2t], (5.21) 

(2)t2"(~)tl ~ - [(~)0 - ((~)0)2~p2t]. (5.22) 

Application of (5.2)3 and (5 .19 ) - (5 .22 )  in (3 .32 ) - (3 .34 )  
yields the following approximated inertia couples: 

(I)C "~ [(2)h(l)A~ + (l)A~](2)0 

- [(2)ho)Ap ° + ( , ) A ~ ] [ i i ' ( l ) t l -  (2)h((z)b)2¢,21], (5.23) 

1 " (e)C ~ [-(2)h(l)A~ + (2)A~ + (2)h(3)Ap](2)O 

• 0 . ,  + [(2)h(~)A~- (2 )A~-  ( 2 ) h ( 3 ) A p ] ( n ' ( 2 ) t t )  

- (~)h[(~)ho)A°~ + (~)A~]((~)b)~0~l 
- (2)h[(2)h(s)A~ ° - (3)A~l((z)b)~p=3, (5.24) 

(3)C ~ [-(2)h(3)A~ + (3)A~](2)0 

l ,.  + [(~)h(3)A~ - ( ~ ) A p ] [ U ' ( 3 ) t l  + (2)h((2)0)2~23]. (5.25) 

Clearly, to express (5 .23 ) - (5 .25 )  completely in terms of the 
five unknown functions u l, u z, (2)0, q~2~, and ~0~3, we need to 
use (5.19) and ( 2 . 6 ) - ( 2 . 7 ) .  

R e m a r k  5.2. For a symmetric sandwich beam such that 

( l )A~= (3)A°p, (1)Zp' = - ( 3 ) A p  1, ( 2 ) A ~ = 0 ,  (5.26) 

the inertia force f and inertia couple (z)C can be significantly 
simplified; see Vu-Quoc and Ebcio~lu (1993) for more de- 
tails. • 

5.2 All Infinitesimal Rotations: Linearized Equations. 
In this section, all rotations angles are assumed small such that 
I(~)0] ~ 1, cos 0)0 ~ 1, and sin (~)0 ~ off, f o r / =  1, 2, 3. The 
five principal unknown functions are the usual u l, u 2, (l)0, (z)O, 
and (3)0. We will neglect all nonlinear terms, and retain only 
the linear terms in a consistent manner. Thus using 

(~)Ar(~)0.s(~)tl ~ (2)0.sEl, (5.27) 

(~)Ar(~)~0.s ~ [1 + U~s]E, + [-(~)0 + U2s]E~, (5.28) 

in expressions ( 5 . 7 ) - ( 5 . 9 )  for (t)r  = 0)F~E, ,  we obtain 

(,)F ~ [U~s + ( ,)h(,)O.s + (2)h(2)0s]E 1 
~ 

+ [ - (1)0  + U~s]E: =: (l)F,  (5.29) 

(2)F ~ u~sE1 + [ - (2)0  + u~s]E2 =: (~)F, (5.30) 

(3)F ~ [U,~s - ( 2 ) h ( 2 ) 0 s  - -  ( 3 ) h ( 3 ) 0 s ] E  l 

+ [ - (3)0  + u2s]E2 =: (3)~1. (5.31) 
~ 

Since the expressions for (t)F, for I = 1, 2, 3, contain only the 
five principal unknown functions and their derivatives, and since 

we neglect all nonlinear terms in this section, it follows from 
(4.6) that 

(t)n .~ (1)D(t)F. (5.32) 

The constitutive law for the moment (t)m remains identical 
to (4.3)3. 

It follows from (3.14)2 that (t)tz ~ - ( o 0 e , ;  it is then easy to 
obtain the linearization of the inertia force f given in (3.31),  
which we omit here. The equation of balance of linear momen- 
tum has identical form as that in (3.36).  

R e m a r k  5.3. For a symmetric sandwich beam such that 
(5.26) holds, the linearized inertia force is approximated by 

f ~ A° i i  + [(2)htl)A~ + (l)Ao]((3)0 - -  ( i ) 0 ) e l .  

(5.33) 

Clearly, if  it is assumed that (~)0 = (3)0 as in Yu (1959),  then 

(5.33) simply becomes ~5 f ~ A~fi.  • 
Next, consider the equations for balance of angular momen- 

tum ( 3.37 ) -  (3.39).  Using the following approximations, 

[ ( 2 ) ( I ) 0 ,  S X ( l ) n ]  ~ (on 2, (5.34) 

n 1 ((~)n. (t)tl).s ~ (l) .s, (5.35) 

n j n l ( (1)n ,s -  (3ins) • (2)t~ ~ (l) , s -  (s) .s, (5.36) 

and neglecting all nonlinear terms in the stiffness operators, we 
obtain the linearized equations of balance of angular momentum 

(l)m,s + (l)n 2 + ( l )h( l )n ls  + (l)o~ = (l)O, (5.37) 

(2)m.s + (2)n 2 + (2)h((,)n)s - (3)n,ls) + (2),2~ = (2)C, (5.38) 

(3)m.s + (3)n z - (3)h(3)nls + (3)~.Y~ = (3)C, (5.39) 
~ 

where (z)(~ are the linearized inertia couples to be discussed 
below. The approximated expressions corresponding to (3.27),  
(3.29),  and (3.30) are 

fi '(z)tl ~ a 1, (5.40) 

( / ) t2  ° (2)tl ~ -( l )0,  (5.41) 

( 2 ) t 2 '  ( l ) t l  ~ - - ( 2 ) 0 .  (5.42) 

Using (5 .40 ) - (5 .42 )  in (3 .32 ) - (3 .34 ) ,  we obtain 
~ 

2 0 l 2 " (l)C ;= [((2)h) (l)Ap + 2(2)h(l)Ap + (l)Ap](l)0 

- [(2)ho)A°p + (1)Alp][/t '1 + (2)h(2)0] ~ o>C, (5.43) 

2 0 2 2 0 " (z)C := [((2)h) (l)Ap + (2)ap + ((2)h) (3)Ap](2)O 

+ [(2)h(1)a ° - ( 2 ) a t p -  (2)h(3)ao]a l 

- (2)h[(2)h( , )Ap ° + (,)Apl](,)0 

_ (2)h[(2)h(3)AOp_ 1 "" (3)Ap](3)0 ~ (2)C, (5.44) 
2 0 l 2 "" (3)C := [((z)h) (3)Ap - 2 (2)h t3)A  p + (3)Ap](3)0 

+ [(2)h(3)A°p - (3)A~][//l - (~)h(~)O] ~ (~)C. (5.45) 

R e m a r k  5.4. If we further assume that (l)0 = (3)0 and con- 
sider symmetric sandwich cross section such that (5.26) holds 
as in Yu (1959),  the inertia couple (2)~ in (5.44) becomes 

(2)C = [2 ( (2 )h )Z( l )A~  + (2)A~](2)0 

- 2(2)h[(2)h(1)Ap ° + ( , )At]o)0.  (5.46) 

,5 And the linearized equation of balance of linear momentum for the shear 
force n 2 agrees with equation (13) in Yu (1959). 
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Equation of motion (5.38) for the core layer (2 ) - - toge the r  
( 5 . 4 6 ) - - i s  identically the same as Eq. (11 ) in Yu (1959). 16 

We emphasize, however, that the absence of the acceleration 
//l in (5.46) is a result of the symmetry- - in  both geometry and 
mass distr ibution--of  the cross section; this symmetry reduces 
to zero the multiplicative factor of al  in (5.44). That u I * 0 -  
and therefore//l ~ 0 - - i n  our formulation stands in contrast to 
the assumption u I ~ 0 introduced at the outse 5 as in Yu 
(1959)/7 Consequently, the above results for (t)C--relations 
(5 .43)-(5.45)  and (5 .46) - -which  indicate a clear coupling 
with the axial motion u t even for symmetric cross section, are 
exact. 

On the other hand, it can be seen easily from (5.43) and 
( 5.45 ) that 

( l ) C  "q7 (3)C = 2 0 1 2 " 2[((2)h) (iDA, + 2<2)h(1)Ap + < l ) A p ] o ) ~  

- 2<2~h[(2)h(j)A ° + (1)A~](2)0 (5.47) 

does not depend on //l, and hence the inertia couple of the 
global moment equation in the sense defined in (3.49), 

3 

: =  Z ( t )~  = 2[ (2)h( l )Alp  + (l)Ap2](,)0 
l=l  

+ [-2(2/h(l)A~ + (2~A~](2>0 (5.48) 

is also uncoupled with the axial motion u 1. Recall from Remark 
5.3 that under the assumption of symmetric cross section and 
(j~0 = (3)0, the inertia force f is uncoupled with the rotat ions--  
even in the case of finite core rotation (2)0. This remark suggests 
that the set of equations of motion having complete uncoupled 
inertia forces and couples, and without having to assume u ~ = 
0, comprises equations (i)  (3.36) with inertia force f = 

A p°ii, (ii) (5.38) with inertia couple (5.46), and (iii-a) the sum 
of (5.37) and (5.39) (i.e., layer ( 1 ) and layer (3) ) with inertia 
couple (5.47),  or (iii-b) the sum of (5 .37) - (5 .39)  (global 
moment equations for all three layers) with inertia couple 
(5.48). TM • 

6 C l o s u r e  

We have successfully formulated a Galerkin projection of the 
equations developed herein; this formulation and the numerical 
results are presented in Vu-Quoc and Deng (1995), where also 
discussed is the analysis of the important class of structures 
with variable number of layers and with ply drop-off. For shell 
structures, a formulation for geometrically exact multilayered 
shells using the methodology employed above can be found in 
Vu-Quoc and Ebcio~lu (1995). 
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16 To facilitate the comparison for the reader, we first note that the sign conven- 
tion for the moment employed in Yu (1959) is the reverse of ours and that of 
Plantema (1966). Also, the relationship between our notation and the one in Yu 
(1959) is as follows: cllA~ = p2h2, o)A~ = -p2[h 2 - (hl)2]/2, ~21A~ = pl(hl)3/ 
3, <2)0 = ~bl, and <ll 0 = (310 = ¢2. 

17 See Eq. (3)~ in Yu (1959). 
18 The resulting global moment (iii-b) is identical to Eq. (10) in Yu (1959). 
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On the Instability Mechanisms of 
a Disk Rotating Close to a Rigid 
Surface 
The instability mechanisms of  a rotating disk, coupled to a rigid surface through a 
viscous fluid film at the interface, are investigated analytically. The fluid in the film is 
driven circumferentially by the viscous shear, and it flows outwards radially under 
centrifugal forces. The circumferential flow component creates an equivalent viscous 
damping rotating at one half the disk rotation speed. This film damping dissipates all 
backward traveling waves where the undamped wave speeds are greater than one half 
the disk rotation speed. The radial flow component creates a nonsymmetric stiffness in 
the disk-film system that energizes any wave mode at rotation speeds above its flutter 
speed. Instabilities in the disk-film system are of  two types. A rotating damping 
instability is caused by the rotating film damping at rotation speeds above a critical 
value that is less than the flutter speed. A combination instability is caused by the 
combined effect of  the film stiffness and damping at rotation speeds above a threshoM 
that is greater than the flutter speed. The maximum rotation speed of stable disk 
vibration is bounded above by the lowest onset speed of  rotating damping instability. 
This speed limit is predicted for two wall enclosure designs. The maximum stable 
rotation speed of  a 5.25-inch diameter flexible, memory disk, separated from a rigid 
surface by a viscous air film, is shown to be more than 15 times greater than the 
maximum speed of  the disk without the air film. 

! Introduction 
The stability of a spinning disk remains a research topic of 

great interest because of the development of computer mem- 
ory disks. The strong demands for high data access rates and 
high reliability require small transverse vibration of the disk 
at high rotation speeds. Transverse instability of the disk can 
be excited by a "sliding" transverse follower like the 
read/write head in a computer disk drive. Modeling this 
sliding force as either a constant or a spring-mass-dashpot 
suggests that the disk vibration is stable only at rotation 
speeds lower than the critical speed (Mote, 1970; Iwan and 
Stahl, 1973; Iwan and Moeller, 1976; Shen and Mote, 1991). 
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The critical speed is the lowest speed at which the propaga- 
tion speed of a backward traveling circumferential wave 
mode equals the disk rotational speed. Moreover, D'Angelo 
and Mote (1993) showed that a single rotating disk, without 
an imposed transverse force, can be excited aerodynamically 
to moderate amplitude at supercritical speed and to large 
amplitude at speeds above a flutter onset speed that is much 
larger than the critical speed. 

Although the surrounding air can energize the disk, it can 
also stabilize disk vibration if the enclosure is designed 
properly. Yasuda and Kaneko (1987) found in experiments 
that a membrane-like disk can operate in a stable manner at 
speeds much greater than the critical speed if it rotates very 
close to a rigid plane. Disk flutter did not occur in their 
experiments. A viscous fluid film, formed in the 0.1 mm gap 
between the disk and the plane, can stiffen the disk and 
dissipate vibration energy. The coupled system of the viscous 
film and disk was first investigated by Pelech and Shapiro 
(1964). They found the equilibrium film thickness is approxi- 
mately proportional to r -2/3 at high rotation speeds. Re- 
cently, the static, coupled system problem has been studied 
by Bogy and Talke (1978), Greenberg (1978), Adams (1980), 
Carpino and Domoto (1988), and others. 

Adams (1987) predicted the maximum speed limit of the 
coupled system through calculation of the disk critical speed. 
He represented the effect of the film on the disk by a 
distributed linear spring with stiffness dependent on radius. 
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The nonsymmetric stiffness and the rotating damping gener- 
ated in the viscous film were not modeled. Yasuda and 
Kaneko (1987) showed experimentally that the peak to peak 
vibration amplitude of the disk decreases as disk rotation 
speed increases and as the initial film thickness decreases. 
However, no theoretical analysis or physical explanation were 
provided. 

Hosaka and Crandall (1992) first dealt with this subject 
theoretically. They used a single-mode approximation to esti- 
mate the maximum stable operating speed of the disk. The 
single-mode'analysis reduced the disk-film system to one 
homogeneous linear algebraic equation, which has a form 
identical to the characteristic equation governing wave prop- 
agation of an axially moving beam subjected to axially moving 
damping. In their beam-damping model, the film coupling is 
equivalent to combination of an elastic foundation and a 
moving damping. The moving damping can energize the 
system under certain conditions. The onset speed of instabil- 
ity predicted was close to the speed obtained from more 
accurate numerical procedures. They neglected the film stiff- 
ness and catculated a lower bound to the maximum stable 
rotation speed. The instability they observed is called the 
rotating damping instability in this paper. 

Huang and Mote (1995a) concluded that the viscous fluid 
in a thin film between two translating surfaces can he mod- 
eled as damping translating at the mean flow speed in the 
film, and that this translating damping does not dissipate 
energy at all times. It will be shown here that the mechanics 
of the film between the disk and the rigid surface, where the 
circumferential mean flow in the film creates a force equiva- 
lent to a rotating, viscous damping, is similar to that in 
Huang and Mote (1995a). Huang and Mote (1995b) showed 
that stability of a rotating disk under rotating, positive-defi- 
nite damping can be predicted using the wave speeds in the 
undamped disk (termed the undamped wave speeds in the 
sequel). Vibration energy in a backward, circumferentially 
propagating wave is dissipated by the rotating damping until 
the speed of the damping relative to the disk exceeds the 
undamped wave speed. The terms "backward" and "wave 
speed" in the above statement, and in the sequel, character- 
ize the propagation direction and speed of a wave when 
observed from the disk reference. 

This paper presents an analytical investigation of instabil- 
ity mechanisms in the coupled film-disk system. A modified 
Reynolds equation, governing the fluid film response, is 
derived that includes contribution of the fluid centrifugal 
inertia. The static pressure in the film, induced by disk 
rotation, is used to predict the disk equilibrium shape. The 
dynamic pressure in the film, induced by disk vibration, 
couples the film and disk. The mechanics of the film and the 
instability mechanisms of the film-disk system are identified. 
The circumferential flow component in the film creates an 
equivalent positive-definite damping, and the radial flow 
component creates nonsymmetric stiffness. Two types of in- 
stability are observed: rotating damping instability is caused 
by film damping which underpins the observation in Hosaka 
and Crandall (1992); and combination instability is caused by 
the combined effect of nonsymmetric film stiffness and film 
damping. Because the static problem has been investigated 
thoroughly (Benson and Takahashi, 1991), two particular film 
designs are investigated where the equilibrium shape of the 
disk is flat. 

2 M o d e l i n g  

Consider a vibrating, flexible, circular disk rotating close to 
a stationary, rigid surface as shown in Fig. 1. Air flows freely 
into, or out of, the gap between the disk and the rigid wall at 
both the disk inner radius through the clearance between the 
hub and the wall and the outer rim. The film thickness 
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Fig. 1 Schematics  o! a disk rotating c lose  to a rigid surface, and 
three states of the coupled disk-film system. (a) staUonary state 
So: the disk Is neither rotating nor vibrating; (b) equilibrium state 
So: the disk rotates without vibration; (e)  perturbed state Sa: the 
disk vibrates while rotating. 

between the two surfaces, h(r, 0, t), is sufficiently small that 
the viscous forces in the film dominate all fluid inertial 
forces, except the centrifugal inertial force which is of central 
importance to the flow in the film at high speeds. Figure l(a)  
depicts the stationary state S o where the disk neither rotates 
nor vibrates. The film thickness is h 0 (constant), and the film 
pressure is ambient. When the disk rotates at a constant 
speed 12 without vibration, the equilibrium pressure Pc(r), 
generated by the flow under disk rotation, deforms the disk 
into an equilibrium shape with film thickness he(r). This 
equilibrium state S e is shown in Fig. l(b). When perturbed 
from Se, the disk vibrates transversely with amplitude 
/~(r, 0, t) measured from he(r) , and the corresponding film 
pressure variation fi(r, 0, t) is the deviation from Pc(r) (see 
Fig. l(c)), fi(r, O, t) couples dynamically the film and the 
disk. 

The fluid film model is developed under the assumptions: 
(i) the fluid is Newtonian, and the flow is laminar and 
incompressible; (ii) the viscosity is constant, and thermal 
effects are neglected; (iii) the no slip condition is satisfied on 
both surfaces; (iv) all fluid inertial forces, except the centrifu- 
gal forces, are negligible compared to the viscous forces; (v) 
film pressure variations across film thickness are negligible 
compared to variations in the in-plane. 

Assumptions (iv) and (v) are deduced from the orders of 
magnitude of terms in the Navier-Stokes equations in cylin- 
drical coordinates when the modified Reynolds number (Re 
= pl~h2/l~, where p and /x are density and viscosity of air) is 
much smaller than one (Walowit and Anno, 1975). The 
centrifugal forces energize secondary flow in the radial direc- 
tion, especially at high speeds. This flow will be shown to 
have major effect on disk vibration. Under the above assump- 
tions the Navier-Stokes equations reduce to 

voZ ~p 9 2 Vr 
P r Or + tz Oz 2 ( l a )  

3P c'~2VO 
0 -- o~ 0 + #/, OZ 2 ( l b )  

3P 
0 = - -  ( l c )  

Oz 

and the continuity equation is 

20 is a space-fixed coordinate. 
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1 ,9 1 ,or o ,ors 

r o r ( r V ' )  + r `90 + ,oz 0 (2) 

where P(r ,  O, t) = Pe(r) + IS(r, O, t)  is pressure in the film, 
and v,, v o, and v z are velocity components in the radial, 
circumferential, and transverse directions. The boundary 
conditions of the fluid film are 

Oh Oh 
V r = O  , V o = r l l ,  v ~ =  , g I t + l l - - ~  a t z = h  (3a) 

v ~ = O ,  v o = 0 ,  v ~ = 0  a t z = 0  (3b) 

P = 0 ,  a t r = r a ,  r b. (3c) 

The disk is modeled as a classical rotating plate under 
distributed film pressure, 

92h '92h 2 '92h ~ 
p<,n ~ +21290`9--- 7 + a  -~-)  + K n [ h  ] = P ( r , O , t ) ,  

(4) 
where Pd and H are mass density and thickness of the disk, 
and K n is the stiffness operator representing both bending 
and membrane stress components. The boundary conditions 
for the disk are clamped at the inner radius and free at the 
outer radius. 

2.1 Equilibrium State. The axisymmetric equilibrium 
state is obtained by substituting P = Pe(r), h = he(r)  and 
`9( )/,90 = ,9( )/,ot = 0 into (1)-(4) and the disk boundary 
conditions, and by following the procedure used in Pelech 
and Shapiro (1964). Then 

I frlb._~.~.3dr (5) 

and h e can be obtained by solving (5) and (4) simultaneously. 

2.2 Perturbed State. When the film-disk system is per- 
turbed from equilibrium, 

1), = Ore + 3r ,  Vo = OOe + ~) O, P = Pe + f f  , h = he + h 
(6) 

where I ( )1 is much smaller than I ( )e I • Equations 
(la, b, c) become 

DOeO 0 Of f  2 ^ ^ '9 V r 
2 0 - -  + / z - -  (7a) 

r ,gr ,gz 2 

'o f f  "9 2 U 0 
= _ I (7b) 

0 `90 + Iz ,gz 2 

,gP 
0 = - -  (7c) 

,oz 

where terms of higher order in the  perturbation are ne- 
glected. Application of boundary perturbation to (3a, b, c) 
and neglect of higher order terms leads to boundary condi- 
tions for the perturbed variables 

3r = - 2"----~ ,gr 2 ' 3 o = - r f l  I,he at z = h e (8a) 

3 , = 0  3 o = 0  a t z = 0  (8b) 

1~ = 0 at r = ra, r b. 

(8c) 
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I' ,b 

I 
Case ho 

,+ i 

Fig. 2 Schematic of the coupled disk-film systems for two fiat disk 
cases. The equilibrium state for both cases Is a fiat surface regard- 
less of the rotation speed. 

Explicit expressions of 3 r and b o can be obtained in terms of 
P, h and their derivatives through integration of (7a, b) in 
the z-direction subject to (7c) and (8a, b). Integration of (2) 
from z = 0 to z = h e + h, and neglect of higher order terms, 
leads to 

1 ervrdz + 1 e3odz + 1 2 - -  + 0 
r r aO ,ot 

(9) 
where (3a, b) have been used. Substitution of the explicit 
expressions of 3 r ancl 3 o into (9) leads to a partial differential 
equation in P and h 

1 Oil  1 ,9 , ,[hS'913~ 
- - V  • (h3V/3) + - - -  
12/* 120/z2 r Or ~ e - ~  ] 

1 1 '9 [ 2 "oPe ̂ '~ 3 0 a  2 1 '9(r2he2h) 

41~ 7 'or { rhe-~r  -h  ) + 40/x r "  Or 

a ,oa oh 
+ - - - -  + - - .  (10) 

2 '90 'gt 

Substitution of P = Pe + f i  and h = h e + h into (4) gives 

[ '92h '92h 2 '92h ] 
OdHt- ~ -  + 2090,ot + a ~ - !  + Ka[lt] =l~(r,O,t). 

(11) 

Equations (10) and (11), plus the disk and film boundary 
conditions, govern the response of the coupled system shown 
in Fig. 1. 

2.3 Two Flat Disk Cases. The h e and Pe normally de- 
pend on 12 and can be obtained only through numerical 
analysis (Adams, 1980). To examine the instability mecha- 
nisms and sidestep the equilibrium calculation, we study two 
cases shown in Fig. 2 whose equilibria are flat regardless of 
12. Case r -2/3 is a disk rotating close to a rigid wall whose 
shape gives h e proportional to r -2/'3 and h0 = he(G); and 
Case h 0 is a disk rotating midway between two flat, parallel, 
rigid walls with equal and uniform separation (h 0) from both 
walls. 

Case r - ~ .  Equation (5) shows Pe = 0 when h e = h o 
(r/ra) -2/3 and the equilibrium of the disk is flat for all 12. 
Substitution of Pe and h e and introduction of dimensionless 
variables 
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= - - , r  = fi t ,  u = co = ~ ,  q (12) 
rb ~0 ' pdHho fi2 

where ~ is the unit of rotation speed, into (10) and (11), 
leads to 

02u 02u 02u 
- -  + 2oo + o92 + ~V4u 
0r 2 000r 002 

_ o92 ~ e . ~  + = q (13) 

Re 1 0 [ ~ 5 0 q \  ) 

1 o  a(0U og0u / 
2 - 2  + . ( 1 4 )  

The bending and membrane stress contributions to disk 
stiffness are expressed explicitly, and 

= 5;7¢ ) '  
l + v  

1 - - - 6  . 2  3 + v ~ = EH2 
3' = t + v 1 12(1 -- v2)pdff~2r 4 '  

1 + - -  1 -  v c  2 

rb21.z 9prb2 2 (~) -2/3 
a = 12h~pdH~ ' f =  10 p ~ h  o o9 'he  = 

E, v, and c -- r J r  b are Young's modulus, Poisson's ratio, and 
clamping ratio of the disk; and o9~ , o92~0, and D are . . . .  ~ 
dimensionless radial and clrcumferentml membrane stresses; 
and disk flexural rigidity, a and f are measures of film 
damping and stiffness (which will be defined in Section 3). 
The boundary conditions on the disk displacement and the 
film pressure are 

0u 
q = u  = - -  = 0  a t ~ : = c  (15a) 

02u ( o u O 2 u )  O 2 
q = - ~  + v --~ + - ' ~  = - ~ ( V  u) 

o -02( eu )Tg + ( 1 -  v)773-~ - u  = 0  a t ~ = l .  (15b) 

C a s e  h 0. Symmetry of the disk enclosure requires the 
disk to remain fiat at one equilibrium state regardless of lI. 
After calculating the resultant pressure in both fluid films, 
the dimensionless disk equation is represented by (13) and 
the dimensionless film equation is 

Re 1 02q 1 Ou 2a/  OU[__ w__ Ou ] 
V2q + 10 ~ 0s¢00 e~  ~ + ~ Or + 2 O0 ] (16) 

where e = 9 pr~(1 - c 2) ogz is a measure of fiim stiffness. 
10 ( - l n C ) p d H h  0 

3 I n s t a b i l i t y  M e c h a n i s m s  

Equations (10), (14), and (16) can be represented by 

L + - -~L  q] = Fs[u ] + F a + 2 O0 

where L + (Re/10)L is a fluid operator, L being negative- 
definite, F, is a nonsymmetric operator, and F a is positive 
definite. Because Re/10 << 1 and L dominates Re/10 L, we 
neglect Re/10 L in the fluid operator, and decompose q into 
qs and qrd 

ou o9 0u (18) 
L[q,] = r,[u], L[qrd I = F d + -2 O--ff ' 

Variables qs and qm are functionals of u, qs = Qs[u] and 
q,d = Qa [ Ou/Or + (w/2) ( Ou/O0 )], and (13) becomes 

02U 02U 202U 211  0 [ 0 U ]  
- -  + 2 o9 + + DV4/4 - 

 00o2u] [ou 0u] 
+~- f  O 0 2 ] - Q s [  u ] - Q d  ~ + ~ - - ~ 1  = 0 .  (19) 

- Q s  is a nonsymmetric operator, and -Qs[u] represents 
nonsymmetric stiffness emanating from the film. Equations 
(11), (14), and (16) show that the film stiffness is proportional 
to po92, and f for Case r -2/3 (e for Case h0) is a measure of 
the film stiffness. - Q d  is a positive-definite operator (for 
proof see Appendix), and --Qd [OU/Or + (o9/2) (Ou/O0)] 
represents rotating damping resulting from the film. Equa- 
tions (11), (14), and (16) show that the magnitude of the film 
damping is proportional to a, and the rotation speed of the 
film damping is always one half the disk rotation speed. 

According to Huang and Mote (1995b), stability of a 
rotating disk under rotating, positive-definite damping can be 
predicted through the wave speeds in the undamped disk. 
The rotating damping will energize a backward traveling 
wave when its speed relative to the disk exceeds the un- 
damped wave speed. Therefore, the wave speeds in the 
undamped (19) are determined from 

02U 02R 2 02/4 
- -  + 2w + - -  + DV4u 
0'/-2 000T tO 002 

- o92 [ ~ : ~  ) + - Q , [ u ]  = 0  (20) 

plus the boundary conditions. Because the film stiffness 
-Qs[u] is not positive definite, flutter can occur. Figure 3 
illustrates three characteristic patterns of wave speed and 
exponential decay/growth rate showing how the film stiffness 
affects wave modes of a particular disk. The membrane 
stresses generated by the rotation of the disk are equated to 
zero in Fig. 3 so that the film stiffness Q~[u] is the only o9 
dependent term affecting wave speeds 3 in the undamped 
system. The film stiffness increases the speeds of wave modes 
without increasing energy in the wave with increasing disk 
rotation speed (i.e., increasing system stiffness) until flutter 
occur r s (f) f) (f) s at flutte peeds (12 a , ~ , tic ). The film stiffness 
neither energizes nor dissipates vibration in a mode at rota- 
tion speeds less than the flutter speed. The dash line indi- 
cates the difference in speeds between the film damping and 
the disk. It intersects the wave speed loci in the pre-flutter 
region (mode M,), in the post-flutter region (mode Mb), and 
not at all (mode M~) for some modes. Mode M a becomes 
unstable at speeds higher than ..~o ~rd~, because at those speeds 
the film damping energizes the mode. The instability of this 

3It should be noted that the "wave speed" in this paper is the propaga- 
tion speed of a wave observed on the disk. The inertial disk acceleration 
~2u/0¢2 + 2oa (02u/000¢)+ 022(Ul/002) makes propagation speeds of 
waves observed in a stationary reference dependence on l~, but does not 
affect on propagation speeds of waves observed in the disk reference. 
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Fig. 3 Three characteristic relationships of wave speeds end reel 
parts of elgenvalues of the Case r -2/3 disk  under the nonsymmet- 
rlc film stiffness with the film damping neglected. Nodal diameter 
numbers n are given in the parentheses. The dash line Intersects 
the wave speed loci In the pre-flutter region (mode Me), In the 
post-flutter region (mode Mb), and not at all (mode Mc). Membrane 
stresses in the disk stiffness are neglected. 

type is termed the rotating damping instability. This type of 
instability is equivalent to the instability observed in Hosaka 
and Crandall (1992). The rotating damping instability can be 
predicted from wave speeds in the undamped system de- 
scribed by (20). The film stiffness energizes modes M b and 
M~ at speeds above fiE, f) and f l y  ). However, the film damp- 
ing may simultaneously dissipate vibration energy in these 
modes and render them stable. Therefore, the flutter speeds 
serve as a lower bond for the stability boundary of these 
modes, and do not indicate mode instability. For mode M b 
both film stiffness and film damping energize the mode at 
speeds higher than 12~ ") (which serves as an upper bond for 
the stability boundary of mode Mb). Instability in mode Mh 
occurs at speeds above an onset speed ~ ) ( ~ f ) <  f ly  ) 
< lieu)). Though the upper and lower bonds for 1~, c) can be 
located through the wave speeds in the undamped system 
described by (20), the identification of the instability relies on 
the exponential decay/growth rates of vibration modes in the 
coupled film-disk system described by (19). The instability of 
this type is termed the combination instability, because it is 
caused by the combined effect of the nonsymmetric film 
stiffness and rotating film damping. 

4 Numerical Technique 
The coordinate transformation, @ = 0 -  oor, fixing the 

coordinate system to the disk, and assumption of a nodal 
diameter mode u = R~( ~)ein°e ~n~, reduces (20) to an uncou- 
pled set of one dimensional eigenvalue problems 

A] Rn + Bn[ Rn] + OOZS,[R,] - ooZa~m[ nn] = 0 

n = 0 , + l , + 2  . . . .  _+oo (21) 

where n represents the nodal diameter number, and B n, 
oo2S n and wZQsm are operators describing the bending and 
membrane stress components of the disk stiffness and the 
nonsymmetric film stiffness for the n nodal diameter mode. 
The boundary conditions on Rn(~) are obtained through 
substitution of the assumed nodal diameter mode into (15a,b). 
The Galerkin method is used to calculate the eigensolu- 
tions of (21). Rn(~:) is approximated by Rn(~c)= a..m= 1V'rn=m0 
d,,,Chmn(~), where dmn are constants to be determined and 
ff)mn (~)  are polynominals in ~:. The trial functions (Stun(G)) 

for the film pressure can be obtained explicitly 4 from 
L[ ~mn ein°] = Fs [ qbmne i ~ ]  described in (18). Each ffmn(£) 
is a seven-term polynominal satisfying the six homogeneous 
boundary conditions in (15a, b). 

The eigenvalues (A n = c~ n + i/3 n, where c~ n and fin are 
real) of (21) are computed repetitively with specified w 
increasing from zero. a n is zero when oo is small; the flutter 
speed (ooff)) is the disk rotation speed first resulting in 
nonzero a n. The undamped wave speed of the n nodal 
diameter wave mode is v n = I ~ J n  I • When oo is small, v n is 
always larger than ~o/2, the difference in speeds between the 
damping and the disk. If ~n = OO/2 in the pre-flutter region, 
say at oJ . . . .  (rd) then the rotating damping instability occurs 
for aJ >_ wffd--~ If v~ = 09/2 in the post-flutter region, say at 
w = aJ~ u), then the combination instability occurs at speeds 
above an onset speed w}, c) between wff ) and aJ~ u). The exact 
prediction of oo~o can only be located through the real parts 
of eigenvalues of the dual eigenvalue problem to (19). We 
use the approximate eigenfunction Rn(~)e ino, obtained from 
the above calculation, as a trial function and apply the 
one-term Galerkin method to compute the eigenvalues of the 
dual eigenvalue problem to (19). 

Because the maximum stable rotation speed of the disk is 
the lowest wffd) for all n (this will be shown later), a more 
efficient method to compute ooffd) without computation of 
An is suggested. Because wff d~ is obtained through the condi- 
tion that A n = in oo/2 at aJ = ooffa), at the onset speed of the 
rotating damping instability An = inooffa). Substitution of A~ 
= in oo,/2 and oo = oo, into (20) leads to 

2( n4 ) 
oon - - ~ - R n  + S n [ R n ] - o s ; n [ R n ]  + Bn[Rn] = 0  

n = 0 , 5 : 1 , ± 2  . . . .  5:°°. (22) 

Equation (22) is an eigenvalue problem where the eigenvalue 
oJ n predicts the onset speed of the rotating damping instabil- 
ity in the n nodal diameter mode. oon real indicates that a 
rotating damping instability exists in this mode and ooffa) = 
to n. Real oon may not exist for all n, because, as described in 
Section 3, the nonsymmetric film stiffness causes flutter in 
some modes at lower speeds while their, undamped wave 
speeds are always higher than oo/2 in the pre-flutter region. 
Rotating damping instability does not occur in these modes, 
and the instability in these modes, if it exists, is a combina- 
tion instability. 

5 Results and Discussion 
When the disk rotates close to a rigid wall, the viscous 

fluid between the disk and the rigid surface has a circumfer- 
ential mean flow component rotating at one half the disk 
speed. This mean flow produces an effect equivalent to a 
rotating, viscous damping. The damping force is proportional 
to viscosity. A radial, secondary flow is generated by the 
centrifugal forces, and the radial flow is proportional to the 
fluid density and the square of the disk rotation speed. 
Therefore, by examining (18) and the associated operators L, 
F,, and F d in (10), (14), and (16), qrd results from the 
circumferential mean :flow and qs from the radial, secondary 
flow. -qrd  is positive-definite damping rotating at o/2.  - q s  
is nonsymmetric stiffness and its magnitude is proportional to 
0oo 2 . 

The specifications of the disk investigated in the paper 
are: E = 3.48 GPa, Pd = 1420 kg/m 3, H = 0.1 mm, r b = 70 

4Thoug h qs is represented by a functional Qs[u], the explicit expression 
for Q, is not found. However, if the trial functions for the radial mode 
shape of u (Rn(~)) are polynominals, the close-form trial function for the 
radial mode shape of qs are obtained explicitly from (18) through term by 
term integration. This is an advantage gained by use of polynomials as 
trial functions. 
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Fig. 4 Real parts of  elgenvalues of the coupled film-disk system In 
the post-flutter regions when the film damping is modeled. The 
Individual flutter speeds ere denoted by v ,  and the nodal diameter 
number by n. Combination Instability occurs for positive reel parts. 
Membrane stresses In the disk stiffness ere neglected. 
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Fig. 5 Prediction of stabil i ty of modes of different nodal diameter 
(n). The flutter speed (+) divides the speed space into pre-flutter 
and post-flutter regions, but does not indicate mode Instability. A 
mode becomes unstable at speeds above the onset speed of rotat- 
Ing damping instability (~), which exists only in the pre-flutter 
region, or above the onset speed of combination instability ( v ) ,  
which exists only In the post-flutter region. Membrane stresses in 
the disk stiffness ere neglected. 

mm, v = 0.3, and c = 0.3. The disk model is similar to a 
5.25-in. floppy memory disk. The critical speed of the disk, 
when not coupled to the rigid surface through the boundary 
film, is 532 rpm. The fluid is air and h 0 = 0.1 mm. When 
studying the effect of a specific parameter on disk stability, 
only that parameter is changed in the calculation. 

When membrane stresses in the disk are neglected, the 
film stiffness is the only w-dependent term in (21). Figure 3 
shows the film stiffness effect on wave modes (n = 6,10,13) 
in the undamped system at different to for Case r -2/3. 
Analogous wave speed and real part of eigenvalue loci are 
obtained for Case h 0. The onset speed of the rotating damp- 
ing instability in a mode exists when the disk speed equals 
two times the undamped wave speed of the mode in the 
pre-flutter region (like 1 ~  a) in Fig. 3). Figure 4 shows the 
real part of eigenvalues of wave modes, with -qra  included, 
in the post-flutter regions. They are calculated from their 
individual flutter speeds 1 ~  ), and all real parts remain 
negative at speeds above their flutter speeds. The combina- 
tion instability occurs when the real part of eigenvalue is 
positive, and its onset speed is 12~ ). Figure 5 shows instabili- 
ties of modes with different nodal diameter number for 

Cases r -2/3 and h 0. A mode is stable only at speeds lower 
than both the onset speed of rotating damping instability and 
the onset speed of combination instability. It should be noted 
again that the flutter speed does not predict disk instability. 
Figure 5 also shows that rotating damping instability occurs 
only in modes with large n, and that combination instability 
occurs only in a few modes and at speeds higher than the 
speed first producing rotating damping instability. 

When membrane stresses caused by disk rotation are 
modeled, undamped wave speeds increase substantially with 
increasing disk rotation speed, and that wave modes with 
wave speeds equal one half the disk speed exists only in the 
pre-flutter region for modes with a very large number of 
nodal diameters. Figure 6 shows the real parts of eigenvalues 
of wave modes, with rotating damping -qra included. The 
real parts decrease substantially from the flutter speed as 
disk rotation speed increases. This may explain the decrease 
in peak to peak vibration amplitude reported in Yasuda and 
Kaneko (1987) as disk rotation speed increases. Combination 
instability does not occur here. A mode is stable only at 
speeds lower than the onset speed of rotating damping 
instability. The disk is stable iff every mode is stable. After 
calculating the onset speeds of instability for each mode, the 
maximum stable disk rotation speed is 10,167 rpm (8,692 
rpm) for Case r -z/3 (Case h0). This speed first produces 
rotating damping instability in the n = 21 (=  17) nodal diam- 
eter wave mode, and it is about 19 (16) times the critical 
speed of the disk without coupling to the rigid wall through 
the fluid film. The maximum stable disk rotation speed in 
both cases is much larger than the operation speed of a 
typical rigid disk drive (3,600 rpm). The trends in the real 
parts of eigenvalues in Fig. 6 indicate that combination 
instability is unlikely to occur when disk membrane stresses 
are included in the model of most disks. In calculations of 
combination instability for different disk and film properties, 
the combination instability has never been observed at speeds 
lower than the lowest onset speed of rotating damping insta- 
bility. Therefore, (22) is used in the next paragraph to calcu- 
late w~ re) without computation of A n to predict the effects of 
the disk and film properties on disk stability. 

The rotation speed of film damping relative to the disk is 
always one half the disk rotation speed. Therefore, increasing 
the onset speed of rotating damping instability requires in- 
creasing the undamped wave speeds in the disk. The stiffness 
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in the coupled, undamped system has contributions from the 
bending and membrane stress stiffnesses in the disk and the 
film stiffness. Figures 7(a-c)  show the onset speeds of the 
rotating damping instability for Cases r -2/3 and h 0. The 
stable rotation speed of the disk is bounded above by the 
lowest onset speed of the rotating damping instability. Figure 
7(a) shows that, as h 0 increases from 0.05 mm to 0.2 mm, the 
maximum stable disk rotation speed decreases from 11,783 
rpm in Case r -2~ (9,749 rpm in Case h 0) to 9,022 rpm (7,943 
rpm), and the nodal diameter number of the first unstable 
mode changes from 26 (20) to 18 (15). It can be shown from 
(14) and (16) that decreasing h 0 increases only the magni- 
tude of qs, thereby stiffening the disk. Figure 8 gives the 
onset speeds of rotating damping instability in the disk with 
the film stiffness modeled for different h 0 and with the film 
stiffness equated to zero. It shows that the film stiffness has 
little effect on the onset speeds of rotating damping instabil- 
ity in modes with n > 30. When n is large, c?( )/?0 domi- 
nates ,9( )/0~: in L. Therefore, in (18) L -~ 02/c?02 for Case 
ho, and in (21) toZQs;n[Rn]  = ( e / n  2) (1/s¢) ( a R , / a ~ ) .  When 
n is large, the effect of qs on modes with n nodal diameters 
is approximately proportional to n -2. Similar reasoning and 
conclusions follow for Case r -2/3. 

Increasing H increases the disk bending stiffness and 
decreases the film stiffness. Increasing r b decreases the disk 
bending stiffness and increases the film stiffness. When n is 
large, the disk bending stiffness B n [ R , ]  in (21) is approxi- 
mately proportional to n 4, and therefore dominates the film 
stiffness. This explains why the maximum stable rotation 
speed of the disk increases as H increases in Fig. 7(b) and as 
r b decreases in Fig. 7(c). 

The models for Cases r -2/~ and h 0 are described by (19) 
with film effects producing nonsymmetric stiffness and rotat- 
ing damping. Because the coupled system in the single flat 
wall case, modeled by (10) and (11), can also be represented 
by (19), the same instability mechanisms as seen in Cases 
r - z :  and h 0 will result. The results of Case r -2/3 can be used 
to approximate the responses of the single flat wall case, 
because the equilibrium film thickness in the single flat wall 
case is approximately proportional to r -2/3 at high rotation 
speeds (Pelech and Shapiro, 1964). Because increasing disk 
stiffness increases the maximum stable rotation speed, in- 
creasing disk thickness, Young's modulus and clamping ratio, 
or decreasing disk density and outer radius all move a disk 
design toward stability at higher speeds. Decreasing h 0 and 
increasing fluid density also increase the maximum stable 
rotation speed by increasing the film stiffness. Increasing 
inlet flow rate, or fluid pressure at the inner radius, increases 
the film stiffness and as a consequence the maximum stable 
rotation speed. Increasing flow resistance at the inlet or 
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outlet will at tenuate the radial flow and should reduce the 
maximum stable rotation speed. These observations are de- 
duced from the instability mechanisms rather than calcula- 
tion of disk response. The findings provide a plausible expla- 
nation for some of the phenomena  reported by Yasuda and 
Kaneko (1987). 

6 Conclus ions  

1 In the rotating disk coupled to a thin viscous fluid film, 
the fluid in the film rotates circumferentially under  viscous 
fluid forces, and a secondary flow, that moves radially out- 
wards, is generated due to the centrifugal forces. The circum- 
ferential mean  flow creates an equivalent positive-definite 
damping rotating at one half the disk rotation speed. The 
radial, secondary flow creates a nonsymmetric stiffness in the 
disk-film system. 

2 The nonsymmetric film stiffness stiffens the disk, but  
can energize wave modes at speeds higher than their flutter 
speeds. The rotating film damping dissipates energy from 
each wave mode until  the disk speed exceeds twice its un-  
damped wave speed. At  rotation speeds less than the flutter 
speed, the film damping can cause rotating damping instabil- 
ity, which agrees with the observation in Hosaka and Cran- 
dall (1992). At  rotation speeds greater than the flutter speed, 
the combined effect of the film damping and film stiffness 
can cause combinat ion instability. 

3 Rotating damping instability occurs only in modes with 
a large nodal diameter number.  Combinat ion instability oc- 
curs only in a few modes when disk membrane  stresses are 
neglected or insignificant, and is unlikely to occur in a 
rotating disk where membrane  stresses are modeled. Combi- 
nat ion instability does not occur at speeds lower than the 
lowest onset speed of rotating damping instability. 

4 The maximum speed of stable operation of the disk is 
the lowest onset speed of rotating damping instability. In- 
creasing disk stiffness (increasing disk thickness or decreasing 
disk outer radius) and increasing film stiffness (decreasing 
film thickness or increasing radial flow) increase the maxi- 
mum rotation speed of stable operation. 

5 The effect of the film stiffness on increasing undamped 
wave speeds of modes with large n is approximately propor- 
tional to n -2. The onset speeds of rotating damping instabil- 
ity in modes of a larger nodal diameter number  are virtually 
independent  of film stiffness. 

6 When h 0 = 0.1 mm, the maximum stable operation 
speed of a 5.25-in. flexible memory disk is about 19 times its 
critical speed (without the viscous film) when it rotates close 
to a wall whose shape gives h e ( r ) =  ho(r/ra) -2/3, and 16 
times if it rotates midway between two flat, parallel walls. 
The exponential  decay rates of modes with small nodal 
diameter number  increase substantially as the disk rotation 
speed increases. 
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A P P E N D I X  
The Appendix shows that the film damping operator, 

- Q d ,  is positive-definite. The theory in Huang and Mote 
(1995b), that predicts the onset speed of disk instability due 
to rotating damping, pertains to positive-definite - Q d .  

Let 
= a d [ 5 ] .  ( m l )  

From (18) and the expression F a in (10), (14), and (16) 

L[¢]] = Fa[a ] = aft (A2) 

where ~ is a positive constant. Therefore, 

L[q] <L[ql,q> 
< f i ' - Q d [ f i ] >  = (  ~ ' - q )  - 8  (A3) 

where (w, v> = fo2~lfclw5~d~dO, and overbar denotes com- 
plex conjugate here. Because L is a negative-definite opera- 
tor 

<~,- ad[fi]>> 0 for all 5 4~ 0. (A4) 
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Equilibrium Displacement and 
Stress Distribution in a Two- 
Dimensional, Axially Moving 
Web Under Transverse Loading 
Von Karman nonlinear plate equations are modified to describe the motion of  a wide, 
axially moving web with small flexural stiffness under transverse loading. The model 
can represent a paper web or plastic sheet under some conditions. Closed-form 
solutions to two nonlinear, coupled equations governing the transverse displacement 
and stress function probably do not exist. The transverse forces arising from the 
bending stiffness are much smaller than those arising from the applied axial tension 
except near the edges of  the web. This opens the possibility that boundary layer and 
singular perturbation theories can be used to model the bending forces near the 
edges of  the web when determining the equilibrium solution and stress distribution. 
The present analysis is applied to two examples: (I) a web deflecting under its own 
uniformly distributed weight; (H) a web deflecting under a transverse load whose 
distribution is described by the product of  sine functions in the axial and width 
directions. Membrane theory and linear plate theory solutions are used to character- 
ize the importance o f  the web deformation solutions. 

Introduct ion 

The deflection of a web with small flexural stiffness subjected 
to transverse loading is often large compared to its thickness. 
The weight of a web and the aerodynamic forces are notable 
transverse loadings on the unsupported span of the web. The 
membrane stresses induced by large deflection are usually sig- 
nificant to web response and can not be neglected. Depending 
on the intensity of the shear, or compressive stresses developed, 
the web may wrinkle (Lin and Mote, in press). Wrinkling de- 
grades the web quality, increases defects, or can lead to its 
breakage. To predict web deflection and stresses, the coupling 
between them must be modeled. The equilibrium solution pro- 
vides the deflection and the state of the membrane stresses 
required for study of web stability and wrinkling. 

Membrane and linear plate theories do not model the mem- 
brane stresses arising from the curvature of the web and are 
realistic only for small amplitude transverse response. In this 
paper, yon Karman nonlinear plate theory (yon Karman, 1910) 
is modified to include the inertial forces resulting from longitu- 
dinal transport of the axially moving web. The coupling between 
the large amplitude deflection and the membrane stresses is also 
modeled. 

Reissner (1912) first analyzed boundary layers of bending 
stiffness effects near the edges of thin shells. Later, boundary 
layer and perturbation theories have been used to solve different 
engineering problems. Fung and Wittrick (1955) developed 
nonlinear boundary layers along the free edges of a thin plate 
to predict large deflection under uniform bending. Triantafyllou 
and Triantafyllou (1991) used a bending stiffness boundary 
layer at the free end of a hanging string while predicting the 
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natural responses. Renshaw (1992) included bending stiffness 
boundary layers at the inner and outer edges of a rotating mem- 
brane-like disk while examining stability of the disk. In this 
analysis, the transverse forces arising from the bending stiffness 
of the web are assumed much smaller than those arising from 
the applied, uniform, axial tension except near the four edges 
of the web. This permits use of boundary layer and singular 
perturbation theories to model the bending forces near the edges 
of the web for prediction of the equilibrium displacement and 
stress distribution. 

The purpose of this paper is to predict the large amplitude 
equilibrium displacement and stress distribution of a two dimen- 
sional, axially moving web under smooth transverse loading. 
The exact solutions, satisfying the two nonlinear, coupled equa- 
tions governing the transverse displacement and stress function, 
probably cannot be determined in closed form. The bending 
stiffness of the web is small and can be modeled as a perturba- 
tion parameter. Singular perturbation and boundary layer theo- 
ries lead to a useful analytical representation of the equilibrium 
solution. The outer solution is developed at the middle of the 
web and the inner solutions are developed in the boundary 
layers. A uniform approximation of the deflection is obtained 
by summing the outer and inner solutions, and then subtracting 
the matching solutions. This analysis is applied to two exam- 
pies: (I)  equilibrium of the web under its own uniformly distrib- 
uted weight; (II) equilibrium of the web under a transverse load 
whose distribution is described by the product of sine functions 
in the axial and width directions. Inclusion of the boundary 
layers at the free edges increases the predicted deflection at the 
free edges and decreases slightly the predicted deflection at the 
middle of the web. Depending on the bending stiffness and the 
web curvature, the deflection predicted by this analysis can be 
quite different from that predicted by either membrane theory 
or linear plate theory. 

Formulat ion  

The equations governing the transverse motion and the mem- 
brane stress field of the axially moving web in Fig. 1 are 
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Fig. 1 Axial ly moving web 

p(~,~ + 2vase + v2~,.¢~) - P,;9~,~, - F s ~ ; y  

+ 2Fsy~s; + D(ff;s:~ + 2~s~y; + ff~,;y;;) = I j (1) 

and 

l~sxx~ + 2 t0.~;y + l~.y;y; = Eh [ (~sy) 2 _ ( ~ )  ( ~.;; ) ]. (2) 

These equations are derived from von Karman nonlinear plate 
theory (von Karman, 1910) modified to include the inertial 
forces resulting from longitudinal transport of the web. if,(2, 29, 
?) denotes the transverse displacement, D = Eh3/[12( 1 - u2)],  
E is Young's  modulus, p is mass density, u is Poisson's ratio, 
h is thickness, T is constant longitudinal tensio)a applied at the 
boundaries, F (2 ,  29, ~) is the stress function, P (2 ,  29, ~) is the 
(smooth) transverse loading, and v is constant axial transport 
speed. The material properties are uniform and constant. Trans- 
forming to dimensionless variables, (1) and (2) become 

w,,, + 2Cw~, + C2wo~ - L[w,  F] + eV4w = P (3) 

and 

V4F = - 6 ( 1  - u2)eL[w,  w]. 

The dimensionless parameters are 

(4) 

Y ; • (5)  
w = ~ ;  x = Z ;  Y = L '  

F =  p • P /SL: ~[ T '~/2 . . . .  

TL 2'  Th ' t = t ; (6) 

and the dimensionless constants are 

D . C v 

B 
r 1 = ~ ;  132= (1 - C a) > 0 .  (8) 

The stiffness ratio, e, is a small nondimensional ratio of the 
flexural stiffness to the stiffness derived from the applied axial 
tension. C is the constant, non-negative ratio of the transport 
speed to the propagation speed of a transverse wave in a string. 
rl is the ratio of the width to the length of the web. /32 is 
introduced to simplify the presentation of the equation of mo- 
tion. We consider the web transported at subcritical speed,/32 
= ( 1 - C 2) > 0. The biharmonic operator ~ 74 and the bilinear 
operator L are 

V4Y = Y~a" + 2T~xyy + Y,yyyy (9) 

L[T, 6] = y.~6,.  - 2 y ~ y d ~ y  + y.yy6 .... (10) 

The boundary conditions on the ~ee edges ~ y = 0, y = ~ are 

[Wy, y + (2 - u)w~y] = 0 (11) 

[w.,  + uw:~] = 0 (12) 

F~x = 0 (13) 

Fry = 0 (14) 

and on the loosely clamped edges (Chia, 1980) at x = 0, x = 
1 are 

w = 0 (15)  

w x = 0 (16) 

F ~  = 1 (17) 

F . ~ =  0. (18)  

Method of  Solution 
The equilibrium solutions in (3) and (4) satisfy 

C2w ,x - L[w,  F] + eV4w = P (19) 

and 

~ 4 F  = - 6 ( 1  - u2)cL[w,  w]. (20) 

Closed-form solutions to the coupled, nonlinear Eqs. ( 1 1 ) -  
(20) are not known. The e multiplies the highest derivative, 

bending stiffness term in (19) and the nonlinear coupling of 
transverse displacement to membrane stresses in (20).  With e 
as a small perturbation parameter, ( 11 ) - (20) form a coupled, 
singular perturbation problem. As e ~ 0, the problem becomes 
linear and uncoupled. Boundary layers for w exist near the four 
edges of the web because (19) decreases to a second-order 
equation as e ~ 0. F has no boundary layer in this model 
because the order of (20) is unchanged as e ~ 0. Figure 2 shows 
schematically the regions of the outer and inner expansions. The 
outer solution, governed by linear equations, is developed in 
the central part of the web away from the edges. The inner 
solution is developed in the boundary layer where bending ef- 
fects are significant. The outer and the inner solutions are 
matched asymptotically in the matching region. The stiffness 
terms from the applied axial tension, membrane stress, and 
flexural rigidity are of the same order of magnitude when the 
width of the boundary layer at the clamped edges is e ~/2. Thus, 
they form a dominant balance and the distinguished limits of 
the boundary layers at the clamped ends are e ~/2 (Bender and 
Orszag, 1978). Similarly, the width of the boundary layer at 
free ends is e 1/4 

Expansion of the stress function F has the form 

(Outer expansion) 

L 

Fig. 2 Rectangular web and boundary layer. The width of the boundary 
layer at the clamped edges is of order E t/= and that at the free edges is 
of order C/4. 
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F = Fo + ~1/2F1 + £F2 + . . . .  (21) 

and the outer expansion of w is 

w = Wo + e~/2wl + ew2 + . . . .  (22) 

Substitution of (21) and (22) into (20) and collection of bal- 
ances of like order gives a sequence of equations governing F s, 

V4Fo = 0 " (23) 

~74F1 = 0 (24) 

~74F2 --~ - 6 ( 1  - u2)L[wo, w0] (25) 

The solutions to (23) and (24), satisfying the boundary condi- 
tions, are 

Fo = ½y2 (26) 

F1 = 0. (27) 

F2 can be predicted from (25) and boundary conditions when 
w0 is known. The method of Yamaki (1961) is modified to 
determine F2 (Appendix A). Substitution of (21), (22), (26), 
and (27) into ( 19 ) and collection of balances of like order gives 
a sequence of equations governing w s, 

- f l2Wo~ = P (28) 

- f l 2 w l ~  = 0 (29) 

-112w2~x - L[wo, F2] + ~4w0 : 0 (30) 

If the bending effects and the membrane stresses arising from 
the curvature of the web are neglected, (19) reduces to 

-112w~ = P ,  (31) 

which is the membrane solution Wo described by (28). The 
boundary conditions for the outer expansion are the conditions 
of asymptotic matching with the inner solutions (Bender and 
Orszag, 1978). 

A s y m p t o t i c  M a t c h i n g  C o n d i t i o n s  

The inner variables X, 27, Y, and F inside the boundary layers 
a t x = 0 ,  x =  1, y = 0 ,  andy  = r / a r e  

x 27 = (1 - x) (32) 
X = el/------ ~ ; e l /2  ; 

y = _ . L ,  y ( ~ - Y )  (33) 
C1/4 ' ~1/4 

Overbars relate to the inner expansion of w at x = 1 or at y 
- ~ .  

(i) Near x = 0: The inner expansion near x = 0 has the 
form 

w = Wo(X, y) + eI/ZW~(X, y) + eW2(X, y) + . . . .  (34) 

and the outer expansion (22) near x = 0 becomes 

w = w0(0, y) + ¢~/2[Xw0.~(0, y) + wl(0, y)] 

+ e[½X2w0.~x(0, y) + Xw1.~(O, y) + w2(O, y)] 

+ . . . .  (35)  

Asymptotic matching of (34) and (35) is undertaken term by 
term in the limits x ~ 0 and X ~ ~. Taylor expansions of the 
stress function and loading about x = 0 are 

F = F0 + elF2(0, y) + Fz~(O, y ) ( x  - O) 

1 + g F 2 . x , ( O , y ) ( x - O )  2 + . . . ]  + . . .  (36) 

P = P(O, y)  + P~(O, y ) ( x  - O) 

+ ½P~(O, y ) ( x  - 0) 2 + . . . .  (37) 

Substitution of (26), (34), (36), and (37) into (19) yields 
equations governing W0, W1, and W2. The boundary conditions 
on 145 at x = 0 are found by substituting (34) into (15) and 
(16). With W; determined, w in (34) becomes 

w = el/Z[Al(y)(e -~x + f iX  - 1)l 

+ e [ A 2 ( y ) ( e  -~x + f iX  - 1) 

Note that W0 ~ 0 and 

e(o,y)x: ] 
2 3 :  _1 + . . . .  (38) 

Al(y) = Woz(O,y_..................)., A2(y)  = w,~(O,y_..................) ( 3 9 )  
11 3 

The asymptotic matching conditions near x = 0 are 

w0(0, y) = 0 ;  wl(0, y) = - w0.x(0, y ) .  
3 

w2(0, y) - wlaa(0' y) (40) 
3 

(ii) Near x = 1: The inner solution of w near x = 1 is 

w = ex/2[Al(y)(e  -~x + l t 2 7 -  1)] 

+ e[ a/(y)(e-BXr + / 3 2 7 - 1 )  P(1,2112y) 272] 

where 

+ . . . .  (41) 

,a71(y ) = _ w0~( l ,  y ) .  ?72(y) = W,.x(1, y) ( 4 2 )  
3 ' 3 

and the asymptotic matching conditions near x = 1 are 

w0(1, y) = 0 ;  w,(1, y) = Wo~(1, y ) .  
3 

(iii) 
has the form 

w = Uo(x, Y )  + ~ l l 4 U i ( x  , Y )  + ~l12U2(x , Y)  

+ E3/4U3(x, Y)  + GUn(x, Y)  + . . . .  

and the outer solution (22) near y = 0 becomes 

W = Wo(X,  O) + £1/4[Ywo,y(X , 0 ) ]  

--k £1/2[½Y2wo,yy(X , O) q.- w l ( x  , 0 ) ]  

3/4 1 3 ~ ¢ [gY Wo,yyy(X , O) + Ywt.y(x, 0 ) ]  

1 4 1 2 + e[ggY Wo.yyyy(X, O) + gY wl.yr(x, O) 

+ w2(x, 0)] + . . . .  

wl~(1, y) 
W2(1, y) - - -  (43) 

3 

Near y = 0: The inner expansion of w near y = 0 

(44) 

(45) 

The Taylor expansions of the stress function and loading about 
y = 0 are 
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F = Fo + e[F2(x, O) + F2,y(X, O)(y - O) 
1 +7F2 ,yy (x ,O) (y -O)  2 + . . . ]  + . . .  (46) 

P = P(x,  O) + P.y(X, O)(y - O) 

1 + ~Pyy(X, 0)(y  - 0) z + . . . .  (47) 

Substitution of (26),  (44),  (46),  and (47) into (19) yields 
equations governing U0 . . . .  U4. Boundary conditions on Uj at 
Y = 0 are found by substituting (44) into (11 ) and (12).  With 
Uj determined, w in (44) becomes 

W = [W0(X, 0 ) ]  + el/4[Ywo,y(X, 0 ) ]  

+ el/2[½Y2wo,yy(x, O) + Wl(X, O) ~- ~.u I.Gi(x,  Y)] 
n=l 

't- C3/4[~-y3wo,yyy(X, O) + YWl,y(X, O) + ~ J .G2(x ,  Y ) ]  
tl=l 

1 2 -.{- e[2-~y4wo,yyyy(X, O) -.{- ~Y Wl,yy(X, O) 

+ w2(x, O) + ~ K,,Gi(x, Y)] + . . . .  (48) 
n=l 

The expressions of I. ,  J,,, K.,  G1, and G2 are listed in Appen- 
dix B. 

Matching can be accomplished if wj(x,  0) ( j  = 0, 1, and 2) 
is of order 1. Thus, the asymptotic matching conditions near y 
= 0 are 

Wo(X,O) ~ O ( 1 ) ;  wl(x ,O)  ~ O(1);  

w2(x, 0) ~ O(1) .  (49) 

(iv) Near y = 77: The inner solution of w near y = 77 is 

W : [W0(X, 77)] + e l l4[ -Ywo,y(X,  77)] 

+ el/2[½g2wo.yy(X, 77) + WI(X , 77) + ~ ~ G I ( X ,  ~r)] 
tl=l 

+ ,~314[--~y3Wo,yey(X , 97) -- Ywi,y(X,  '17) 

+ ~ Y,,G2(x, g)]  + e[~-ng4Wo,yy,(x, 77) 
n=l 

1--2 + gY Wl,yy(X, 77) -~- W2(X , 77) 

+ ~ £ .Gt(x ,  Y)] + . . . .  (50) 
n=l 

The expressions of 1., J . ,  and/(n  are listed in Appendix B. 
The asymptotic matching conditions near y = 77 are 

Wo(X, 77) ~ O(1)  ; wl(x,  77) ~ O(1);  

w2(x, 77) ~ O(1) .  (51) 

Uniform Approximation 
A uniform approximation for transverse displacement is 

w = Wo(X, y) + ellZwl(x, y) + ew2(x, y) + Hi(X,  y) 

+ Hi(X,  y) + H2(x, Y) + IH2(x, Y),  (52) 

where Hi and Hi (i = 1, and 2) are listed in Appendix B. The 
outer solutions wj(x,  y) ( j  = 0, 1, and 2) satisfy ( 2 8 ) - ( 3 0 ) ,  
and the asymptotic matching conditions (40),  (43),  (49),  and 
(51).  The solution in (52) is carried out to order e where the 
coupling of membrane stresses and flexural stiffness appears. 
It is obtained by summing the outer solution (22) and the inner 
solutions (38),  (41),  (48),  and (50),  and then subtracting the 
matching solutions (Bender and Orszag, 1978). The matching 

solutions are determined from the inner solutions with X --~ ~ ,  
X ~ ~,  Y ~ w, and F ~ to. The effects of the bending stiffness 
in the boundary layers on the deflection are assessed through 
H~, Hi,  H2, and aq2. The effects of membrane stresses on the 
deflection are represented in w2. 

Results and Discussion 
A principal benefit of the singular perturbation solution is 

the analytical clarity of the coupling between the deflection and 
the membrane stresses. The solution to order e represents this 
coupling. Higher-order solutions are possible though a substan- 
tial increase in effort is required. 

This analysis is meaningful for e less than 10 .2 and for the 
boundary layer width not extending to the middle of the web. 

T h e  range of e, typical for paper webs, is 10 -5 to 10 -3. For 
example, one paper web product of James River Corporation 
gives e = 1.58 × 10 -4 (E = 5 × 109 N/m 2, p = 0.04 Kg/m 2, 
T = 55 N/m, v = 0.3, L = 1.194 m, B = 0.597 m, h = 0.3 
mm).  In this case, the width of the boundary layer at the 
clamped edges (e 1/2) is of order 0.01 and that at the free edges 
(e TM) is of order 0.1. The solution herein is representative of 
this paper web response. A band saw, used to cut timber, can 
yield e = 1.127, (E = 2 × 1011 N/m 2, T = 4 x 10 4 N/m, u 
= 0.3, L = 1.0 m, t3 = 0.25 m, h = 0.0135 m). In this case, c 
is not sufficiently small for application of this analysis. 

When the curvature of the web is large, membrane stretch- 
ing, described by - 6 ( 1  - u2)eL[w, w] in (20) ,  can be rela- 
tively large. The analysis herein requires min {Iw*,x,I 2, 
[w* ~xw*,[-1 } >> e which ensures that F has no boundary layer 
(w* is the outer solution, and both [w*~y1-2 and tw*.xxw*.yy[-1 
are evaluated at the four  edges of the web).  

As tension decreases and/or flexural stiffness increases, the 
stiffness ratio e increases and the width of the boundary layer 
increases. As e increases, the effects of the bending stiffness in 
the boundary layers on the deflection, entering through HI, Hi,  
H2, and H2 in (52) ,  increases. 

Consider two illustrative examples. In loading I, a paper web 
is loaded by its own uniform weight, where the web weight 
ranges from P = 5 to 50. In loading II, a paper web is under 
the transverse loading P = Pc sin (Trx) sin (Try), where Pc is a 
constant. Figure 3 (a )  shows the deflection under loading I with 
P = 5, e = 10 -3 , v = 0.3, C = 0.8, and 77 = 1. The transverse 
displacement is symmetric to the midpoint of the span and is 
larger at the free edges than at the middle of the web. Inclusion 
of the boundary layers at the free edges increases the predicted 
deflection at the free edges and decreases slightly the predicted 
deflection at the middle of the web. The transverse displacement 
is only slightly y-dependent. Thus, w.y and eL[w, w] in (20) 
are small. The effect of web curvature on membrane stresses 
is negligible in loading I. Figure 3 (b )  shows the deflection 
under loading II with Pc = 15, c = 10 -4 , u = 0.3, C = 0.8, 
and ~7 = 1. Membrane stretching, - 6 ( 1  - u2)eL[w, w] in 
(20),  is of order 1 and is not negligible. The coupling between 
the membrane stresses and the large-amplitude deflection is 
significant. 

Figure 4 shows the stress distribution (from (21))  in the web 
under loading II with Pc = 15, e = 10 .4 , u = 0.3, C = 0.8, 
and 77 = 1. The normal stress in the width direction (ayy = Fry) 
is shown in Fig. 4 (a) .  Compressive stresses exist at the clamped 
ends. Figure 4 (b )  shows the normal stress in the axial direction 
( a ~  = F . , )  which results from the applied axial tension and 
the curvature of the web. Depending on the intensity of the 
width compression developed in the web, the web can wrinkle 
(Lin and Mote, in press). 

The deflection of the w e b  at y = 0.5 under loading II with 
Pc = 15, e = 10 -4, u = 0.3, 77 = 1, and different axial transport 
speeds is shown in Fig. 5. The deflection of the equilibrium 
increases as the axial transport speed increases. The effective 
stiffness from the applied axial tension and axial transport 
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Fig. 3(a) 

Fig. 3(b) 

Fig. 3 (a) The deflection under loading I with P = 5, E = I 0  -a, v = 0.3, C = 0.8, and .~ = 1; (b) the 
deflection under loading II with P~ = 15, ~ = 10 -4, v = 0.3, C = 0.8, end ~ = 1 

speed, determined from/32 = ( 1 - C2), decreases as the axial 
transport speed increases. The web deflection increases under 
the smaller effective stiffness/32. 

The deflection at the midpoint of the web under loading II 
with e = 10 -4, y = 0.3, C = 0.8, and ~ = 1 is shown in 
Fig. 6. Membrane and linear plate theories do not model the 
membrane stresses arising from the curvature of the web and 
therefore often overestimate the deflection at the midpoint of 
the web. The effects of the membrane stresses on the web 
deflection can be assessed by the nonlinear plate theory. The 
relationship between deflection and transverse load Pc is not 
linear for Pc > 7. 

The leading order approximation to w is wo(x, y), the deflec- 
tion predicted by the membrane model. The effects of bending 
and membrane stresses enter through the perturbation terms in 

(52). If the stress function depends on the applied, uniform, 
axial tension only (F = F0 = ½y2 in (26) and F2 = 0 in (30)), 
w in (52) reduces to the deflection predicted by a linear plate 
model. 

Depending on e and the web curvature, w predicted by (52) 
can be quite different from that predicted by membrane or linear 
plate theories. Consider a web deflecting under loading II. Intro- 
duce two dimensionless parameters, 

e1/271" 3(1 -- /.J2)~(pc)2 
~, = - 7 ;  ~2 = ~2/36 (53)  

Here, ~1 is the ratio of the half-order term, ellZwl, to the zero- 
order term, w0 in (52) evaluated at the midpoint of the web. 
The half-order and other higher-order terms in (52) are negligi- 
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Gyy 

Fig. 4(a) 

(3xx 

Fig. 4(b} 

Fig. 4 The stress distribution in the web under loading II with Pc = 15, ~ = 10-", v = 0.3, C = 0.8, and 
n = 1; (a) the normal stress in the width direction (~r~ = Fax), (b) the normal stress in the axial direction 
(~xx = Fay) which results from the applied axial tension and the membrane stresses arising from the 
curvature of the paper web 

ble when 4~ is small. Thus, the membrane theory is representa- 
tive of the web response for small 41, say 41 < 0.02. 42 is the 
ratio of the maximum stiffness due to membrane stretching to 
the effective stiffness/32 . The membrane stresses induced from 
the curvature of the web are negligible when 42 is small. Thus, 
the linear plate theory is applicable to the web response for 
small 42, say 42 < 0.02. The effects of bending and membrane 
stresses arising from the web curvature on deflection are 
significant when 41 and 42 are not small, say ~ > 0.02, and 
42 > 0.02. 

For example, consider the webs under loading II with P,. = 
5, C = 0.8, and different stiffness ratios. Both 4~ and 42 are  
less than 0.02 for e less than 10 -5 . The membrane or the linear 

plate models are both representative of the web deflection. With 
e in the range 10 4 to 10-3, both 41 and 42 are of order 0.1. The 
membrane theory overestimates the deflection at the midpoint of 
the span between 8 percent and 58 percent and the linear plate 
theory overestimates that deflection between 1 percent and 15 
percent. 

Conclusions 
The equilibrium displacement and stress distribution in a two 

dimensional, axially moving web under transverse loading have 
been predicted through singular perturbation and boundary layer 
theories. The conclusions of this analysis are the following: 
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The deflection of the web at y = 0.5 under loading II with P= = 
10 -4, v = 0.3, ) / =  1, a n d  d i f f e r e n t  ax ia l  t r a n s p o r t  s p e e d s  

Fig. 6 
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The deflection at the midpoint of the web under loading II with e 
=O.3, C = 0 . 8 ,  a n d ~ =  1 

( 1 ) The predictions of deflection and membrane stress dis- 
tribution at equilibrium are valid for a web with stiffness ratio 
c less than 10 -2. 

(2) The singular perturbation and boundary layer theory 
solution is applicable to prediction of paper web deflection and 
membrane stress distribution because the stiffness ratio e falls 
between 10 -5 and 10 -3.  

(3) A principal benefit of this analysis is the easy assess- 
ment of the contribution of membrane stresses to the predicted 
transverse deflection of a web. 

(4) The width of the boundary layer, or matching region, 
is of order e 1/2 at the clamped edges and is of order e 1/4 at the 
free edges. 

(5) Compression and shear may be developed in the web 
under distributed loading. The width compression and shear can 
wrinkle the web (Lin and Mote, in press). 

(6) The boundary layers at the free edges increase the pre- 
dicted deflection at the free edges and slightly decrease the 
predicted deflection at the middle of the web. 

(7) The web deflection increases as the axial transport 
speed increases. The effective stiffness /~2 in (8) decreases 
as the axial transport speed increases. The deflection of the 
equilibrium increases under the smaller effective stiffness/~z. 

(8) The membrane model and the linear plate model are 
realistic for small amplitude transverse response only. They 
often overestimate the deflection in the middle of the web and 
do not model the membrane stresses arising from its curvature. 
The two dimensionless parameters ~1 and ~2 in (53) are used to 
estimate the magnitude of the effects of bending and membrane 

stresses on deflection. With ~1 > 0.02 or ~2 > 0.02, a plate 
theory coupling membrane and flexural stiffness effects should 
be used to model the system. 
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A P P E N D I X  A 

Method  to Solve F2 

Find a particular solution F2 e satisfying (25) and zero shear 
stress boundary conditions. Then, Fz has the form 

F2 = F f  + F~, (A1) 

where 

F~ = ~ B,{ - [ s i n h  (nTr~7) + nTr~7] cosh (nTry) 
n = l  

- [1 - cos (nTr~7)] sinh (nTry) 

+ [nTr - nTr cosh (nTr~7)]y cosh (nTry) 

+ [nTr sinh (nTrr/)]y sinh (nTry) } cos (nTrx) 

+ / ~ ' { - [ s i n h ( 7 )  + ~ ] c ° s h ( T x  ) 

[1 cos( )] sinh( x) 
+ 

+ [ ~ s i n h ( 7 ) ] x s i n h ( T x ) } c o s ( T y  ) . (A2) 

F~ is a homogeneous solution of F2 with Zero shear stress along 
the boundaries. Constants Bn and/~n are determined to satisfy 
(13) and (17). 

A P P E N D I X  B 

List of  Funct ions  and Constants  
Hi(X, y) = el/ZAxe -~x + eA2e -~x 

Hi(X,  y) = el/2Xle - ~  + cX2e -~r 

(B1) 

(B2) 

778 / Vol. 62, SEPTEMBER 1995 Transactions of the ASME 

Downloaded 04 May 2010 to 171.66.16.28. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Hz(X, Y) = e l / 2 ( ~  1,,Gi(x, Y))  
~1 = 1 

+ C3/4(~ J, G2(x, Y))  + e ( ~  KnGI(x, Y))  
n = l  n = l  

/-Iz(x, Y) = e ' / 2 ( ~  ~Gl(x,  Y))  
n = 1 

+ e3/'(Y~ Z, G2(x, Y))  + e ( ~  K.G1(x, Y))  
n = l  t l = l  

Woe(O,_________........_). £ , ( y )  _ Wo~(1, y) 
A~(y) = ~ , 

• w l a ( 1 ,  y )  wla(O, y___________) P~2(Y) - A2(y) = ~ , 

I. = 2 - (Wo,yy(X, O) + UWo,xx(x, 0)) sin (nTrx)dx 

Io J,, = 2 --(WO,yyy(X , O) 

+ (2 -- U)Wo~y(X, 0)) sin (nTrx)dx 

K. = 2 -(Wl,yy(X, O) + uwl.~(x, 0)) sin (nTrx)dx (B9) 

(B3) f,, = 2 -(Wo,yy(X, r]) + uwo,~(x, rl)) sin (n~rx)dx (B10) 

f,, = 2 (WO,yyy(X, ~ )  

+ (2 - u)wo.=y(X, r])) sin (nvrx)dx ( B l l )  

(B4) /~. 

:0 = 2 - (w~,yy(x, ~7) + uwl~(x ,  ~7)) sin (n~rx)dx (B12) 
(B5) 

Gl(x, Y) = (/3nTr) -1 sin (nrcx) exp - Y 

(B6) 

× cos Y - sin (B13) 

(B7) 

Gz(x, Y) = 4r2(15nTr) -3:z sin (nTrx) 

(B8) × e x p [ - ( - ~ - - - ~ - ) ' / 2 Y ] c o s ( ( - ~ f / Z Y )  (B14) 
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Anisotropic Yield Surfaces 
Based on Elastic Projection 
Operators 
Although most materials are anisotropic to some extent, most yield surfaces are either 
chosen to be isotropic or to be a smooth anisotropic surface with no connection to 
the elastic anisotropic features. Here, the elastic projection operators obtained from 
the spectral decomposition of the elasticity tensor are used to define anisotropic 
yield surfaces with a yield surface defined for each of the projection operators. The 
advantages of the approach are (1)plastic deformation modes are associated with 
the elastic anisotropic behavior, (2) the spectral decomposition of the tangent tensor 
is readily available for a bifurcation analysis, (3) the composite yield surface has 
vertices which are thought to be important for predicting plastic buckling, and (4) 
the contributions to plastic deformations from each yield surface are uncoupled. The 
result is a theory that is actually quite simple but yet reflects some of the observed 
features for materials to yield in specific modes. 

1 In troduc t ion  
Many, if not all, materials exhibit anisotropic behavior, espe- 

cially if large deformations occur in the plastic regime. The 
assumption of isotropy is useful for simplifying an elastic-plas- 
tic analysis but in order to predict physical phenomena, it is 
often necessary to introduce an anisotropic yield criterion which 
is often based solely on experimental evidence. More often than 
not, such experimental evidence is not available and the form 
of the yield surface is postulated. Here, it is assumed that the 
anisotropy of the elastic response, no matter how slight, pro- 
vides evidence of anisotropy in the plastic regime. Projection 
operators obtained from the spectral decomposition of the aniso- 
tropic elasticity tensor are used to define yield surfaces whose 
composition provides a single yield surface with vertices. In 
addition to simplicity, the resulting theory has other features 
which may prove useful in correlating theoretical predictions 
with experimental data. 

With a generalization from the von Mises criterion, Hill 
(1948) provided a quadratic yield function to handle orthotropic 
plasticity. The yield function has been and continues to be 
widely used although it was later realized that the functional 
form could not adequately represent some materials (Mellor, 
1982). Suggestions for improvement have been primarily con- 
fined to modifying Hill's function by changing the exponent on 
stress components to different integer and noninteger values 
with several typical examples given in the literature (Gotoh, 
1977; Parmar and Mellor, 1978; Hill, 1979; Zhou, 1990; Mon- 
theillet et al., 1991). Hill (1990, 1993) has recently placed 
these contributions in perspective and has proposed his own 
improved version with particular emphasis on applications to 
textured sheets and convenience of use as reflected by relatively 
few material parameters that are easily determined, and by alge- 
braic convenience. In all of this work no attempt is made to 
relate the anisotropic plastic properties with the underlying ani- 
sotropic structure of elasticity. 
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Recently, several papers (Mehrabadi and Cowin, 1990; Sa- 
degh and Cowin, 1991; Sutcliffe, 1992) have elegantly provided 
spectral decompositions of the fourth-order elasticity tensor. In 
addition to providing mathematical representations, these au- 
thors have suggested that such decompositions may prove to 
be useful for developing anisotropic plasticity theories. We ex- 
plore the manifestations of such a suggestion under the assump- 
tions that each mode acts independently and that the flow rule 
is associated. The result is a yield surface composed of 
piecewise fiat surfaces so that vertices arise automatically. The 
presence of vertices has been deemed important, for example, 
in connection with the plastic buckling of structures (Nee- 
dleman and Tvergaard, 1982). 

The proposed theory is intended for the macroscopic repre- 
sentation of materials, not necessarily metals, for which elastic 
anisotropic properties might be available but for which little 
experimental data exist in the plastic regime. The resulting the- 
ory is algebraically simple and there are only a few material 
parameters. Therefore, the desirable attributes enunciated by 
Hill are retained but with a fundamentally different approach 
in which anisotropic elastic features are used to Suggest the 
appropriate form of the anisotropic yield function. The proposed 
theory also provides a particularly simple expression for the 
tangent tensor so that statements concerning the nature of plastic 
modes and the potential for a discontinuous bifurcation are 
easily obtained. 

2 Elast ic  Projec t ion  O p e r a t o r s  

Consider a material governed by linear elasticity. Then the 
constitutive equation relating the stress, s, and strain, e, is 

s = E : e .  (1)  

All elastic properties including material symmetries are de- 
scribed by the fourth-order elasticity tensor, E, which is as- 
sumed here to satisfy both the minor and major symmetry condi- 
tions. 

The eigenproblem for this tensor is 

E : N = XN (2) 

in which k denotes the eigenvalue and the second-order tensor, 
N, the eigentensor which we choose to normalize such that N : 
N = 1. If E satisfies major symmetry, then the eigenvalues are 
real and for each distinct eigenvalue, hi, the corresponding 
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eigentensor, Nt, is perpendicular to all other eigentensors. The 
combined property of orthonormality is summarized in the rela- 
tion 

N i : N j = 6 t j  i , j = l  . . . . .  6 (3) 

in which 6ij denotes the Kronecker delta. Assume temporarily 
that all eigenvalues are distinct which corresponds to six pieces 
of information about E (six independent material parameters). 
Because of normality five parameters are required to obtain N~. 
Then with the use of normality and orthogonality, four addi- 
tional pieces of information are needed to define N2. It follows 
in a similar manner that three, two, one, and zero pieces of 
information are required to obtain N3, N4, N5, and N6, respec- 
tively. The maximum number of independent material parame- 
ters is therefore 21 which is the number of independent compo- 
nents of E for general anisotropy. 

Associated with each eigentensor is the following projection 
operator: 

P t  : N i  @ N i  i = l . . . . .  6.  ( 4 )  

In this relation and in subsequent equations, the usual summa- 
tion convention of repeated indices is not used. By definition, 
the operators span the space of symmetric fourth-order tensors, 
are orthogonal, and therefore satisfy 

6 

P1 = I Pi  : Py = 6,jPi i , j  = 1 . . . . .  6 (5) 
t=l 

in which I denotes the symmetric fourth-order identity tensor. 
The spectral decomposition of E and its inverse (provided an 
eigenvalue is not zero) are 

E = ~ kiPi E_ 1 = 1 
i=l t=l ~ i  Pi ( 6 )  

According to Mehrabadi and Cowin (1990) this result is already 
embodied in the work of Kelvin who quite appropriately called, 
ki, the principal elasticities of the material. In a similar fashion 
one might consider Nt to be the principal elastic modes. 

If symmetries exist, the eigenvalues are not all distinct and 
the derivation of the projection operators is not quite as straight- 
forward. Let K denote the number of distinct eigenvalues, a 
minimum of two for isotropic materials to a maximum of six 
for completely anisotropic materials. Luehr and Rubin (1990) 
derived a general expression for the independent projection op- 
erators for second-order tensors. The theory is directly applica- 
ble to fourth-order tensors so that for any K the projection 
operators are 

P1 = [ I [  (xt - Xj) l - '  [ [  ( E  - ~jI) 
j = l  . . . . .  K~ *i) j = l  . . . . .  K(] *i)) 

i = 1 . . . . .  K. (7) 

The spectral decomposition of (6) becomes a sum from 1 to K 
instead of 1 to 6. 

Each projection operator will have an eigenvalue of one with 
multiplicity identical to that associated with the corresponding 
eigenvalue of the elasticity tensor. The other eigenvalues are 
zero. Using orthogonality, one can construct the eigentensors, 
Ni, which span the space complementary to the null space of 
Pi. The null space of P1 is spanned by the eigentensors of the 
other projection operators with eigenvalues of one. In principle 
then, one can find the six eigentensors, Ni, and the K projection 
operators. 

The linear constitutive relation can now be expressed as fol- 
lows: 

K 

s = ~ kiPi : e .  (8) 
i=1 

Define projected stress and strain tensors as follows: 

si = P i : s  et = P i : e  (9) 

with the consequence that 
K K 

s =  ~ s i  e =  ~ e t .  (10) 
i=1 i=1 

The projected stresses and strains satisfy the orthogonality rela- 
tion 

st: sj = ~q~-~ y~ = si: s1 ( l l a )  

e i : e j =  60~~ ~-~= e i : e l .  ( l l b )  

Operate on each term in (8) with the projection Pj and use the 
orthonormal relation (5) to obtain an alternative form of the 
constitutive equation as 

si = kiei  i = 1 . . . . .  K, (12) 

i.e., the projected stress and strain are directly related through 
the corresponding eigenvalue of the elasticity tensor and are 
uncoupled from other projected stress and strain tensors. This 
relation was stated by Mehrabadi and Cowin (1990) as property 
B. It follows that the invariants of each projected stress and 
strain are related by 

tr sl = k1 tr et st : si  : ( ~ t ) 2 e i  : ei 

tr (si. si '  si ) = (ki)3 tr (ei. et" el ) (13) 

In a similar fashion, twice the strain energy density is 

e : E : e = Z kt~~ : ~i ~-~" (14) 
i~l  t=l 

It follows immediately that the maximum and minimum eigen- 
values can be used to obtain upper and lower bounds, respec- 
tively, on the strain energy density (Mehrabadi et al., 1993). 
The last term involving invariants of the projected stress suggest 
yield criteria based on energy analogous to the yon Mises crite- 
rion (Sutcliffe, 1992). Such criteria will be developed later. 

3 S y m m e t r i e s  

3.1 Isotropy. Complete isotropy is characterized by two 
distinct eigenvalues, and therefore from (7) 

E - k2I E -  kll 
Pl = - -  P2 = ~  (15) 

kl - k2 k2 - kl 

Once the eigenvalues are known, then so are the projection 
operators, i.e., there are only two independent material parame- 
ters. This representation is equivalent to the usual form E = M 
@ i + 2GI in which k and G denote the Lain6 parameters and 
i the two-dimensional identity tensor. It follows that k~ = 3k 
+ 2G and ka = 2G. It is more common to label the eigenvalues 
as 3B (distinct) and 2G (multiplicity 5) where B and G are 
the bulk and shear modulus, respectively. The corresponding 
projection operators are the spherical and deviatoric projections: 

1 • pu psp = ~ 1 @ i = I - psp (16) 

so that, if s denotes the stress tensor, P the mean pressure, s 'v' 
the spherical part of the stress tensor, and s d the stress deviator, 
it follows that 

s = s 'v '+ s d s w = p s p : s  = - P i  s d = pd:s (17) 

3.2 Cubic Symmetry. Cubic symmetry exists if the elas- 
ticity tensor has three distinct eigenvalues, and the eigentensors 
are independent of material parameters and satisfy a particular 
relationship concerning multiplicity to be given next. Specifi- 
cally, the elasticity tensor becomes 

Journal of Applied Mechanics SEPTEMBER 1995, Vol. 62 / 781 

Downloaded 04 May 2010 to 171.66.16.28. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



E = kiP1 + h2P2 + ~,3P3 (18) 

and the projection operators are 

P1 = N1 @ Ni 

P2 = N2 @ N2 + N3 @ N3 

P3 = N4 @ N4 + N5 @ N5 + N6 @ N6 (19) 

which indicates that the eigenvalues hi, ~2, and k3 have multi- 
plicities of 1, 2, and 3, respectively. Suppose a rectangular 
Cartesian coordinate system is chosen such that the associated 
base vectors coincide with the principle directions of Nl (also 
of N2 and N3). Then in this coordinate system the eigentensors 
display the following components: 

,[00 0] 
1 N2 = 0 1 0 

N , ~  0 ~ 0 0 - 1  

1120 ] 1[00 1 0 1 N 4 =  0 0 
N 3 = ~  0 0 ~ 0 1 

l i t0  1101!] 0 0 N6 = 1 0 . ( 2 0 )  
N, 0 0  0 0  

The first projection operator remains identical with the spherical 
projection, a property not found in materials with less symmetry. 
The eigenvectors of the first three eigentensors of E, namely, 
N~, N2, and N3 are identical although the eigenvalues are not. 
The eigenvalues for the last three eigentensors N4, Ns, and N6 
are identical but the eigenvectors are not identical and differ 
from the first set. Each eigenvector of the last set is obtained 
by a 45 deg rotation about one of the eigenvectors in the 
first set. 

For ease of representing detailed components, we convert to 
a fairly standard matrix notation (Sadegh and Cowin, 1991 ). 
Collect the components of the stress and strain tensor into vec- 
tors with six components as follows: 

{cr} T=  { O'11, O'22, O'33, ~r20"23, ~/20"31, ~f20"12 } T 

{e} r = {elL, e=, e33, "~e23, ,f2e3~, ~/2e,2} r (21) 

in which the superscript " T "  denotes the transpose. The factor 
q~ is used so that the 2-norm is preserved: 

{cr}r{~} = o" : o'. (22) 

Then the constitutive relation becomes 

If we return to the spectral decomposition of the elasticity ten- 
sor, the eigenvalues are (Sutcliffe, 1992) 

hi = Cii + 2C12 )k2 = CH - C12 ha = 2C,14. (26) 

If C44 = (Cll - C12)/2, then M = k2 and cubic symmetry 
degenerates to isotropy. Since the first projection operator is 
identical with the spherical projection, the sum of the other two 
projection operators span the deviatoric space, i.e., 

P2 + P3 = pa. (27) 

3.3 Tetragonal  (6) Symmetry.  Although cubic symme- 
try is a special case of tetragonal (6) symmetry, the treatment 
of cubic symmetry was given first so that essential ideas could 
be presented in a simple context. Here, we give only those 
aspects which are different from those given previously. 

The elasticity matrix for tetragonal (6) symmetry displays 
six independent material parameters: 

Cll C12 C12 0 
C22 C23 0 

[C]  = 1 0 
C22 0 0 

2C44 0 
2C66 

2C66 J sym 

(28) 

The spectral decomposition of the elasticity tensor 

E = XlN? ® N? + ~2N2 ® N2 + ~3N~ ® N~ 

+ h4N4 @ N4 + h5 (N5 @ N5 + N6 @ N6) (29) 

displays five independent eigenvalues with one of multiplicity 
two. The projection operators are implicitly defined as the coef- 
ficients of the eigenvalues. The eigentensors are identical to 
those obtained for cubic symmetry with the following excep- 
tions: 

1 0 0° 01 

Nit 1 1 
0 

(30) 

while the eigenvalues are 

1 
X~ = 5[(Ctz + C= + C23) + ( ( C .  - C= - C2~) 2 + 8 ( G 2 ) q  

~k3 = 2[(C11 + C22 "]- C23) - ¢(Ci1 - C22 - C23) 2 --1- 8(Ci2) 2] 

{or} = [C]{e} .  (23) 

For cubic symmetry and the choice of coordinate system (mate- 
rial coordinates)defined previously, the elasticity matrix be- 
comes 

Cll C12 C12 0 0 i ] 
C ,  C12 0 0 

[C] = CH 0 0 (24) 
2C44 0 

2c44 
2C44_1 8ym 

in which the three independent material parameters are 

Cll = Ellll = E2222 = E3333 

Cl2 = El122 = E1133 = E2233 

C44 = E2323 = E3131 = E1212. (25 )  

~2 = C22 - C23 

h4 = 2C44 

)ks = 2(766 (multiplicity two). (31) 

Here, components of two of the eigentensors depend on the 
material parameters as follows: 

2C12 2C12 
c ~ - - -  / 3 - - -  (32) 

kl - Cll k3 - C1l 

Note that oz/3 = -2 .  For cubic symmetry, C22 = CH, C23 = C12, 
and C66 = C44 which infers that a = 1, fl = - 2 ,  N~ = Nl, 
and N3* = N3. 

Transverse symmetry, or hexagonal (5) symmetry, can be 
viewed as a special case of tetragonal (6) symmetry with 2C44 
= C22 - C23. The result is that k4 = k2 and the elasticity tensor 
exhibits two eigenvalues of multiplicity two: 
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E : k,N~* @ N~* + k2(N2 @ N2 + N4 ® N4) 

+ k3N~ @ N3* + ks(N, @ N5 + N6 (~) N6) (33) 

in which N~* and N3* continue to be defined by (30). Note that 
cubic symmetry is not a subset of transverse isotropy. 

Another important symmetry class for noncrystalline materi- 
als is that of orthotropy. However, the solution of a cubic equa- 
tion is required to obtain the eigenvalues of the elasticity tensor. 
The eigentensors N~, with i = 1, 2, and 3, retain the diagonal 
form but all nonzero entries depend on the material parameters. 
Since the algebra is rather complex (Mehrabadi and Cowin, 
1990), the development has not been included. 

4 Plasticity 

4.1 Formulation. Consider small deformation so the 
strain rate, 6, can be decomposed into elastic and plastic parts 
as follows: 

6 = 6 ~ + &. (34) 

The stress rate consists of a map of the elastic strain rate: 

= E : 6 ~. (35) 

The plastic strain is obtained from an evolution equation, to be 
given later, in terms of a monotonically increasing parameter, t. 

Assume that the elastic projection operators are implicitly 
describing preferred modes of deformation. For each projection 
define a projected total and plastic strain rate: 

el = P i :  6 6~' = Pi : &. (36) 

For each mode, define a plastic strain-path invariant 

= f (6 f  : &)~/2dt  (37) 

and a yield function 

1 -- 2 ff = ~(s,) - ½(H,) 2 (38) 

such that f > 0 is not allowed and f < 0 denotes an elastic 
state. Yielding in a particular mode occurs only when f = 0. 
Each function, Hi, may remain constant (perfect plasticity), 
increase (strain hardening) or decrease (strain softening). To 
experimentally determine each Hi, a stress path must be fol- 
lowed that activates only mode i. Particular examples are given 
later. 

The contributions from each mode to the plastic strain and 
to the hardening function are obtained from evolution equations 
of the form: 

6~' = ~ iml  I~i  = ~ihl (39) 

in which ~i is a monotonically increasing parameter associated 
with mode i. Conventional formulations are obtained if mi is 
a function of the projected stress si, and hi is a function of the 
plastic strain invariant, gi. The consistency condition, f i = 0, 
yields 

si : si - Hil-)'i = O. (40) 

If associated evolution equations for plastic strain are chosen, 
then 

mi = Si. (41) 

Consider the rate form of the elastic constitutive equation 

= E : 6  e = E : ( 6 - & ) .  (42) 

Apply the projection operator, P~, to each term to obtain 

si = hi(ei  - el).  (43) 

Substitute (39), (41 ), and (43) in (40): 

his i  : 6 i - cJ)ihi(Si : Si)  - -  wiHihl  = 0. (44) 

The result is an uncoupled equation for each evolution parame- 
ter dJi : 

hiS  i : 6 i 
&i - i = 1 . . . . .  K (45) 

h i ( S i )  2 + Hihi 

Koiter (1953) provided a formulation for satisfying simulta- 
neously a set of yield conditions used to define a composite 
yield surface. In effect, the result is a set of algebraic equations 
for determining ~ .  Here, by defining yield functions based on 
the elastic projection operators and with associated flow rules, 
the set of equations becomes decoupled so that algorithms used 
for single surfaces can be carried over with very little modifica- 
tion to the present case even though the composite surface is 
described with the use of several yield functions. 

For an associated flow rule, (41) indicates that the plastic 
strain rate is proportional to the projected stress, si. If a projec- 
tion operator is of the form (4), then 

Sl = (Ni:  s)Ni (46) 

which infers that the eigentensor, Ni, describes the "mode" of 
plastic deformation. 

4.2 Tangent Tensor. An investigation of material stabil- 
ity requires the tangent tensor, T, defined such that 

g = T : e (47) 

The derivation of the expression for T follows from the follow- 
ing equivalent forms of (42): 

K 

~ = E : 6 - E : ~ 6 f  
i=l 
K 

= E : e  - E : ~ ~isi (48) 
i=l 

Because of the orthonormal property of the projection operator 
K 

E : si = ~ hyPj:P/: s = hisi, (49) 
j=l 

it follows immediately when (45) and (49) are substituted in 
(48) that 

T = E - 
(h~)2si ® Si 

i=1 h i (  ~-/)2 -1-" H~hi " (50) 

Consider the result when the strain rate is assumed to be 
proportional to a projected stress. When T operates on a pro- 
jected stress, and with the use of orthogonalitY of modes, the 
result is 

( h i )  2 (,~-/) 2 
T : s i  =Aist  Ai ~ hi (51) 

hi(Yi)  2 + Hihi 

i.e., s~ is an eigentensor of T with eigenvalue Ai. 
Care must be taken because (51) provides the eigenpair for 

only those modes for which plasticity is activated. For those 
modes not activated, the eigenvalues and eigentensors of the 
tangent tensor are identical to those of the elasticity tensor. 

If a plasticity mode is activated, then an alternative form for 
the eigenvalue is 

hi H i  hi hi hi 

Ai = hi(yi) 2 + Hihi = h~Hi + he (52) 

in which the second equality is obtained with the use of (38) 
andf  = 0. The eigenvalue is zero ( a limit point) if the evolution 
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function, hl, is zero and material instability based on Drucker 's 
criterion is satisfied. 

One of the characteristics of  a strain rate tensor associated 
with a discontinuous bifurcation is that one of its eigenvalues 
is zero, and the other two are of  opposite sign (Neilsen and 
Schreyer, 1993). This feature is labeled the " p z n "  property 
(for p_ositive, zero, and negative).  The complete criteria for the 
appearance of  a disconfi-nuous bifurcation are that sl satisfy the 
pzn criterion, and Ai -< 0. Therefore, Drucker 's criterion is a 
necessary precursor to a discontinuous bifurcation. 

4.3 Plasticity for  Isotropic  Mater ials .  For isotropic elas- 
ticity, suppose the first mode is identified with the spherical 
projection, i.e., 

Pt = p,v, P2 = p a  ( 5 3 )  

so that 

= s w : s  *p = ½[sit + s22 +s33] 2 = 3P  2 

= s d :  s ~ = ½ [ ( s i t  - ~ = ) 2  + ( s =  - s . )  ~ 

-~- ($33 - -  S I I )  2 "~- 6(s12) 2 + 6(s23) 2 + 6(s31) 2] (54) 

in which P denotes the mean pressure. Suppose Ht is set so 
high that the first mode is never activated. Then the remaining 
yield function from (38) is 

1 -- 2 f2 = g(s2) - ½(H2) 2. (55) 

The plastic strain rate is proportional to the stress deviator and 
the result is the classical yon Mises formulation. 

If  only the second mode is activated, then 

AI = h i  = 3B 

2Gh2 
A2 - 2GH2 + h2" (56) 

The corresponding eigentensor of  T is S a so a discontinuous 
bifurcation does not occur unless the eigenvalues of  s a satisfy 
the pzn criterion and h2 -< 0 (Neilsen and Schreyer, 1993). 

4.4 Plasticity for  Mater ia l s  With  Cubic  Symmet ry .  
Now there is a potential for three yield surfaces involving the 
following "e f fec t ive"  stresses: 

s-~ = 3 P  ~ 

~-~ = S 2 : S 2 = ½ [ ( S l l  - -  $22)  2 + (S22 - -  S33) 2 + ($33 - -  S t 1 )  2]  

S-~ = s3 :s3 = 2[(s,2) 2 + (s23) z + ( S 3 l )  2]  (57) 

The first is again associated with the spherical projection. If 
experimental data indicate plastic incompressibility, then the 
corresponding hardening function need only be set to a large 
constant value to delete the spherical mode. The other two 
effective stresses indicate that the deviatoric space has been 
split into two subspaces with the result that the von Mises yield 
surface is replaced with two surfaces. If  the principal axes of  
stress coincide with the material axes, or if  all the normal com- 
ponents of  stress are zero, then the yield surface is no different 
from the isotropic case. However,  for other situations, the third 
effective stress may become significant and the predicted re- 
sponse will differ from isotropic plasticity. 

Two experimental paths are necessary to determine the hard- 
ening functions for the deviatoric space. As examples, a uniaxial 
stress path to determine H2 and a path involving only a shear 
stress component to determine Ha are sufficient provided both 
paths are prescribed in the material symmetry axes. 

The third mode identified with P3 defined in (19) and (20) 
represents a sum of three stress states corresponding to shear 
in each of the coordinate planes. There is no preference of one 

case over the other so yield can occur at the same level of  shear 
stress in any plane. Furthermore, hardening caused by a shear 
excursion in one plane is automatically reflected in the other 
two planes. The pzn criterion is satisfied if any one of the shear 
stresses is nonzero. 

The second mode can be considered a sum of two stress 
states. If, for example, the stress has components proportional 
to Nz, then the plastic strain rate is also proportional to N2 and 
is of  the pzn type. This mode corresponds to shear on planes 
defined by x* - xt where x* is in the x2 - x3 plane oriented 
at an angle of  45 deg to either the x2 or x3 material axes. Because 
the choice of Nz and N3 is not unique (although Pz is unique),  
shear on planes y* - x2 and z* - x3 is also possible where y* 
and z* are oriented at 45 deg to either coordinate in the xl - 
x3 and Xl - x2 planes, respectively. The yield stress for this 
mode can be different from the yield stress associated with the 
third mode. If the stress is proportional to N3, a plastic strain 
rate can be obtained that is not of  the pzn type. 

Overall, the dominant modes of  plastic response suggested 
by the projection operators are pure shear on the planes de- 
scribed by the material axes and shear on the planes oriented 
at 45 deg to the material symmetry planes. 

4.5 Plasticity for  Mater ia l s  Wi th  Te t ragona l  (6) Sym- 
metry .  Now the structure is much richer with the possibility 
of  five active yield functions and modes of plastic deformation 
as defined by the projection operators implied in (29) and (30):  

1 
~-~ = st : sl = - -  [eestt + s a  + s33] 2 

(2 + oe 2) 

1 
~'22 = 82 : S2 --~ ~ ($22  - -  S33) 2 

-2  1 
S 3 = S 3 : S 3 -~ - -  [ ~ S l l  "q- S22 -'~ ,~33] 2 

(2 + /3 2) 

S ]  = S 4 : S 4 = 2(S23) 2 

S'52 = S5 : S 5  = 2 ( S 1 2 )  2 + 2 ( $ 3 1 )  2. ( 5 8 )  

Now the first mode is not purely spherical and the third mode 
is not pure shear at 45 deg. The second mode represents shear 
on the x2 - x3 material coordinate planes. The fifth mode repre- 
sents shear on the xt - x2 and xt - x3 material coordinate planes 
with identical shear stresses so that hardening in one case affects 
the other. The fourth mode singles out shear in the x2 - x3 
material coordinate plane and is independent of the shear associ- 
ated with the second mode. Furthermore, the second, fourth, 
and fifth mode each satisfy the pzn condition. 

Special care must be taken to prescribe a path to activate a 
single mode to determine a hardening function. For example, a 
path with s22 = -s33 and all other stress components zero acti- 
vates only the second mode. To activate only the third mode, 
the experimental path that must be followed is defined by zero 
shear components, s22 = s33 and sl~ = -2s22/a to eliminate 
contributions to the second and first modes, respectively. Paths 
to determine hardening functions for the remaining modes are 
defined in a similar manner. 

For transverse isotropy, or hexagonal (5) symmetry, the sec- 
ond and fourth modes combine into a single mode and the new 
effective stress becomes 

I 
~-~2  = S2 : 82 + S4 : S4 = ~ ($22  _ $33)  2 _{_ 2 ( $ 2 3 ) 2 ,  (59) 

which implies that any shear yield stress in the x2 - x3 plane 
is perceived equally. 

For plasticity associated with cubic symmetry, transverse 
isotropy, and tetragonal (6) symmetry, there are certain modes 
for which the pzn condition is always satisfied. For these cases, 
a discontinuous bifurcation occurs if  the corresponding eigen- 
value of the tangent tensor i s  zero or negative. The physical 
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manifestation of a discontinuous bifurcation can be an apparent 
brittle failure once a peak stress is reached, even for a displace- 
ment controlled test, so knowledge of these properties of the 
tangent tensor is important for interpreting experimental data. 

4.6 Volumetric Plastic Strain. Many metallic materials 
display plastic incompressibility• For isotropic and cubic sym- 
metry, Nt is always the spherical mode• For tetragonal (6 )  
symmetry and transverse isotropy, if a is close to unity, tlaen 
N~ in (30) represents a spherical mode to a high degree of 
accuracy. Sutcliffe (1992) gives data which indicate a = 1.008 
for indium and a = 0.91 for tin, both of which are tetragonal (6) 
metals, and a = 0.96 for magnesium which is in the transverse 
isotropy class. As mentioned previously, plastic incompressibil- 
ity can be invoked by choosing a large value for Hi. For metals 
with cubic symmetry (e.g., Cu and A1) a is automatically one. 
If a is not close to one and experimental data indicate plastic 
incompressibility, modifications must be made to project out 
the spherical parts from the first and third modes, N~ and 
N.~, respectively. However, the projected modes are not inde- 
pendent. Alternatively, one can define a new deviatoric projec- 
tion operator, P~ by enforcing orthogonality with P2, P4, and 
P5 and the spherical projection operator• The result is that four 
modes exist in the deviatoric space and the procedure outlined 
above can be invoked. A similar approach for transverse isot- 
ropy yields three projection operators in the deviatoric space. 
Orthotropic symmetry provides three projection operators with 
a spherical part so the approach for developing the appropriate 
deviatoric projection operators is not so transparent. 

On the other hand, there are materials such as foams (a  = 
1.8) that exhibit considerable volumetric plastic strain. Then 
hardening functions can be introduced for each mode without 
the need for deleting the effects of the spherical mode. 

5 Summary 
For each projection operator obtained from the elasticity ten- 

sor, a yield function is defined in a manner completely analo- 
gous to that of yon Mises plasticity. Experimental data are 
necessary to define the hardening function associated with each 
yield surface. The lower bound formed from the union of these 
surfaces provides a single yield surface with vertices. If an 
associated flow rule is used, then the evolution equations for 
projected plastic strains and hardening functions for each mode 
become uncoupled. Also the projection operators associated 
with the fourth-order tangent stiffness tensor are similar to those 
identified from the elasticity tensor. The result is that material 
instability based on the Drucker criterion or on a discontinuous 
bifurcation mode can be easily performed. Based on physical 
observations, each mode can reflect individually strain harden- 
ing, perfect plasticity or strain softening. The overall simplicity 
of the model also makes it feasible for numerical calculations. 

If an elastic material is only slightly anisotropic, the assump- 
tion of isotropy is usually made with good justification to sim- 
plify the analysis. However, the slight elastic anisotropy is all 

that is needed to define projection operators which may prove 
to be quite important in the plasticity regime. Even though for 
certain materials in manufacturing processes the elastic behavior 
is essentially isotropic, the plastic response is quite anisotropic. 
The use of the theory provided here would provide an approach 
for an appropriate explanation and theory. 

It is also believed these projections could be applied profit- 
ably to the areas of kinematic hardening, continuum damage 
mechanics, and anisotropic heat conduction• 
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Analytical Expressions for the 
Relaxation Moduli of Linear 
Viscoelastic Composites With 
Periodic Microstructure 
In this paper the viscoelastostatic problem of composite materials with periodic 
microstructure is studied. The matrix is assumed linear viscoelastic and the fibers 
elastic. The correspondence principle in viscoelasticity is applied and the problem in the 
Laplace domain is solved by using the Fourier series technique and assuming the 
Laplace transform of the homogenization eigenstrain piecewise constant in the space. 
Formulas for the Laplace transform of the relaxation functions of the composite are 
obtained in terms of the properties of the matrix and the fibers and in function of nine 
triple series which take into account the geometry of the inclusions. The inversion to the 
time domain of the relaxation and the creep functions of composites reinforced by long 
fibers is carried out analytically when the four-parameter model is used to represent the 
viscoelastic behavior of the matrix. Finally, comparisons with experimental results are 
presented. 

Introduction 
A large number of micromechanical models have been 

developed to estimate the elastic properties of composite 
materials (see Christensen, 1990; Mura, 1987; Nemat Nasser 
and Hori, 1993). However, few theoretical and experimental 
results are available in the field of viscoelastic behavior of 
heterogeneous media. 

The first micromechanical model used to evaluate the 
macroscopic viscoelastic properties of fiber-reinforced mate- 
rials was the cylinder assemblage model proposed by Hashin 
(1965, 1966), where the analogy between the elastic and the 
viscoelastic relaxation moduli of heterogeneous materials with 
identical phase geometry was presented. This analogy is 
known as the correspondence principle (Christensen, 1979) 
and many authors applied it. For example, Christensen (1969) 
proposed an approximate formula for the effective complex 
shear modulus in the case of materials with two viscoelastic 
phases by using the composite sphere model. 
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Laws and McLaughlin (].978) estimated the viscoelastic 
creep compliances of several composites by applying the 
self-consistent method. They used Stieltjes convolution inte- 
grals to formulate the problem in the Carson domain and a 
numerical inversion method to obtain the solution in the time 
domain. Yancey and Pindera (1990) estimated the creep 
response of unidirectional composites with linear viscoelastic 
matrices and elastic fibers by applying the micromechanical 
model proposed by Aboudi (1991) to obtain the Laplace 
transform of the effective viscoelastic moduli. Then, they 
used Bellman's numerical method for the inversion to the 
time domain. For different geometry of the inclusions, Wang 
and Weng (1992) adopted the Eshelby-Mori-Tanaka method 
(Mori and Tanaka, 1973) in order to obtain the overall linear 
viscoelastic properties of the corresponding composite mate- 
rial. 

Finally, it is possible to conclude that many micromechani- 
cal models applied for the analysis of the elastic behavior of 
composites have been extended to the viscoelastic case. How- 
ever, no theory has been developed for linear viscoelastic 
solids with periodic microstructure, even though many results 
are available for the elastic case (Nemat-Nasser and Taya, 
1981, 1986; Nemat-Nasser et al., 1982; Nemat-Nasser and 
Hori, 1993). For this reason, in the present paper, close-form 
expressions in the Laplace domain for the coefficients of the 
linear viscoelastic relaxation tensor of composite materials 
with periodically distributed elastic inclusions and linear vis- 
coelastic matrix are proposed. Moreover, the inversion to the 
time domain is carried out analytically for composites rein- 
forced by long fibers and when the viscoelastic behavior of 
the matrix can be represented by a four-parameter model. 
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More complex creep behaviour of the matrix requires numer- 
ical inversion to the time domain (Barbero and Luciano 
1995). Finally, comparisons with available experimental data 
obtained by Skudra and Auzukalns (1973) are presented. 

Viscoelastic Constitutive Equations 
The constitutive equations of a linear viscoelastic isotropic 

material can be expressed in the time domain in the follow- 
ing way: 

o ' ( t )  = 1(2)£ A(t - z)tr~(~,)dl- 
c( 

+ 2 £  / x ( t -  r )~(r)d~ ' ,  (1) 
cx 

where t~(t) and e(t) are the stress and strain tensor, A(t) and 
tx(t) are the two stress-relaxation functions, the dot indicates 
the differentiation with respect to time, and 1 (2) denotes the 
identity second-order tensor. 

The inverse relations of Eq. (1) can be written in terms of 
the creep functions O(t) and if(t) as 

, ( t )  = I(2)f t o(t - z) trd-(r)dz 

+ (2) 

Let us assume that the relaxation and the creep functions 
are smooth functions (Gurtin and Sternberg, 1952) and de- 
note the Laplace transform of a function f ( t )  as 

f ( s )  = f0~f ( t )exp( - s t )d t ,  (3) 

then the Eqs. (1) and (2) can be expressed in the Laplace 
domain as 

6"(s) = sA(s) tr~(s)I  (2~ + 2sfL(s)~(s) = sL(s )~ ( s ) ,  (4) 

~(s) = sO(s)tr6-(s)l  (2) + 2s~(s)6"(s)  = sM(s)6-(s) ,  (5) 

where the Laplace transform of the creep compliance M(s) 
and the relaxation tensor L(s) satisfy the following relation: 

1 _ /~(S) = 7~L(s ) - l .  (6) 

The Poisson ratio in the transformed domain v TD is 
written in terms of A(s) and £(s) as 

v TD = h ( s ) /2 (A( s )  + ~ ( s ) ) .  (7) 

For simplicity, and consistently with earlier work (Aboudi, 
1991; Wang and Weng, 1992), only the set of linear viscoelas- 
tic materials whose Poisson ratio remains constant in the 
course of the deformation (i.e., v ( t )=  v = v TD) will be 
considered. However, the Poisson ratio of the fibers can be 
different of that of the matrix. 

Periodic Eigenstrain in the Laplace Domain 
Suppose that an infinitely extended linearly viscoelastic 

solid is represented by an assembly of unit cells and let each 
cell D be a parallelepiped with dimensions aj in the direc- 
tions of the coordinate axes x i where j = 1, 2, 3 (see Fig. 1) 
and let V be its volume. Then, let use denote with 1~ the 
part of D occupied by the inclusions, with D - f / t he  part of 
D occupied by the matrix, and with of_ be the volume fraction 
of fL The constitutive equations of the linear viscoelastic 
matrix in the Laplace domain can be written by using Eq. (4) 
as  

i / / ! ¢  a~ 

t ,q ,' 
/ 

aa 

Fig. 1 Geometry of the unit cell D 

6"(s ,x)  = s L ( s ) ~ ( s , x ) i n D  - l l ,  (8) 

while the elastic inclusion is represented as 

6"(s,x)  = s L ' ( s ) ~ ( s , x )  = L ' e ( s , x ) i n l L  (9) 

and L'  is the elastic stiffness tensor of the inclusion. In order 
to simulate the inclusions inside the body, the equivalent 
eigenstrain method will be used (see Mura, 1987; Nemat 
Nasser and Hod, 1993). The idea is to apply an eigenstrain 
on the homogeneous solid to obtain the equivalence between 
the stress in the homogeneous material and the heteroge- 
neous one. Then, consider the Laplace transform of the 
homogenization eigenstrain ~* (s, x) which must be periodic 
in x for the particular geometry of the problem and different 
from zero only in II. By using this technique, the inclusion 
problem is reduced to a viscoelastostatic problem of an 
homogeneous solid subject to a suitable periodic eigenstrain 
~* (s, x). 

Next, by using the correspondence principle for linear 
viscoelastic solids (see Christensen, 1979; Aboudi, 1991), the 
relation between the eigenstrain and the strain inside ~ will 
be introduced in the Laplace domain. Since the material is 
linear viscoelastic, the Laplace transform of the actual stress 
tensor 6-(s, x) inside the unit cell can be expressed in terms 
of ~*(s, x) and the Laplace transform of the actual strain 
tensor ~(s, x) in the following way: 

6-(s, x)  = SL(s ) (~ ( s ,  x)  - ~*(s, x ) )  forx ~ D, (10) 

while Eq. (8) is valid in D - fL Then, assuming the body 
forces equal to zero, the tensor ~-(s, x) must satisfy the 
following equilibrium conditions: 

divd-(s, x) = 0forx  ~ D, (11) 

where div denotes the divergence of a tensor field. 
Since the object of this paper is the analysis of composite 

materials with periodic microstructure, the eigenstrain ~(s, x) 
simulates the presence of the periodic inclusions. Further- 
more, in a solid with periodic microstrueture, the boundary 
conditions of the unit cell D are governed by the periodicity 
in x of the microstructure and are satisfied by expanding the 
displacements and the eigenstrain or their Laplace trans- 
forms (fi(s, x) and ~*(s, x)) in the following Fourier series 
representation: 

:.t: o~ 

f i (s ,x)  = ~ ( s , ~ ) e x p ( i ¢ x ) ,  (12) 

±o¢ 

~ ( s , x )  = sym(Vfi(s,x)) = 2~ ~(s, ¢ )exp( iCx) ,  (13) 

±oo 

~*(s , x )  = ~ * ( s , ¢ ) e x p ( i ¢ x ) ,  (14) 
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where ~ = {El, ~2, ~3} with ~. = 2~rn . /~  (nj = 0, _+ 1, 
±2 . . . . .  j not summed, j =  1 ,2 ,3 ) , i=  ¢ -  1 and 

1 
~(s,~) = FfDfi(s,x)exp(-i~x)dx, (15) 

i ~(s,e)=~[e®a(s,x)+a(s,e)®e], (16) 

1 
}*(s,#) = -pfo~*(s,x)exp(-i~x)dx. (17) 

Combining Eq. (10) and Eq. (11) gives 

div(sL(s)(~(s, x) - ~*(s, x ) ) )  = Oin D. (18) 

Then, by Eqs. (13), (16), and (14) in Eq. (18), the following 
expressions are obtained: 

-~ .  L(s)( ~ ® ~(s, ~ )) = i~. L(s)~*(s, ~ ) 
forevery~4~ 0, (19) 

where the symbols ® and • represent the outer and the 
inner product, respectively (Spiegel 1959). Thus, since L(s) 
represents the Laplace transform of the viscoelastic relax- 
ation tensor of the matrix, the coefficients ~ (s, ~) are 
obtained uniquely in terms of the ~* (s, ¢) in the following 
way: 

~(s, ~) = -i(~" L(s)" ~ ) ) - - 1  ~:" L(S)~*(S, ~) 

for every ~ * 0, (20) 

and from Eq. (16), the Fourier coefficients of the correspond- 
ing strain are 

}(s, ~) = sym(~® ( ¢ .  L ( s ) .  ~)-1 ® I ~ ) : L ( s ) } , ( S , I ~ )  

forevery~ e 0. (21) 
Finally denoting 

P'(s, ~) 

the actual strain 
(13) and (17) is 

= sym(~ ® (~ .  L ( s ) .  ~)-1 ® ~), (22) 

inside the inclusion from Eq. (21) using Eqs. 

1 ±~t 
~.(s, x) = "~ ~ P'(s, ~:):L(s) f ~: *(s, x ')  

× exp ( - i ~ ( x '  - x))dx' (23) 

where a prime on the sum indicates that ~ = 0 is excluded in 
the summation. 

Since the aim of this work is to obtain the overall vis- 
coelastic properties, the exact expression of the strain tensor 
~(s, x) is not necessary. Only its volume average on l~ 
denoted by ( ~ ( s ) =  1/Vn fn ~(s, x)dx) is needed, 

1 ±~o' 
~(s)= F Y"P'(s'~):L(')(g°(~) I f  ~*(s,x') 

X exp (- iCx ' )dx ' ,  (24) 

where V a is the volume of the inclusion and 

go(~) = fn exp (i¢x)dx. (25) 

In a periodic microstructure, the equivalent eigenstrain is 
not constant in 1~. However, in order to solve the problem 
analytically, an approximation of Eq. (24) is introduced using 
a constant ~*(s, x). While it is possible to use a polynomial 
approximation for the eigenstrain, the differences between 

the two approaches have been shown to be small in the 
elastic ease (Nemat-Nasser and Taya, 1981). Then, replacing 
~*(s, x)with its volume average ~*(s), Eq. (24) becomes 

1 ± ° ° '  ( g 0 ( ~ ) g 0 ( - ~ ) )  ~(s) = -~ E P'(s, ~) :£ ( s )  ~*(s), (26) 

or  

~ ' [ g o ( ~ )  ] )P'(s,~):L(s):~*(s), 
[ ( s ) = v f  * l - - ~ f - ] (  g°(-~)Vn 

(27) 

and by denoting 

v [g°(~)lfg°(-~)) (28) 
, (e)= '1- -11 ' 

and 
±oJ 

P(s) = E t(~)P'(s, ~), (29) 

the following expression holds: 

~(s) = P(s):L(s):~*(s). (30) 
Note that Eq. (30) represents the relation between the vol- 
ume average of the strain inside fR[(s ) )  and the volume 
average of the applied eigenstrain (~* (s)) in the transformed 
domain. 

Overall Linear Viscoelastic Relaxation Tensor 
In order to obtain the homogenization eigenstrain which 

simulates the presence of the periodic inclusions inside the 
body, let us consider an applied average strain tensor with 
Laplace transform ~0(s). Under this condition, the Laplace 
transform of the average stress in the inclusion is 

~rhet(s ) = sL'(s):(~o(S ) + P(s):L(s):~(~) ,  (31) 

where O'he t indicates the stress in the heterogeneous mate- 
rial. In the equivalent homogeneous solid, the Laplace trans- 
form of the average stress ~%om is 

O'hom(S) = SL(S):(~o(S ) + ( P ( s ) : L ( s )  - 1(4) ) :E*(s ) ) .  

(32) 

Then, by imposing the equivalence between the stress in 
the homogeneous material ¢rho m and the heterogeneous one 
¢rhe t (equivalent eigenstrain method), the following average 
consistency condition in he Laplace domain is obtained (see 
Nemat-Nasser and Hori, 1990, for the elastic case): 

L'(s):(~0(s) + P(s):L(s):~*(s)) 

= L(s):(~0(s ) + (P(s):L(s) - I(4)):ff*(s)), (33) 

where L' is the elastic tensor of the inclusion and •(4) is the 
identity fourth-order tensor. Observe that the tensor P(s) 
takes into account the geometry of the inclusion and can be 
evaluated once and for all. Then from Eq. (33), the equiva- 
lent average volume eigenstrain ~* (s) can be solved in terms 
of the tensors L'(s), L(s), P(s), and E-~ for every s as 

= - l 0(s  

(34) 

Furthermore, using the linear constitutive equation in the 
Laplace domain, the Laplace transform of the uniform over- 
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all stress 5"o(S) in the unit cell is 

~£*(~):~o(,) = ~L(,):(~o(,)  - ~ , ( s ) ) ,  (3~) 

where L*(s) is the overall relaxation tensor of the composite 
material. By using Eq. (34) and noting that %(s) is arbitrary, 
the following expression of L*(s) is obtained: 

sL( s )  = sL ( s )  - s v f ( ( L ( s )  - L ' ( s ) ) - '  - n ( s ) )  -~. (36) 

In particular, if the matrix is isotropic, denoting by ~ = ~/ 
I~1, the tensor P(s)  is (Mura, 1987; Nemat-Nasser and 
Hori, 1990) 

1 ±~¢' ( 
P ( s )  ~o(S ) ~ t ( ~ )  sym(~®I  (2)®~) 

1 )) 
2 ( 1 -  Vo)( ~ ® ~ ® ~ ® ~ , (37) 

where /Zo(S) and u o are the Laplace transform of the shear 
modulus and the Poisson ratio of the matrix, respectively. 
Hence, when the matrix and the inclusion are both isotropic, 
Eq. (36) can be written: 

sL* ( s ) = S )to( S ) I (2) ® I (2) "+" 2S /2o( S ) l (4) 

-vf[(SAo(S ) - At)I(2) ® I (:) + 2(S/2o(S ) - ,uq)I(4)) - '  

+~' ( [  _ 
1 ~ t(')(isym(~: ® 1(2) ® ~) 

+ S/2o(~) 

1 ))]-1 
2(1 - U o ) (  ~ ® ~ ® ~ ® ~ , (38) 

where/2o(S), .So(S), ~1, and A1 are the Laplace transform of 
the Lame' constants of the matrix and the Lame' constants of 
the inclusion, respectively. Then, defining the following series 
S t (wi th l=  l t o 9 )  as 

:toot ±~P _+ad 

s~ = E t ( e l ~ ? , s ~  = E t ( e l ~ L S 3  = E t ( e ) ? ~  

±oo t ±oJ ±¢d 

$4 = E t ( e ) ~ , S 5  = E t ( e )~24 ,  S6 = E t ( e ) ~  

±¢¢~ ±cd 
$7= E t ( ~  -2-2 ) ~ , s ~  = E t ( e ) ~ ? ~ ,  

±¢o t 

s~ = E t ( ~ ) ~ ? ~ ,  (39) 

the final expressions of the nonzero components of the 
tensor L*(s) can be written in the following way: 

[ $3S2 $5S 3 q- $6S 2 
sL],(s)  = Ao + 2/2Lo - °f 1 ~o /2~g 

a ( S  2 -I- S3) S6S 5 - S72 a ( S  5 + S6) -k- 2bS 7 + + 
2/2oC ~2og2 2/2ogc 

a 2 _ b2] 
+ - - ~ - - ) / D  

(( s9 
sL1:(s) = ~o + of -/2:o---g 

S9S 6 - S8S 7 + /2~g2 

+ S 3 

b ( S  6 -  $7) - bS 8 -  aS 9 

2C/2og 

ba + b2) 
4c 2 /D 

(( s8 
sL13(~) = iio - ~ -/2~--~ + 2 ~ o  s: 

asS  5 -- S9S 7 

/2Zog2 2C/2og 

b(S  5 - $7) - aS s - bS 9 + 

S3S1 
~Li2(~) = ~o + 2f~Zo - v I /2:0 

a ( S  1 .-}- $3) $6S 4 - S~ + 
2/2o c /22g2 

( 5251 
sL'~3(s) = Ao + 2/20 - vf(  ~o 

a ( S  1 + S2) S5S 4 - S~ 

2/2oC /2Zog2 

(( s7 
sf4~(,)  = ~o + ~ -/2~o---~ 

S7S 4 - S9S 8 + 
/2~g2 

$2 $3 
SL~4(s)  = / 2 0  - -  Uf /2---0 /2"--"0 

S1 S 3 
s L ~ 5 ( s ) = / 2 0 - o r  /20 /20 

S1 $2 
SL~6(s) =/20 - vf /20 /20 

where 

+ 

ab + b 2 
-t 4c 2 ) 

$4S 3 + $6S 1 

/2:og 

a ( S  4 + $6) + 2bS 8 

/D  

2 /2ogc 

a 2 _ b 2 

+ - - ~ c 2 - - J / D  

S4S 2 if- 55S 1 

~2Jog 

a ( S  5 + $4) .q- 2 b S  9 + 
2 /2ogc 

a 2 _ b 2 

+ ~7--c ~ 

-1- S 1 

b ( S  4 -  S 8 - $9) - aS 7 

2cf%g 

ab + b  2 ) 
4c 2 /D  

+ (/20 - ~ , ) - '  

4S 7 ] - 1 

-t ,~o( 2 - 2Vo) ) 
"4" (/20 -- /&l) -1 

- 1  4S8 ) 
-t ,fi'o( 2 ---2Vo) 

+ (/2° - ~1 ) - '  

4S 9 )-1,  (40) 
+ / 2 0 ( i ~ 2 ~ 0 )  
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D 

q 

and 

+ 

53S25 l (5652 + 5652 + 56S2)51 
+ 

/2 o ~2Dog 

a ( S 1 S  2 'q- ( S  1 .-.}- 5 2 ) 5 3 )  

2/2~c /23g2 

(555  4 - 572)51 + (5654 -}- 582)52 + (5554 + 592)53 
+ 

(aS  5 + aS  6 + 2bS72)S 1 + (054 + aS 6 + 2bS82)S 2 + ( a S  4 + aS 5 + 2bS92)S 3 

2 /2~gc 

( 3  2 -- a 2) 

4/20C2 (S1 + 52 + 53) + /2gg3 
($556 - 572)S 4 - 58255 - 59256 - 25859S 7 

(aS  5 + aS  6 + 2b57)54  - ( a S  7 -I- 2bS  8 + 2b59)57  -I- (2bS 5 - aS 8 + 2659)58 

2 /2~g2c 

-aS92 + (2bS 9 + aSs)S  6 

2/22g2c 4/2ogc 2 

a ( a S  4 + aS 5 + aS 6 + 2(bS  7 + bS 8 + bS9) ) 
+ 

d ( 2 ( S  7 + 58 + 59) - (84 + 85 + S6) ) 

4 8c 3 

a 3 -- 3ab 2 - 2b 3 
+ 

a = ~1 - / 2 0  - 2t*lvO + 2~'OVl 

b = -/2oVo +/./.q v 1 + 2/20YOU 1 -- 2t*lvOV 1 

C = ( /20 -- /£1)( --/20 + #1 -- /20l'0 -- 2/'~lvO 

+2/2oV 1 + /.~1vl + 2/2oVoV 1 - 2/.*lVOVl) 

d = b /(/2ogC 

g = (2 - 2v0) 

(41) 

(42) 

where Ao = s/20(s), A0 = sA(s) and the series S t are given by 
Nemat-Nasser  et al. (1982) and Iwakuma and Nemat-Nasser  
(1983) for several geometr ies  of the inclusions. 

r 253 457 ] 
SL~4(S) = /20 -- Vf[ '~O- + ( /20 -- /£I) -1 + . / 2 0 ( i ~ 2 V 0  ) 

[ & ]-1 
sL'~6(s) = / 2 0 - u f  - =  + ( / 2 o - ~ 1 )  -1 , (44)  

Ixo 

where 

aS32 aS6S 3 a($82 - $72) S3(b 2 - a 2) 
D + + 

2/2~c /2~gc 2/2~g2c 2~0 c2 

S6(a a - b 2) + ST(ab + b 2) ( a  3 - 2b 3 - 3ab z)  
+ + 

2/2ogc 2 8c 3 

Undirectional Composite 
For  composi te  mater ia l  reinforced by long circular cylin- 

drical fibers, five series are different f rom zero and only 
three are independent  (Nemet-Nasser  et al., 1982). If the 
fibers are aligned with the xp  then 

S 1 = S 4 = S 8 = S 9 = 0 

S 2 = $3, S 5 = S 6. (43) 

Therefore,  Eqs. (40) to (42) became 

5653 aS 3 
SI-,~i(S) = Ao+2/2Lo -v f [ -~g o o  #2g /2oC 

S 2 -- S 2 aS 6 + bS  7 a 2 - b 2 
+ - - +  + - -  

/22g2 /20g c 4C 2 
D 

S3 56 - 57 
sL]z(S)  = Ao + vfb 2C~o 2C/2og 

a+b] 
aS 7 ba + b 2 ] 

sL~3(S) = X0 + v/ [ 2/2og c + - - ~ 7 - - t ] / D  

aS 3 aS 6 a 2 _ b 2 

sL~2(s) = Ao + 2/2o - v/ - 2/2o----- 7 + 2/2o------ ~ + 4c--- T -  

(45) 

and 

a =/ .z  I - ~o - 2/XlVo + 2~oV1 

b = - ~ o V o  + / x l v  1 + 2~oVoV I - 21XlVoV 1 

C -~ ( /20 - -  J £ 1 ) ( - - / 2 0  + /U.q - -  /20/./0 - -  2t,1.,1/.) 0 + 2 / 2 o V  , 

+ / z l v  1 + 2/20YOU 1 -- 2/Xlvovl)  

g = (2 - 2Vo). (46)  

The series $3, 56, 57 are given by Nemat-Nasser  et al. 
(1982) for several values of the volume fraction of  the inclu- 
sions. However,  the data can be fitted with the following 
parabol ic  expressions using a least-square method (Luciano 
and Barbero  1994): 

S 3 = 0.49247 - 0.47603vf - 0.02748v~ 

S 6 = 0.36844 - 0.14944v: - 0.27152v 7 

S 7 = 0.12346 - 0 .32035v/+  0.2351707. (47) 

-1 

Relaxation Tensor in the Time Domain 
The viscoelastic behavior  of the matrix mater ial  is ob- 

tained from creep or relaxation tests. A creep test provides 
/ D  the strain as a function of t ime e( t )  for a fixed stress level. 

The matrix is said to be linearly viscoelastic if the creep 
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Fig. 2 Representation of creep data 

compliance M ( t )  is independent of the stress level. In this 
case, it is possible to write: 

e ( t )  = M ( t ) a .  

A relaxation tests provides the stress as a function of time 
or(t) for constant applied strain, as 

o ' ( t )  = L ( t ) e .  

High-temperature secondary (steady-state) creep data of 
metals (used in metal matrix composites) are commonly ap- 
proximated by the Maxwell model (Flugge, 1967). The creep 
compliance of the Maxwell model, which is a series spring 
dash-pot system, is 

1 t 
M ( t )  = ~ + tz M, 

where ~M is the slope of the secondary creep data (Fig. 2) 
and E "  represents both the elastic modulus E e and the 
effect of all primary creep deformations lumped at time 
t = 0. The four-parameter model is used when a better 
representation of the primary creep data is desired. The 
four-parameter model has been used also by several authors 
(Skundra and Auzukalns 1973, Yancey 1990) to represent the 
viscoelastic behavior of polymer matrices. The model is ob- 
tained by adding a Kelvin model (also called Voigt model, 
which is a parallel spring dash-pot system (Flungge, 1967)) in 
series to the Maxwell model. The resulting creep compliance 
is 

1 t 1 ( ( t E V ) )  
M ( t ) =  ~-7 + - ~  + ~- :  1 - e x p  - 7  , (48) 

where E e 4= E M (see Fig. 2). The effective relaxation modu- 
lus E is obtained from the creep compliance using the 
following relationship: 

s L ( ~ ) ~ a ~ ( ~ )  = L ~  = 1. 

Then, from Eq. (48), the effective relaxation modulus is 
obtained as 

Ee'riM( E v + '~Vs)s 
Eo = EeE v + (EVriM + Ee(,rlV + r lM) ) s  + rlVriMs2" (49) 

The Lame' properties are obtained from Eq. (49) as 

E o  PO 
io  = (50)  

(1 + Vo)(1 - 2Vo) 

do 
~o 2(1+,,0)" (51) 

Introducing these properties into Eq. (45), the coefficients 
of the relaxation tensor are obtained as rational functions of 
the Laplace variable s. The order of the polynomial in the 

denominator is larger than the numerator's for all the coeffi- 
cients in the relaxation tensor. 

After substitution of the four parameters in Eq. (49) by 
numerical values, the expressions of the coefficients can be 
easily back-transformed analytically into the time domain by 
standard techniques (Ogatha, 1987). Therefore, each of the 
coefficients of the relaxation tensor in the time domain is 
given by a finite sum of exponential terms with real coeffi- 
cients and real-time constants. 

Transversely Isotropic Material 
Because of the particular geometry of the microstructure 

(a square array of cylinders, see Fig. 1) used to obtain Eq. 
(47), the relaxation tensor L*(t )  for unidirectional composite 
represents an orthotropic material with square symmetry. In 
the case considered in the previous section, the directions x 2 
and x 3 are equivalent and the relaxation tensor is unchanged 
by a rotation about x I of nrr/2 (n = 0, ± 1, ± 2 . . . ) .  This 
implies that only six components are required to describe 
completely the tensor. 

In order to obtain a transversely isotropic relaxation tensor 
C*(t) ,  equivalent in average sense to the relaxation tensor 
with square symmetry, the averaging procedure proposed by 
Aboudi (1991) is used. Then, the following expressions are 
obtained explicitly in terms of the coefficients of the tensor 
L*(t )  described in the previous section: 

C~l(t) = L~l(t) 
C~2(t ) = L~2(t ) 

3 1 1 
C~2(t ) = ~g~2(t  ) + ~g~3(t  ) + ~g~6(t  ) 

1 3 1 
C~3(t ) = ~L~2(t  ) + ~L~3(t ) - ~L~6(t ) 

C~4(t ) = L~4(t ) 

1 
C~6(t ) = ~(L~2( t  ) - L~3(t)).  (52) 

Comparisons With Experimental Results 
Comparisons with experimental results are presented in 

this section. Skudra and Auzukalns (1973) measured the 
creep response e(t) = en(t) of a glass fiber-reinforced com- 
posite with a fiber concentration vf = 0.54 at three levels of 
tensile stress (~r = ~r n = 529 MPa, 441 Mpa and 337 Mpa). 
They represented the viscoelastic behavior of the ED-6 resin 
with the four-parameter model, using, the following set of 
material constants: E e = 3.27 GPa, ~M = 8000 GPa*hr, E V 
= 1.8 GPa, ~ v =  300 GPa*hr and v 0 = 0.38. On the other 
hand, the elastic properties of the glass fibers are Ul = 0.21 
and E = 68.67 GPa. 

The analytical expressions in the time domain of the 
coefficients of C*( t )  are obtained back transforming analyti- 
cally Eqs. (44) after substituting Eq. (50) and (51), 

C ~ l ( t  ) = 37.081 - 0 . 0 0 0 0 0 0 0 0 0 3 7 8 e  -0'0186t 

+0.00000000324e -°'°1765t + 1.790e -°.°1548t 

- 0.0000000001973e - 0.00014875684943196 t 

+0.00000000164e -°.°°°144t + 1.1068e -°.°°°1347°t 

- 0.6017e-°'°°86tsinh(0.00851t) 

+ 1.929 e -  °'°°8654tcosh(0.008511 t)  
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C~2(GPa) C~2(t ) = 1.232e -°'°15t + 0.803e -°'°°°132°t - 9.937 

x 1 0 - l i e  -0"018630t - 4.59 × 10-11e -0"°°1487t 

- 0.356e-° '00831tsinh(0.00817t) 

+ 1.2594e-° '°°831tcosh(O.OO8172t)  

+ 3.737e -0'0001347t - 6.211 X 10 -  lle°'°°°1487t 

+ 0.000000001749e -o.o0o144t 

+ 0.000000003044e - 0.01765t 

+ 6.045e -°.°1548t _ 0.317e-0.0o865Isinh(0.008511t) 

+ 1.0177e - 0.00865t cosh(0.008511 t ) 

C~'2(t ) = 0.0000000002623e -0'01863I + 0.00000000318 

e -0.01765t + 3.289e -°.°154st 

+ 0.0000000001133096783e -0.0001485t 

+ 0.0000000001633e-°'°°°t4495t 

+2 .033826619e  -°.°°°1347l -- 0.1745e-O.OO865Isinh(O.OO851t) 

+ 0.5595e-° '°°8654tcosh(0.008511t) 

C~3(t ) = - 1 . 2 3 2 e  -°'°15t - 0.803e -° '°°°132/+ 9.93 

X 1 0 - 1 1 e - ° ' ° 1 8 6 3 t  ÷ 4.599 X 1 0 - 1 l e  0"0001487t 

+ 0 . 3 5 6 e -  °.°°83ttsinh(0.00817t) 

- 1.259e-O.OO83ttcosh(O.OO817t) 

+ 3.737e-°'°°°134t _ 6.211 × 10-  tIe-°'°°°1487t 

+0 .00000000174e  -°'°°°144t + 0.000000003044e -°.°176t 

+ 6.0450e-°'°1548t - -  0 .1418e -  l°'°°865tsinh(0.00851t) 

+ 0 .454e-° '°°86tcosh(0.00851t)  

C~4(t ) = 1.232e -°'°15t + 0.803e -0'000132 - 9.937 

X 1 0 - t i e  -°'°186l - 4.599 X 1 0 - t i e  -°'°°°1481 

- 0 . 3 5 6 e -  °'°°831tsinh(0.00817t) 

+ 1.259e-°.°°83~tcosh(O.OO817t)  

- 0.0877e-° '°°865tsinh(0.00851t)  

+ 0.2815e - °'°°865tcosh(0.00851 t )  

0 00865t C~6(t ) = - 0 . 1 1 1 2 e -  ' s inh(0 .00851t )  

+ 0.3566 e - °'°°865tcosh(0.00851 t ) 

- 0.7964e-° '°°795tsinh(0.00781 t )  

+ 3 .189e -  °'°°795tcosh(0.00781t). 

A typical plot  of  a coefficient of  the  equivalent  t rans-  
versely isotropic re laxat ion tensor  C * ( t )  is shown in Fig. 3 for 
several  values of the  f iber  volume fraction. Compar i sons  of  
the  predic ted  s t ra in  with the  exper imenta l  data  f rom Skudra  
and  Auzuka lns  (1973) are shown in Fig. 4. 

C o n c l u s i o n s  

Analyt ical  expressions for the  Laplace t r ans form of the  
relaxat ion tensor  of composi te  mater ia l  with general  type of  
elastic inclusions or  voids with periodic micros t ruc ture  and  
l inear  viscoelastic matr ix  are presented.  The  Laplace t rans-  
forms of  the  re laxat ion modul i  are inver ted analytically to the  
t ime domain  for the  case of long f iber- re inforced composi tes  
and  when  a fou r -pa rame te r  model  is used to represen t  the  
viscoelastic behav ior  of  the  matrix. It is wor th  to not ing tha t  
good ag reemen t  with  available exper imenta l  da ta  is obta ined.  

Fig. 4 
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Comparison with experimental results of axial creep re- 

The  in terac t ion  effects be tween  the  cons t i tuents  and  the  
geometry  of  the  inclusions are fully accounted.  
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The Role of Temperature in the 
Entanglement Kinetics of a 
Polymer Melt 
Large-amplitude oscillatory shear (LAOS) experiments were conducted at different 
temperatures on a molten low-density polyethylene standard, designated IUPAC 
LDPE X. Jeyaseelan et al. (1993) have successfully employed a simplification of 
transient network theory to describe the LAOS behavior of this polymer melt, at 
150°C. The transient network is described by two kinetic rate constants, one for the 
formation of entanglements due to Brownian motion (kl ), and another for the destruc- 
tion of  entanglements (k2 ) due to the imposed deformation. Upon comparison of the 
predictions of this transient network theory with the measured LAOS behavior of this 
polymer, we find that the kinetic rate constants k~ and k2 are invariant in the range 
of temperatures examined (150 to 190°C). The temperature dependence of departures 
from linear viscoelasticity is fully accounted for in the equilibrium entanglement 
kinetics. 

Introduction 
Most polymer processing operations subject polymer melts to 

large and rapid deformations, which elicit nonlinear viscoelastic 
behavior in the material. To evaluate the stress distribution aris- 
ing in polymer processing operations, we must therefore employ 
a valid nonlinear viscoelastic constitutive equation. Further- 
more, most polymer processing operations impose large spatial 
and temporal thermal gradients in the molten polymer, requiring 
nonisothermal analyses. It has been shown that large errors can 
arise due to restriction to isothermal analysis in the numerical 
simulation of polymer processing operations (Nikoleris and 
Darby, 1989; Luo and Tanner, 1985; Gupta and Metzner, 1982). 
This is due to the strong dependence of constitutive model 
parameters on temperature. 

It is well known that the linear viscoelastic properties, G '  (w) 
and G"(~v), of most polymer melts in small amplitude oscilla- 
tory shear at different temperatures, can be shifted to obtain 
temperature invariant master curves (Dealy and Wissbrun, 
1990). Matsumoto et al. (1973) have studied the LAOS behav- 
ior of dispersions of spherical particles in a concentrated poly- 
mer solution. For these materials they measured the frequency 
dependence of the Fourier coefficients of the shear stress re- 
sponse given by 

cr(t) = GET 0 sin (~vt) + G'l'70 cos (~vt) 

- G~T~ sin (3cvt) - G~T30 cos (3Lvt) + . . .  (1) 

where To is the strain amplitude and w is the frequency. For 
fixed strain amplitudes they found that curves of G~(~v), 
G'l'(~v), G~ (~v), and G~(w), can also be shifted to yield temper- 
ature invariant curves, in the same manner as the linear visco- 
elastic properties, G ' (w) and G" (w). While the data reduction 
technique (Matsumoto et al., 1973) enables one to obtain tem- 
perature invariant forms for the Fourier coefficients in (1),  
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determining the effect of To on these properties requires the use 
of a specific constitutive equation. 

In step shear, departures from lineadty are normally reported 
in terms of the nonlinear relaxation modulus: 

G(t, "y) = h ( T ) G ( t )  (2) 

where yy is the step strain amplitude and h( 'y) is called the 
damping function. For melts, the measured damping functions 
are normally independent of temperature (Dealy and Wissbrun, 
1991). 

Interestingly, reptation theory with independent alignment 
also predicts that the damping function will be independent of 
temperature. However, the specific function predicted by this 
theory 

1 
h(3,) - (3) 

1 + 0.22yy 2 

is rarely approached by polymer melts. 
In this work, we chose LAOS for studying nonlinear visco- 

elasticity since the strain amplitude and the frequency can be 
independently controlled. We can therefore separately investi- 
gate the effect of temperature on strain and frequency dependent 
nonlinearity. 

In this paper we explore the temperature dependence of a 
nonlinear viscoelastic theory (Jeyaseelan et al., 1993), which 
has been particularly successful in describing polymer melt rhe- 
ology in the most frequently occurring stress state in polymer 
processing operations, that of shear. This theory employs a 
structure-dependent relaxation spectrum proposed by Acierno 
et al. (1976), with a kinetic rate expression developed by Liu 
et al. (1984). The ability of this theory to model the creation and 
destruction of molecular entanglements is explored for different 
conditions of To, w and temperature, in LAOS. The use of a 
sliding plate rheometer incorporating a shear stress transducer 
allows us to experimentally observe the temperature dependence 
of the nonlinear viscoelastic behavior of a molten polymer, up 
to a large strain amplitude, 3'0 = 10. 

A Valid Nonlinear Viscoelastic Constitutive Theory 
Various nonlinear viscoelastic constitutive equations have 

been proposed for polymer melts, and their validity in describ- 
ing commercial polymer melts can be readily discerned by theo- 
logical experiments which invoke nonlinear viscoelastic behav- 
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ior in the material. It has been shown that a constitutive theory 
based on the concept of a transient entanglement network 
(Acierno et al., 1976) can accurately describe the steady shear 
and the LAOS behavior of molten LDPE and linear low-density 
polyethylene (LLDPE) (Jeyaseelan et al., 1993). The same 
constitutive theory is capable of describing the LAOS behavior 
of seven polymer melts, including high-density polyethylene 
(HDPE) (Giacomin and Jeyaseelan, 1993a). Comparing the 
predictions of this theory in shear stress growth and biaxial 
shear with the published experimental data (Meisser, 1984; Hiir- 
limann, 1991 ), it has been concluded that this theory accurately 
describes the behavior of molten LDPE and polyisobutylene in 
these flows also (Giacomin and Jeyaseelan, 1993b). We there- 
fore conclude that this theory provides a valid description of 
the nonlinear viscoelastic behavior of polymer melts in shear. 

This constitutive theory can be expressed as (Acierno et al., 
1976) 

r = ~ 'r i (4) 
i 

- -  + /ti = 2X~D , (5)  
Gi 

The transience in the structure is imparted by the flow-field- 
dependent scalar structural parameters, xi, which are defined as 
the ratios of the present number of entanglements per molecule 
to the number of entanglements per molecule at equilibrium in 
the ith relaxation mode. 

The transient relaxation times and moduli depart from their 
equilibrium values by (Acierno et al., 1976) 

~ki : hOiX] '4 (6) 

Gi : Goix i  ( 7 )  

where h0i and Go~ are the relaxation time and modulus of the 
ith spectral element at equilibrium. The contravariant derivative 
in (3) is evaluated as 

6t 

1 d,r i 1 dGi i _ l ( v v . ~ . i + , r t . v v r )  (8)  
G~ dt G~ dt Gi 

A special case of the model originally proposed by Liu et al. 
(1981), the simplified Liu kinetic rate equation (Jeyaseelan et 
al., 1993), describes the kinetics of the entanglement network 
(simplified Liu model): 

dxi 1 - xi 
- kl - -  k2xi[I-I(D)] 1:2 (9) 

dt hl 

The parameter kl is the kinetic rate constant for the creation of 
entanglements in the material due to Brownian motion. The 
parameter k2 is the kinetic rate constant for the destruction of 
entanglements due to the imposed flow field. Larger values of 
kl represent a greater tendency for the material to return to 
equilibrium following a given nonlinear deformation. Larger 
values of k2 reflect a greater ability of an imposed deformation 
to destroy entanglements and cause increased nonlinearity in 
the arising stresses. 

The constitutive theory described herein possesses a set of N 
pairs of linear viscoelastic parameters (G0i, ~0~ ) and two nonlin- 
ear viscoelastic parameters, kl and k2. In the event that the 
imposed deformation is mild, the network of entanglements in 
the material is unaffected, and xz = 1. This limit corresponds 
to the predictions of linear viscoelasticity, described by the 
generalized Maxwell model. The temperature dependence of 
the linear viscoelastic parameters (G0~, h0~) can be treated in 
the context of linear viscoelasticity for thermo-rheologically 
simple materials (Tanner, 1985). 

L a r g e - A m p l i t u d e  Osc i l la tory  Shear  

When there is no slip at the walls, the imposed shear strain 
in LAOS is 

y( t )  = Y0 sin (wt) ,  (10) 

and the shear rate is 

"~(t) = y0~v cos (wt) .  (11) 

The steady-state nonlinear shear stress response for an isotropic 
fluid with a fading memory is given by a Fourier series con- 
taining only odd harmonics: 

¢o 

a( t )  = ~ O3 sin (j~vt + 6j). (12)  
j = l  
odd 

To evaluate the aforementioned constitutive theory in LAOS, 
Eqs. (4) through (9) and (11 ) are solved simultaneously, using 
a fifth- and sixth-order Runge-Kutta-Verner method (Verner, 
1977). It has been suggested that shear stress versus shear rate 
loops represent the most useful manner of studying the LAOS 
behavior of polymer melts (Tee and Dealy, 1975). We therefore 
make the comparison of model predictions with the data in like 
manner. 

The Fourier coefficients in ( 1 ) are easily obtained from those 
in (12) using 

6;  = o3, cos (,~j) (13) 

and 

,, o3 Gj = D sin 05:). (14) 

E x p e r i m e n t a l  T e c h n i q u e  

IUPAC LDPE X is a standard low-density polyethylene 
which has been extensively used in theological experiments 
(Tanner, 1985). A MTS Direct Shear Rheometer incorporating 
a shear stress transducer was used in this study. This is a com- 
mercial version of a sliding plate rhcometer incorporating a 
shear stress transducer (Giacomin et al., 1989). Use of the shear 
stress transducer eliminates errors caused by thermal degrada- 
tion and flow-field distortion at the free boundary of the sample. 

The gap thickness that was used in the sliding plate rheometer 
was 1.0 mm. The samples were compression molded to 50 mm 
× 125 mm × 1.25 mm. LAOS experiments were conducted on 
this material at five different temperatures, ranging from 150 
to 190°C. The experiments were conducted at two frequencies, 
7r and 27r rad/s. Measurements were made at strain amplitudes 
ranging from three to ten. 

The initial transients in the shear stress typically fade in less 
than four cycles. 128 data points were collected per cycle for 
four cycles, commencing with the seventh cycle. A discrete 
Fourier transform (DFT) was used to obtain the amplitude of 
each harmonic of the shear stress response, defined in (9).  The 
phase differences 6i were determined by comparing the DFT 
of the measured shear stress with the DFT of the measured 
plate displacement. 

G ' ( w )  and G"(~v) data were obtained for this material at 
150, 170, and 190°C from small-amplitude oscillatory shear 
experiments using a cone and plate rheometer. From these mea- 
surements, the discrete relaxation spectra shown in Table 1 were 
calculated using the method of linear regression with regulariza- 
tion (Orbey and Dealy, 1991). 

Resul t s  and Discuss ion  

Figures 1 through 4 are plots of O3 and 6j as functions of 
temperature, for different conditions of strain amplitude and 
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Table 1 Discrete relaxation spectrum for IUPAC LDPE X 
calculated using the method of linear regression with regu- 
larization, following Orbey and Dealy (1991) 

aoi (Pa) G0i (Pa) G0i (Pa) 
~Oi (S) 150°C 170°C 190°C 

0.000015 18494 24673 17861 
0.00015 167046 227418 109827 
0.0015 116903 90938 80583 
0.015 47206 37154 30227 
0.15 20158 15112 11445 
1.5 6598 4673 3291 

15.0 1582 924 571 
150.0 207 106 39 

frequency. In all these plots, the severity of the conditions of 
oscillation increase upwards from the lowest curve. The curves 
with the filled symbols represent experiments conducted at a 
frequency of 27r rad/s, and the curves with unfilled symbols 
represent experiments at a frequency of rr rad/s. Curves with 
diamonds, triangles, and circles represent experiments con- 
ducted at strain amplitudes of 3, 7, and 10, respectively. Figure 
1 shows the dependence of the stress amplitude of the first 
harmonic, on temperature, crt decreases monotonically with 
temperature, rapidly at lower temperatures and more gradually 
at higher temperatures. Also clear from this figure is that shapes 
of the family of curves are virtually identical, suggesting that 
the qualitative effect of temperature on crl is the same for the 
conditions of oscillation studied here. The family of curves 
shown in Fig. 2 are the loss angles of the first harmonic 6j 
corresponding to the curves in Fig. 1. We note here that, in 
contrast to Fig. 1, the curves do not have the same shapes. 
Figures 3 and 4 are plots of the stress amplitudes and the phase 
angles of the third harmonic, for the same conditions of oscilla- 
tion as the curves in Figs. 1 and 2. In Fig. 3 we observe that 
for the less severe conditions (the two curves at the bottom) or3 
is virtually unaffected by temperature, whereas for the more 
severe conditions, there is a monotonic decrease with tempera- 
ture, for lower temperatures, and a tendency to reach a steady 
value at higher temperatures. The reason for the curious depres- 

IUPAC LDP£ X In LAOS 

IUPAC LDP£ X In LAOS 

"O 
E 
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1.4. - 

1.2 - 

1.0 - 

0,8 - 

0.6 - 

I I I I I 
16o leo 1~o 18o 19o 

Temperature (C) 

Fig. 2 The dependence of 81 on temperature, measured for IUPAC LDPE 
X in LAGS. Curves w i th  f i l led symbols represent measurements  at o~ = 
2~T rad/s and those wi th  unf i l led symbols represent measurements at oJ 
= ~ rad/s .  Measurements for "Yo = 3, 7, and 10 are represented as dia- 
monds,  tr iangles, and circles, respectively. 

sion in the phase angle of the third harmonic, 63 for the less 
severe conditions, around 170°C, is not known. For the more 
severe conditions we see that 63 is nearly unaffected by tempera- 
ture in this range. 

In the order of increasing severity of oscillation conditions, 
Figs. 5 through 7 compare the shear stress versus shear rate 
loop predicted by the transient network theory discussed in this 
paper, with the experimental data for IUPAC LDPE X at 190°C. 
The conditions in Fig. 5 are Y0 = 3 and w = 7r rad/s. The 
kinetic rate constants used are k~ = 3.4 and k2 = 1.3. Figure 5 

IUPAC LDPE X In LAOS 
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7 -  

60 

6 -  
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~ -  

3O 

2 -  

20 I 

0 
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T e m p e r a t u r e  (C)  

Fig. I The dependence of ~rl on temperature, measured for IUPAC LDPE 
X in LAOS. Curves w i th  f i l led symbols represent measurements at o~ = 
2~  rad /a  and those with unf i l led symbols represent measurements at oJ 
= ~r rad/s .  Measurements for 'Yo = 8, 7, and 10 are represented as dia- 
monds,  tr iangles, and circles, respectively. 

C~ 

t I I I I 
150 160 170 180 190 

Temperature (C) 

Fig. 3 The dependence of ~3 on temperature, measured for IUPAC LDPE 
X in LAOS. Curves wi th  f i l led symbols represent measurements at ~ = 
2 ¢  rad /s  and those with unfilled symbols represent measurements at 
= ~ rad/a.  Measurements for 'Yo = 3, 7, and 10 are represented as dia- 
monds,  t r iangles and circles, respectively. 
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Fig. 4 The dependence of 8~ on temperature, measured for IUPAC LDPE 
X in LAOS. Curves with filled symbols represent measurements at ~ = 
2~ rad/s and those with unfilled symbols represent measurements at 
= ~ rad/s. Measurements for 'Yo = 3, 7, and 10 a r e  r e p r e s e n t e d  as dia- 
monds, triangles, and circles, respectively. 

shows that the theory is in excellent agreement with the data, 
regarding the overall stress amplitude, the shape, and the area 
of the loop. Upon increasing the strain amplitude to 7, for the 
same frequency as in Fig. 5, Fig. 6 shows that the theory predicts 
the right shape and area of the loop, and nearly the same overall 
stress amplitude. For the very severe condition (3,0 = 10 and 
~o = 27r rad/s)  shown in Fig. 7, the model predictions are in 
slight disagreement with the data, regarding the shape of the 
loop and the overall stress amplitude. The area of the predicted 
and the experimental loops are in reasonable agreement. 

IUPAC LDPE X at 190 C 
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Fig, 5 Comparison of the experimentally obtained shear stress versus 
s h e a r  r a t e  loop (circles) for IUPAC LDPE X at 190°C in LAOS, with t h e  
predictions of the simplified Liu model (solid loop) with kl = 3.4 and k= 
= 1.3. The strain amplitude is three and the frequency is ¢r rad/s. 
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Fig. 6 Comparison of the experimentally obtained shear stress versus 
shear rate loop (circles) for IUPAC LDPE X at 190°C in LAOS, with t h e  
predictions of the simplified Liu model (solid loop) with kl  = 3.4 and k2 
= 1.3. The strain amplitude is seven and the frequency is ~T rad/s. 

Figures 8 and 9 compare the predictions of the theory with 
the data, at temperatures of 170°C and 150°C at the same condi- 
tions of strain amplitude and frequency as in Fig. 5. The parame- 
ters k~ and kz are the same as in Fig. 5. The excellent agreement 
shown in Figs. 8 and 9 reveals that the parameters kl and k2 
are unaltered by temperature. Figures 10 and 11 compare the 
predictions of the theory with experiments, at temperatures of 
170°C and 150°C at the same conditions of strain amplitude 
and frequency as in Fig. 6. The parameters kl and k2 are the 
same as in the previous figures. We note that the comparisons 
made in Figs. 10 and 11 are virtually identical to that in Fig. 
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Fig. 7 Comparison of the experimentally obtained shear stress versus 
s h e a r  rate loop (circles) for IUPAC LDPE X at 190°C in LAOS, with t h e  
predictions of the simplified Liu model (solid loop) with kl = 3.4 and k2 
= 1.3. The strain amplitude is ten and the frequency is 2~ rad/s. 
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Fig. 8 Comparison of the experimentally obtained shear stress versus 
shear rate loop (circles) for IUPAC LDPE X at 170°C in LAOS, with the 
predictions of the simplified Liu model (solid loop) with kl = 3.4 and k2 
= 1.3. The strain amplitude is three and the frequency is ~ rad/s. 

6, again suggesting that the parameters k~ and k2 are independent 
of temperature. 

Mewis and Denn (1983) have criticized (9) by arguing that 
the dependence of the structural parameters (x~) on the rate 
of deformation tensor precludes a proper reduction to linear 
viscoelastic behavior in the high-frequency limit. They have 
also suggested the replacement of r I (D)  in the kinetic rate 
equation by [(tr(~'~))/(2G~)] as a remedy Mewis-Denn 
model) 

dxi k l - x ,  k2x,[tr(~")] u2 (15) 
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Fig. 9 Comparison of the experimentally obtained shear stress versus 
shear rate loop (circles) for IUPAC LDPE X at 150°C in LAOS, with the 
predictions of the simplified Liu model (solid loop) with kl = 3.4 and k= 
= 1.3. The strain amplitude is three and the frequency is ~ rad/s. 
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Fig. 10 Comparison of the experimentally obtained shear stress versus 
shear rate loop (circles) for IUPAC LDPE X at 170°C in LAOS, with the 
predictions of the simplified Liu model (solid loop) with kl  = 3.4 and k2 
= 1.3. The strain amplitude is seven and the frequency is ~r rad/s. 

In oscillatory shear over many decades of strain amplitudes 
and frequencies we therefore compare the predictions of (9) 
with those of (15) with identical model parameters. The predic- 
tions were obtained over six decades of strain amplitude and 
for the frequencies between 5 and 100000 Hz, and are plotted 
in Figs. 12-15. 

Figures 12 and 13 are curves of ~rl predicted by (15) and 
(9),  respectively, with frequency increasing from the lowest 
curve to the topmost. In Fig. 12, the solutions for the four 
highest frequencies differ by less than a pen-width. No nonline- 
arity is seen in this figure. Figure 13 shows that above a strain 
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Fig. 11 Comparison of the experimentally obtained shear stress versus 
shear rate loop (circles) for IUPAC LDPE X at 150°C in LAOS, with the 
predictions of the simplified Liu model (solid loop) with kl = 3.4 and k= 
= 1.3. The strain amplitude is seven and the frequency is ~r rad/s. 

798 / Vol. 62, SEPTEMBER 1995 Transactions of the ASME 

Downloaded 04 May 2010 to 171.66.16.28. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



IUPAC LDPE X at  150 C, In LAO5 IUPAC LDPE X at 150 C, In LAO$ 
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Fig. 12 Prediction of ¢~ by the M e w i s - D e n n  m o d e l  f o r  IUPAC LDPE X 
at 150°C in oscillatory shear. From bottom to top, the c u r v e s  a r e  f o r  
frequencies 5, 10, 50, 100, 500, 1000, 5000, 10000, 50000, and 100000 Hz. 
The curves for the four highest frequencies differ by less than a p e n -  
w i d t h ,  

amplitude of about 0.01, cr] becomes dependent on 3/0 indicating 
nonlinearity. 

Figures 14 and 15 are predictions of 6~ by (15) and (9), 
respectively, with frequency increasing from the uppermost 
curve to the lowest. Nonlinear behavior is indicated by a depen- 
dence of 6~ on 3'0. Figure 14 shows that the predictions for the 

k l  = 3.4 k2 = 1.5 
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7o 

Fig. 14 Prediction of ~1 by the Mewis-Denn model for IUPAC LDPE X 
at 150°C in oscillatory shear. The f r e q u e n c i e s  a r e  the same as in Fig, 12. 

six higher frequencies are linear, even up to a strain amplitude 
of ten. Figure 15 shows that (9) predicts increasing nonlinearity 
with increasing frequency, which is physically more realistic, 
despite the nonmonotonicity in the curves for the higher fre- 
quencies. It therefore appears that the Liu kinetic model pro- 
vides an adequate description of polymer melts in both LAOS, 
and also reasonably describes the reduction to linear viscoelastic 
behavior. 

IUPAC LDPE X at 150 C, in LAOS 

k l  = 3.4 k2 = 1.3 
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"7o 

Fig. 13 Prediction of or1 by the simplified Liu model for IUPAC LDPE X 
at 150°C in oscillatory shear. The frequencies a r e  t h e  same as in Fig. 12. 
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Fig. 15 Prediction of ~1 by the simplified Liu model for IUPAC LDPE X 
at 150°C in oscillatory shear. The frequencies are the same as in Fig, 12. 
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Effeot of Temperature on the Nonlinear V1eaoelasfle Behavior 
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Fig. 16 Comparison of the prediction of the simplified Liu model for the 
dependence of ~rl on temperature, for IUPAC LDPE X in LAOS. The mark- 
ers represent the same data in in Fig. 1. 
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Fig. 18 Comparison of the prediction of the simplified Ltu model for the 
dependence of ~r3 on temperature, for IUPAC LDPE X in LAOS. The mark- 
ers represent the same data in in Fig. 3. 

For the data at the lower frequency in Figs. 1-4,  Figs. 16-  
19 compare the predictions of transient network theory with 
the simplified Liu kinetic rate Eq. (9).  We judge these fits 
to be reasonably accurate. The significant discrepancy in the 
prediction for the lowest strain amplitude data in Fig. 19 is due 
to very weak nonlinearity. The utility of the Liu model to de- 
scribe polymer melt LAOS for other materials and a wider range 
of conditions is also demonstrated in Giacomin and Jeyaseelan 
(1993b). 

A popular class of integral constitutive models which recov- 
ers (2) in step shear has been studied extensively. Called separa- 

ble BKZ models (Wagner, 1976), Giacomin and coworkers 
have shown that they are inaccurate in LAOS except at low 
frequencies (Giacomin et al., 1993). This is why the results of 
the present work cannot be interpreted in terms of the nonlinear 
damping function. 

Conc lu s ion  

Transient network theory can adequately describe the large 
amplitude oscillatory shear behavior of molten LDPE, over a 
range of temperatures. The kinetic rate constants in the simpli- 

Effeot ef Temperature on the Nonlinear Vteaoelaetfo Behavior 
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Fig. 17 Comparison of the prediction of the simplified Liu model for the 
dependence of 81 on temperature, for IUPAC LDPE X in LAOS. The mark- 
ers represent the same data in in Fig. 2. 
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Fig. 19 Comparison of the prediction of the simplified Liu model for the 
dependence of Sa on temperature, for IUPAC LDPE X in LAOS, The mark- 
ers represent the same data in in Fig. 4. 
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fled Liu model are invariant with temperature over the tempera- 
ture range 150-190°C. This does not mean that departures from 
linear viscoelasticity do not depend on temperature. It does 
mean that the temperature dependence of these departures is 
properly accounted for by X0i in the thermal motion term of the 
kinetic rate equation. In this way, the temperature dependence 
of departures from linear viscoelasticity is fully accounted for 
in the equilibrium entanglement kinetics. 
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Tension of Conductor Under 
Concentrated Loads 
A common difficulty in the analysis and design of transmission and distribution lines 
is to determine a conductor's tension and its static profile under concentrated loads. 
For relatively small concentrated loads (such as detuning pendulums on transmission 
lines), approximation methods may give good predictions. For large concentrated 
loads (such as fallen trees on distribution lines), however, exact solutions must be 
found. This paper presents methodologies to compute conductor tension and static 
profile in three-dimensional space using both approximate and exact solution proce- 
dures under concentrated loads with different boundary conditions. Practical engi- 
neering examples from galloping control of  transmission lines and mechanical coordi- 
nation of distribution lines are given to demonstrate the applicability of  the theory. 

1 Introduct ion 

A necessary step in designing an electrical transmission line 
or distribution line is to compute the line component loads and 
the static profile. One important component load is the conduc- 
tor tension because most of the other component loads and the 
static profile are related to it. These computations depend heav- 
ily upon environmental conditions which produce external 
forces on the line such as wind load and ice load. External 
loads are usually approximated as a distributed force on a line 
component (such as the conductor) so that closed-form solu- 
tions for tension and static profile can be obtained to greatly 
simplify the computation. However, in certain situations, the 
line has concentrated loads. One example is the detuning pendu- 
lum, an anti-galloping control device (Havard et al., 1985), 
which is attached to a transmission line or distribution line. The 
new conductor tension and the new static profile due to the 
detuning pendulums need to be calculated for new line design 
and line maintenance, because field measurements are impracti- 
cal and may cause service interruptions. Another example of a 
concentrated load is a tree falling onto an overhead distribution 
line during a storm. In situations where the tree load exceeds 
the structural strength of the line, the calculation method devel- 
oped for small concentrated loads (such as detuning pendulums) 
is not applicable. A large tree plus wind load can be up to 30 
times heavier than the weight of a conductor span, whereas the 
total weight of a span's detuning pendulums is only up to 20 
percent of that of a conductor span. Thus, an approach to calcu- 
late the conductor tension and static profile for large concen- 
trated loads is desirable to aide in determining which compo- 
nents of a power line are most likely to fail. Ideally the structures 
should be designed with a component failure hierarchy (or "me- 
chanical coordination") such that the most likely components 
to fail are also the easiest to repair. 

Both an approximation formula and an exact solution proce- 
dure were considered by Irvine ( 1981 ) for a conductor structure 
in a two dimensional (longitudinal and vertical) space. For the 
approximation formula, a closed form of the tension increase 
is found from a third-degree polynomial of one variable (tension 
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increase), which makes it easy to use in practice. However, 
this formula is only valid for a single vertical concentrated load 
with the assumptions that the static profile of the conductor 
without the concentrated load is parabolic and both ends of the 
cable are fixed. For the exact solution procedure, on the other 
hand, Irvine gave the solution formulae for multiple vertical 
concentrated masses with fixed boundary conditions, but they 
require information on the unstrained cable length which is 
usually unavailable in practice. 

In this paper, both approximation and exact solution formulae 
are generalized for a three-dimensional (longitudinal, vertical, 
and transversal) space, which is closer to the reality where the 
transversal (horizontal) displacement (due to wind load, for 
example) cannot be neglected. The approximation formulas are 
generalized to compute the conductor tension and static profile 
for multiple inclined concentrated loads with different boundary 
conditions. For the exact solution, using an approach developed 
recently to calculate the unstrained length of a conductor (Wong 
and Yu, 1993), a comprehensive procedure is developed to 
compute exact solutions for conductor tension and static profile 
in three-dimensional space with various boundary conditions. 
However, when very large concentrated loads are encounted, 
an approximation to the exact solution by neglecting the concen- 
trated loads may be acceptable, and the formulae become sim- 
pler. This approximation solution is also presented in this paper. 
Two practical examples, one from galloping control of transmis- 
sion lines and the other from mechanical coordination of distri- 
bution lines, are presented to illustrate the applicability of the 
theory. 

2 Formulat ion  

A span of a typical conductor line is shown in Fig. 1 where 
x, y, and z indicate the coordinates along longitudinal, vertical, 
and horizontal directions, respectively, s'  is the Lagrangian 
coordinate under both distributed and concentrated loads and 
indicates a reference distance from the left end of the span. The 
concentrated loads are denoted by Fi, i = 1, 2 . . . . .  n, each of 
which deviates from the vertical coordinate by an angle 0i. 

2.1 Approximate Solution for Small Concentrated 
Loads. In order to compute the tension change due to concen- 
trated loads, the first step is to find the solution of the static 
profile of the conductor without concentrated load. 

Static Profile Without Concentrated Loads. The static pro- 
file without concentrated loads may be described by the follow- 
ing differential equations: 
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Fig. 1 Static profile of a conductor span 

ds ~s =0 (I) 

J-  : - Q r  (2) 

d--~ ~ s ]  -Q~ (3) 

where s is the Lagrangian coordinate along the conductor with- 
out concentrated loads (but under the distributed load). T is a 
function of s, representing the tension of the conductor. Qy and 
Qz are the vertical and horizontal loads, respectively, per unit 
length which are assumed spatially uniform along the span. Qy 
includes the conductor weight, wind load and ice load, etc., 
while Qz usually consists of wind load only. The boundary 
conditions are given by 

yl(O) = Ym, yl(L~) = YlL~ 

z,(O) = Zm, z , (LD = zlLx (4) 

where L~ is the span length. These boundary values may be 
found from the static loads by using a stress analysis. The 
solutions of (1) to (3) are given by 

T = H(ds /dx)  (5) 

where H is a constant representing the horizontal component 
of conductor tension, and 

yl (x)  = Ym - B ( Q j Q 2 )  x + 2HQy Q~ + B2/Q 3 

× sinh [ (Q/2H)x]  sinh [ ( Q / 2 H ) ( 2 D  - x)] 

z t (x)  = (Qz/Qy)yl(x)  -~ (Bx + C)/Qy. (6) 

Here, 

B = [Qy(Z1L~ -- Zm) -- Qz(y~q - yto)] 

C = Qyzl0 -- Qzym 

( ~ H )  Qy(YlLx--Yto) + az(ZlLx-- Z|o) 1 
× sinh- '  ~/~2 .~ ~ sinh (QLx/2H) . (7) 

The solution of s is found by integrating ds/dx = [1 + (dyl/ 
d x )  2 + ( d z d d x ) 2 ]  m as  

s (x )  = 2H Q~ + B2/Q 2 sinh [ (Q/2H)x]  

× cosh [ ( Q / 2 H ) ( 2 D  - x)].  (8) 

Therefore, given H, Qy, Qz and the boundary conditions, the 
static profile can be determined from (6) - (8).  The span length, 
L, equals s(Lx). Setting Qz = yl0 = Zlo = ylLx = zu, x = 0 in 
( 6 ) -  (8) leads to the solutions given by Irvine (1981). 

Tension Increase and New Static Profile. Next, suppose that 
the tension increase due to concentrated loads is expressed as 
~-, and that u, Yz, and z2 are additional displacements produced 
by the inclined concentrated loads along longitudinal, vertical, 
and horizontal directions, respectively. The new static profile 
can be described by 

ds ( r  + r )  + 0 (9) 

[ ds ( T + \ as ds ] 

= -Qy + i Fi cos 0 i 6(s - si) (10) 
i=1  

d 

= - Q ~ -  ~ Fi s i n O i t ( s -  s~) (11) 
i=1  

7":AE(dS ' - \ds  1)  (12) 

where 6(s - si) = 1 (or 0) if s = sl (s #: si),  AE (A is the 
cross-sectional area of the conductor and E is the Young's 
modulus) is the axial rigidity of the conductor without concen- 
trated loads, and s '  indicates the new Lagrangian coordinate 
under both distributed and concentrated loads. 

It is not possible to obtain a general analytic solution from 
(9) to (12). However, if the additional conductor displacement 
along the longitudinal direction due to the small concentrated 
loads is assumed to be small compared to the original displace- 
ment due to the distributed loads Qy and Qz (i.e., du/ds ~ 0 
compared with dx/ds), then (9) becomes (T  + ~-)(dx/ds) = 
H + h which, by using (5),  results in 

~- = h(ds /dx)  (13) 

where h is a constant. It should be noted here that the horizontal 
component, H, of the conductor tension under the distributed 
load only is not the same as that given in (5) because the 
boundary conditions are now different from the case without 
concentrated load. However, it can be shown that if the differ- 
ence of the end movements along all the three directions (e.g., 
u(LD - u(0))  are sufficiently small, the change in H is negli- 
gible. 

Now, with the aid of (2),  (3),  (5),  and (13), (10) and ( 11 ) 
can be rewritten with boundary conditions as 

~x (H + h) dx 

(xi < x < xi+l, i = O, 1, 2 . . . .  n) 
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yz;(xi) = y2i_~(xi) and dy21(xi) d y:i-~(x;) 
dx dx 

1 
H + h  

- - -  F; cos 0; ( i = 0 ,  1 ,2  . . . .  n)  (14) 

and 

~X ( H + h ) - ~ - + h - -  = 0  

(X  i < X < Xi+i, i = 0, 1, 2 . . . .  n)  

Z2i (Xi ) = Z2i-1 (Xi ) 
dz2; (x;) dz~;_ l ( xi ) 

and 
dx 

1 
H + h  
- - F i s i n O ;  ( i = 0 ,  1 ,2  . . . .  n) ,  (15) 

Then, combining (13) and (18) and integrating the resulting 
equation from 0 to Lx yields a third-degree polynomial of h 

(h/H) ~ + a(h /H)  ~ + b(h /H)  - c = 0 (19) 

in which 

(ATe) -~- h 2 + [u(0)  - u(L~)] 
a = 2 + 2 4  

+~ 
i=1  

1 2(AE)tu(O)_ u(L;)3 
b = 1 + 1-2 \HL~J 

"~- { ( CilCio -~- d i l d i o ) ( X i + l  -- Xi ) 
i=1 

respectively, where, as in the case without concentrated loads, 
boundary conditions Y20(0), y2,(L~), z20(0), and Z2n(L~) 
are not necessarily zero. The solutions of (14) and (15) are 
given by 

y2i(x) = - [hy l  - (cix + ei )] / (H + h) 

z2;(x) = - [hz ,  - (d~x + f f ) ] / ( H  + h) (16) 

where 

ci = czl h + cio, d; : d i l  h + dio 

Cil = [y2,(L~) - y2o(0) + YIL~ -- Ylo]lLx 

1 
Cio = 7" [y2,(LD - y2o(0)l 

Lx 

+ ~, Xk_  1 FkcosOk+ ~ FkCOSOk 
k = l  k = 0  

d ~  = [ z M L x )  - zM0) + z~L~ - Z~o] /L~ 

+ H c i l [ Y l ( X i + l )  - y l ( x i ) ]  + H d i l [ Z l ( X i + l )  - Z l ( X i ) ] }  

" i "-F H ~ c i o [ y l ( x i + l )  - yl(xg)] + H d;o 
i =0  i =0  

AE 
X [zl(xi+l) - z l (x; )]}  - ( ~ e ) [ U ( O )  - u(L~)] (20) 

where y~ (xi) and zl (xi) are given in (6) ,  and 

Le = \ d x J  

2Hx/Q2+B 2 ( ~  ) [  1 ( ~ ) ]  
- sinh D 1 + - sinh 2 D 

Q 3 

6 [AE~[I-I~ B 2 H 
\HLe]  [ (1 + ~ ) ( ~ ) [ s i n h ( - ~  ( L x - D ) )  

k 2 =  

1 
dio = 7- [z2,(Lx) - Z2o(0)] 

Lx 

) i 
_ x k _  1 F k s i n 0 k - -  ~ Fks in0k  

k = l  k = 0  

i 

ei = Hyzo(O) + h[y20(0) + Ylo] - ~ xtFk cos 0k 
k = 0  

i 

fi = Hzao(O) + h[z2o(O) + zl0] + ~ xkFk sin Ok 
k = 0  

(17) 

for i = 1, 2 . . . .  n. Here, F0 --= 0, introduced for convenience. 
The new static profile can be found as y(x)  = yl + y2 = [Hy~ 
+ (c;x + e;)]/(H + h) and z(x)  = z~ + z2 = [Hz~ + (dix + 

3~)]/(H + h) if the tension change, h, is known. 
h can be derived from (12) as follows: First, (12) can be 

approximated as 

! ~ ds'2 - ds2 du dx + dyl @2 + dzl dzz 
AE 2ds 2 ds ds ds ds ds ds 

Given H, Lx, Qy, and Qe, the tension increase h can be found 
in a closed form from the third-degree polynomial (19) if u (0 )  
and u(Lx) are known. How to find u (0 )  and u(Lx) is discussed 
in Section 2.3. If the boundary conditions are zero along all the 
directions, then all the three coefficients a,  b, and c are positive 
because 0 -< 0; -< 90 deg, therefore, the polynomial (19) has 
only one positive root. 

It is noted that the formulae given by Irvine ( 1981 ) for one 
vertical concentrated load without horizontal displacement can 
be deduced directly from (17),  (19)- (21 ) by simply setting n 
= 1, Qz = 01 = 0, boundary conditions to zero, and approximat- 
ing L,, h 2 and y~ (x~) up to second-order terms. 

2 .2  E x a c t  S o l u t i o n  for  L a r g e  C o n c e n t r a t e d  L o a d s .  Sup-  
p o s e  that the Lagrange's coordinate of the unstretched conduc- 
tor is denoted by s whereas the stretched conductor is given by 
s ' ,  as shown in Fig. 2. It should be noted here that the definition 
of s is different from that given in Section 2.1. Then, the static 
profile of the stretched conductor may be described by 

1 (dyq2 (dz2, 21 (18) 
+ 2 L \ ds / \ ~ - !  + \ ~ - I  J " ds 
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Fig. 2 Conductor under concentrated loads 

and 

i d'-~ d T  = - Q y  "k- Fi cos O, 6( s - s i)  
i=l 

dz,'  " d T '  = d~ ~ 1  -Qz-  2F, sinO~6(s-s~) 
i=1 

(22) 

T '  = A o E (  d s '  - 1) (23) 
\ds 

where T '  is the tension of the stretched conductor under both 
distributed and concentrated loads and A o E  is the axial rigidity 
of unstrained profile (A0 can be approximated by A and therefore 
A will be used in the following sections). To find the exact 
tension of a conductor under concentrated loads, the original 
unstretched conductor length of one span has to be found first. 

Uns t re tched  C o n d u c t o r  Length.  Given H,  Qr, and Q~, the 
unstretched conductor length, L0, can be found by solving (22) 
and (23) without the terms of the concentrated loads. First, one 
can find from (22) the following solutions T ( d x / d s ' )  = H ,  
T ( d y / d s ' )  = - Q y ( s  - L0/2), T ( d z / d s ' )  = - Q ~ ( s  - L0/2) 
and T = [ H  2 + Q2( s  - Lo/2)2] 1/2 and then, combine these 
solutions, with the aid of (23), to yield 

ds  ds ' ds  

=--H-+AE 1 + s - ~ L o )  J (24) 

which, in turn, results in 

x ( s )  = ( H I A E ) s  + ( l - I I Q ) { s i n h  -1 ( Q L o l 2 H )  

+ sinh -~ [ ( Q I H ) ( s  - L0/2)l} (25) 

where the boundary condition x(0)  has been used. Next, use 
the boundary condition x (Lo)  = L~ to find 

Lo = ( 2 H I Q )  sinh [ ( Q I 2 H ) ( L ~  - H L o l A E ) ]  (26) 

from which L0 can be solved simply by numerical iteration. 
Moreover ,  if  the sag of the conductor  l ine is also 
known, then Lo can be found without knowing the distributed 
load Q by using equation 

Sag = ( H / Q ) [ c o s h  ( Q L J 2 H )  - 1], (27) 

and solving this equation together with (26) by eliminating Q. 

N e w  Tens ion  and  Stat ic  Profile.  Integrating (22) results in 

T[ dx---Zi = H '  
ds  ' 

i 

T[  dy---k = - V  - Qy s + Y~ Fk cos Ok 
d s '  k=0 
dz  i 

T[  5-S~ = W -  Qz s - Y.  Fk sin Ok (28) 
k=0 

for st < s < s~+t, i = 0, 1, 2 . . . . .  n, with boundary conditions 

Xo(0) = u(0) ,  x , (Lo )  = Lx + u ( L , ) ,  x i ( s i )  = xi , ( s i )  

y i ( s i )  = y i - l ( s i )  and z i ( s i )  = z i - l ( s i )  (29) 

where i = 1, 2 . . . .  n. Boundary conditions y0(0), y,,(Lo),  
zo(0), and z,,(Lo) are not necessarily zero. H '  is the unknown 
horizontal tension component of the stretched conductor; V and 
W represent the vertical and horizontal reactions, respectively, 
at the left support end; u(0)  and u(Lx)  are additional end dis- 
placements of the stretched conductor along the longitudinal 
direction under the distributed and concentrated loads (see Fig. 
2). The following equation can be directly obtained from (28) 
with the aid of ( d x i / d s ' )  2 + ( d y ~ / d s ' )  z + ( d z i / d s ' )  2 = 1: 

T[ = O~(s  + a,) 2 + b/z (30) 

where 

ai = [ Q y ( V -  E~) - Q z ( W -  G i ) ] / Q  2 

bi = { Q 2 H ' 2  + [ Q y ( V -  Ei)  + Q z ( W -  G i ) ] z } I / 2 / Q  z 

i i 

El = ~ FkCOS0k and Gi = ~ F k s i n O k  (31) 
k 0 k-0 

for i = 0, 1, 2 . . . .  n. Employing (23), (28), (29) and the 
relation 

- - + [ ( s  + a ~ )  2 + b ~ ]  , ,2 
ds d s '  ds  A E  

(32) 
one can find 

x i ( s )  = ( H ' / A E ) s  + ( H ' / Q )  sinh -I [(s + a i ) / b i ]  + .~ 

(sl < s < s i + l , i = 0 ,  1 . . . .  n) (33) 

where 

~o = u(O)  - ( H ' / Q )  sinh -I (ao/bo)  

= .~_~ + ( H ' / Q ) { s i n h  -~ [(si + a i - ~ ) / b i - l ]  

- s i n h  -l  [(si + a i ) / b i ] } ,  ( i  = 1, 2 . . . .  n )  (34) 

in which the boundary condition x0(0) = u(0)  has been used. 
Similarly, y~ (s) is given by 

y~(s)  = - [ Q y s / 2  + ( V -  E ~ ) ] s / A E  

- { ( V - E i  - Q y a i ) s i n h  i [ ( s + a i ) / b i ]  

+ ay~/(s + a i )  2 + b 2 } / Q  + Yi 

(si < s < Si+l, i = O, 1 . . . . .  n )  

Y0 = [(V - Eo - Qy ao) s i n h - l ( a o / b o )  + Qy~a~ + bZ] /Q  

+ yo(O) 
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Y~ = ~-1  - (Ei - E i - 1 ) s i / A E  

+ { ( V -  Ei - Qyai)  sinh t [(s~ + a i ) /b i ]  

-- ( V -  Ei_l " Qyai - l )  sinh -l [(si + ai-~)/b~-~] } / Q  

+ [4(S i -Jr ai)  2 + b~ - ~/(si + a i - l )  2 + b~_i]Qy/Q 

(i = 1,2 . . . .  n).  (35) 

z~(s)  and ~i can be obtained from (35) by substituting Qr, V, 
El ,  and yo(0) with Q~, - W ,  - G i  and z0(0), respectively. The 
expressions x~ (s), y~ (s), and zz (s) describe the static profile 
under both distributed and concentrated loads if H' ,  V and W 
are known. 

Next, applying the boundary conditions x, (L0) = Lx + u (Lx) ,  
y , ( Lo )  and z,,(Lo) to the static solutions produces the following 
equations: 

0 = u ( O ) -  u ( L x ) - L x  + ~ Lo ~ 7  

+ ~ sinh_ ~ s, +a~_~ - ~ s inh- '  (36) 
i=l bi-I ] i=O ~TJ 

O= I 
A-E [ ( Q , V  + QyW)Co 

n 

- ~ (Lo - s , )F i (Q~  cos Oi + Qy sin Oi)] 
i=I 
1 f n+l 

"~- a . i ~  [Qz(V-  E i 1) + Q , ( W -  Gi_i) ] 
H 

×s inh_  t sl + ai_l - ~ [ Q ~ ( V -  E i )  
i=0 

+ Q , ( W -  Gi)]  sinh -1 (& + a i ~  
\ b, / j  

+ O~[y,(Lo) - y0(0)] - Oy[z , (ko)  - z0(0)] (37) 

and 

0:_l 

- ~ (Lo - s i ) F i ( Q y  cos Oi - Q~ sin Oi)] 
i=1 

n+I 

+ Q[]~ 4(si + ai-1) 2 -F b~_ 1 - ~ ~/(si + ai)  2 + b~] 
i=1 i=o 

+ Qy[y, (Lo)  - y0(0)] + Qz[z,(Lo) - z0(0)] (38) 

where the identity Q y ( V  - E~) - Q z ( W  - Gi)  - Q2ai ~ 0 ( i 
= 0, 1, 2 . . . .  n) has been used. Now, the unknown variables 
H' ,  V, and Wcan be solved numerically (e.g., by using Newton- 
Raphson method) from ( 3 6 ) - ( 3 8 )  if u(0) and u(Lx)  are 
known. 

2.3 Approximate Solution for Very Large Concentrated 
Loads. When the concentrated loads are very large compared 
to the distributed loads (e.g., their ratio is over 200 percent), 
then an approximation solution may be found from the results 
presented in the previous section by neglecting the distributed 
loads (i.e., letting Qy = Qz = 0). Thus, the procedure becomes 
simpler and the formulae of ( 3 6 ) -  (38) are reduced to 

0 = [u(O) - u(L~)  - L~] + ~ (si+l - s i ) ~ i  
i=0 

Fig. 3(al 

U 1 U 2 j ¢  / / /  

Fig. 3(b) 

Fig. 3 Boundary conditions; (al tangent line, (b} angle line 

0 = [y.(Lo) - yo(O)] + ~ ( V  - Ei) (s i+l  - s i ) ~ i  
i=O 

0 = [z,(L0) - Z0(0)] - ~ ( W -  Gi)(s i+ 1 - s i ) t l l i ,  
i=o 

(39) 

where ~i = 1 / A E  + [ H  '2 + ( V  - E i )  2 + ( W  - Gi)2] -I/2. 
Although (39) is much simpler than ( 3 6 ) - ( 3 8 ) ,  a numerical 
iteration scheme is still needed to solve the nonlinear coupled 
equations. Having found V, W, and H' ,  then 

T : ( s )  = ~/H '2 + ( V  - E l )  2 + ( W  - Gi)  2 

y i ( s )  = ~ l ( - V  + E i ) s  + Yi 

Y~ = Y~-i - (Ei  - E i - l ) ~ i  + V / T [  - V /T[ -1  

( i =  1,2 . . . .  n) and y~ =yo(0)  

z i ( s )  = ~ i ( W -  G i ) s  + ~,. 

= Ti-t + (Gi - Gi-l)~i - W/T: + W/T[-z 

( i =  1 , 2 . . . n )  and ~ = z 0 ( 0 )  (40) 

for si < s < si+t, i = 0, 1 . . . .  n. It is noted that the tension, 
T: ,  is now approximated by piecewise constants whereas yi (s) 
and zi ( s )  are approximated by piecewise linear functions of s. 

2.4 Boundary Conditions. To solve for h in Section 2.1 
or H '  in Section 2.2 (or Section 2.3), either the displacements 
u(0) and u (Lx ) ,  or their relations ~o other variables are needed. 
As shown in Fig. 3, the adjacent spans' horizontal components 
of tension and displacements are denoted by H: and u~, i = 1, 
2, respectively. Thus, ut = u (0) and u2 = - u (Lx). Furthermore, 
the relationship between the force P~ and displacement ul can 
be found as follows. For a transmission line having supporting 
towers, the end support components are usually suspension insu- 
lator springs and the Hooke's law can be employed to establish 
a linear approximation 

Pi =/3ul i = 1,2 (41) 

where/3 is the spring constant. For a distribution line, the force 
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P~ is directly produced by the bending of the supporting poles 
due to the unbalanced tensions of the adjacent conductor spans. 
The relation between the force and deflection (bending displace- 
ment) can be described as Pi = - k u ,  if the pole is treated as 
elastic material. Here k is called the modulus and the minus 
sign indicates that the force acts at the opposite direction of the 
deflection (Salvadori and Schwarz, 1954). Constant k is usually 
obtained from bending strength tests and can be found from 
many industrial product manuals (e.g., CSA, 1990). Therefore, 
Eq. (41) can be used as a general formula. Note that the special 
case ui = 0, i = 1, 2 (i.e., u(0)  = u(L~) = 0) implies that the 
equations given in Section 2.1 (Section 2.2 or Section 2.3) are 
sufficient for solving h ( H ' ,  V, and W). There are two general 
cases: tangent line (including dead end) and angle line. 

Case 1: Tangen t  Line. Suppose that the adjacent spans' 
length are given by L~ ~) and L~ 2) , respectively, and the un- 
strained conductor lengths are obtained from Eq. (26) as L(o ~) 
and L(o 2), respectively. Then equation (25) yields 

L~ ~) + u, = ( H [ / A E ) L ( o  ° + ( 2 H I ~ Q )  sinh -~ (QL(o° /2H[) ,  

From Fig. 3(a)  it is seen that 

H '  = H I  + P~, 

Combining (41 ) - (43) gives 

L (x i) + ui = ( H '  - 13ui ) 

i =  1,2. (42) 

i = 1, 2. (43) 

× {L{o°/AE + (2 /Q)  s inh- '  [QL(oi)/2(H ' - flu,)] }, 

i = 1, 2. (44) 

For the exact solution procedure given in Section 2.2 (or 
approximation in Section 2.3 ), the above two equations (or one 
equation if one of ui equals 0) can now be directly added to 
(36)- (38)  (or (39)) ,  and H ' ,  V, W, and ui can be solved 
simultaneously by numerical iteration. For the approximate so- 
lution procedure given in Section 2.1, note that H '  = H + h 
and that an approximate solution of ui from (44) is required. 
This approximation is given by 

u~ = [L{o~)h + ( A E  + H)L(o ~) - A E L ~ ° ] / [ A E  + ,t3L(o °] (45) 

and hence 

u(O)  - u (Lx)  = ul + u2 = ( d  h + H f ) L e / A E  

2 L(oi)/Le 
d=~., 

i=l 1 + ,OL(oi)/AE 

( A E / H ) ( L ( o  i) - L~')) /Le + L(oOILe 
f= (46) 

i=l ~ 1 + ,SL(oZ)/AE 

Then, the coefficients, a,  b, and c, of the third-degree polyno- 
mial of h can be obtained from (20) if k 2 and the coefficient 
of the first term of c are divided by (1 + d),  and the term, 
( A E / H L e ) [ u ( O )  - u (Lx ) ] ,  is replaced by f / ( 1  + d).  

Case 2: A n g l e  Line. It can be seen from Fig. 3(b)  that at 
the supporting end of the angle line, the balance of the resultant 
forces along the direction perpendicular to guy wires results in 

H '  cos ( a / 2 )  = (H~ + P2 - Qx) cos ( a / 2 ) ,  
i.e., H '  = H~ + P2 - Qx, (47) 

where Q, is the wind load contributed from the angle line due 
to the wind perpendicular to the central span. Q~ is along the 
longitudinal direction of the angle line, given by 

Q~ = Q~L, sin c~. (48) 

The formulae given for Case l,  however, can be employed here 

Table 1 Properties of lines 

Transmission l i n e  Distribution line 
Lx (m) 125.000 100.000 
H (kN) 15.000 2.190 
A (mm ~) 402.900 33,600 
E (kN/mm a) 63,358 80,000 
M (kg/m) 1.663 0,136 
Qy (N/m) -16.714 -1.334 
Qz (N/m) 1.756 3.080 

~/'3~/I mlffn Fallen tree Detuning 
Fi (kg) 14.000 

0.000 0i (deg) 
Xi/Lx 1[4, 5/12, 1/3 

Tree Branch of tree 
Fv (kg) 600 80 
Fh (kg) 200 30 
8 (deg) 45 45 
X/Lx 1/2 1/4 

again provided that (44) is modified so that (H '  - /3u2) and 
Q~ (included in Q) are replaced by (H '  - /3u2 + Qx) and Q~ 
cos c~, respectively. 

3 P r a c t i c a l  A p p l i c a t i o n s  
The formulae derived in previous sections are applied to 

practical examples. One example is chosen from the galloping 
control of transmission lines by using detuning pendulums (Ha- 
vard et al., 1985) and the other one is chosen from the mechani- 
cal coordination of distribution lines hit by fallen trees (Wong 
and Yu, 1993). The main focus is on the conductor's tension, 
length, and static profile. 

3.1 Detuning Pendulum. Galloping is a low-frequency, 
high-amplitude oscillation which can occur on an iced electrical 
transmission line in a steady side wind. The inability to prevent 
galloping can lead to severe disruptions in the electrical supply 
and even a cascading collapse of a line's supporting towers. 
This problem has been observed since at least the 1930's and 
research on galloping control has been conducted extensively 
during the past two decades in North America, Europe, and 
Japan (Havard et al., 1985)i While a broad range of control 
devices were considered, the major one tested in North America 
is the detuning pendulum (Havard, 1981 ). It consists of a mass 
suspended below and rigidly clamped to the conductor. The 
detuning pendulum is an econonfical control device and can 
provide trouble-free service once installed because it has no 
moving parts. Hence, many North American utilities have been 
using and still prefer to use it in galloping control of transmis- 
sion lines. However, the installation of detuning pendulums 
alters the load distribution of the conductor and therefore, 
changes the conductor's tension as well as the static profile. 

The relative parameters of the transmission line and detuning 
pendulum are listed in Table 1. The line is assumed to have an 
iced shape C l l  (CEA, 1992) plus a side wind of 10 rn/s. The 
effect of ice load and wind load has been included in A ,  Qy, 
and Q~. Three identical detuning pendulums are assumed to be 
vertically installed on one span of the line. Moreover, it is 
assumed that the adjacent spans are treated in the same way, 
i.e., u(0) = u ( L , )  = 0. Both the approximation and exact 
solution of the static profile are shown in Fig. 4 with main 
parameters given in Table 2 where T~4, YM, and ZM represent 
maximum conductor tension, maximum vertical, and horizontal 
displacements, respectively. Here, the notations (S) and (L) 
represent the approximation methods for Small and Large con- 
centrated loads, respectively. It clearly indicates that the approx- 
imation excellently agrees with the exact solution. This is be- 
cause the concentrated load is small compared to the conduc- 
tor's weight (the ratio of the total weight of three detuning 
pendulums to the total iced conductor's weight of one span is 
about 20 percent. 

3.2 Fallen Tree. Trees inevitably fall onto overhead dis- 
tribution lines dunng storm conditions in heavily treed areas. 
Because it is not environmentally acceptable to remove all po- 
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Static profile of line with detuning pendulums; (a) vertical dirac- 
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0.0 

-0.4 

-0.8 

-1,2 
0 

Aiproximation (L) i 

I I ~ i I 
20 40 60 80 100 

Longitudinal distance X (m) 

Fig. 5(a) 

1.2 
b4 

0.8 

:~ 0,4 

¢ 0.0 
0 20 40 60 80 I O0 

Longitudinal distance X (m) 

Fig. 5(b) 

Fig, 5 Static profile of line with fallen tree at center; (a) vertical direc- 
tion, (b) horizontal direction 

tential danger trees adjacent to distribution lines, the line should 
be designed so that the component most likely to fail mechani- 
cally is also the one that can be repaired with minimum cost 
and time. This leads to mechanical coordination studies for new 
line designs as well as the improvement of existing lines. Such 
a study first requires the computation of component loads due 
to fallen trees. A tree falling onto the conductor will increase the 
conductor tension and the tension increase will be transferred to 
other components of the distribution line including the pole and 
associated hardware. The new loads for these components can 
be calculated using basic principles of mechanics on the static 
profile. The properties of the distribution line are given in Table 
1. Also given in this table are data for the case of a whole small 
tree and the case of a tree branch. The load from a fallen tree 
consists of two parts, namely the weight of the tree, Fv (vertical) 
and the wind load on the tree, FH (horizontal). (The details for 
estimating these two loads can be found from the report (Wong 
and Yu, 1993).) The static profiles computed by using the ap- 
proximation method and the exact solution procedure are given 
in Fig. 5 for a small tree and in Fig. 6 for a tree branch. The 
main parameters of the static profile are listed in Table 2. 

Figure 5 presents the exact solution with the approximation 
(L) only because the approximation (S) is inapplicable for this 
case due to the ratio of concentrated load to distributed load 
being very large. It is shown that this approximation (L) method 
produces results which agree well with the exact solution (with 
error less than two percent) and they are indeed piecewise linear 
functions (i.e., straight lines ). For the case of a typical #2 ACSR 
conductor branch line, the ultimate tension strength (UTS) of 
the line is 12.40 kN (Wong and Yu, 1993) and this is much 
less than the maximum conductor tension caused by the fallen 

Table 2 

Case Method 
Detuning (I) 
pendulum (II) 

Fallen (II) 
tire (III) 

BrAnch (I) 
of tree (II) 

(III) 

Main parameters of static profiles 

L(m) H'(kN) T~(kN) Yu(m) Zu(m) 
125.12 17.73 17.80 2,33 0.19 
125.10 17,79 17.84 2,32 0.19 
100.02 70.84 70.88 1.16 1.16 
100,031 73.06 73.10 1.15 1j.8 
100.09 8.01 8.04 1.26 1.47 
I00.01 10.43 10,44 0.85 0.85 
100.02 12.62 12.63 0,80 0,93 

tree case (73.10 kN, see Table 2). Both the approximation and 
exact results indicate that the line will fail (e.g., the conductor, 
the pole or other structural component will break). For the tree 
branch case, on the other hand, both the two approximations as 
well as the exact solution are demonstrated in Fig. 6 for a 
complete comparison. It is seen that the discrepancy between 
the approximation (S) results and the exact solution is very 
large. The vertical displacement given by approximation (L) 
seems a reasonable approximation (the largest error is about 15 
percent appearing at 65 m from the left end support) whereas 
the horizontal approximation cannot be accepted (the largest 
error > 58 percent). Moreover, the exact solution yields an 
increase in tension of about 58 percent and 21 percent compared 
to approximations (S) and (L), respectively. The exact solution 

0.0 < 
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'~. ~ ' ' ' ~ , ' 6 ~  

~t ¢,,¢:~ ~f~-4 
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I r I I 
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Fig. 6(a) 
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Fig. 6(b) 

Fig. 6 Static profile of line with tree branch at quarter point; (a) vertical 
direction, (bl horizontal direction 
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indicates that the conductor will break while both approximation 
results suggest that the line will remain in service. The approxi- 
mation (S) method failed in this case because the load of the 
tree branch is relatively large (the ratio of the tree branch's 
weight to the distributed load is about ½) and located at one 
point, compared to the case of detuning pendulum where 20 
percent concentrated load is distributed to three positions. The 
approximation (L) method failed, however, due to the ne- 
glection of the distributed loads, Qy and Qz, which are large, 
compared to the concentrated loads, especially in the horizontal 
direction. It is interesting to note from Fig. 6 that the static 
profile is fiat with a ratio of sag to span length of less than ~0. 
For such a low conductor sag, the approximation (S) method 
should produce very good results for distributed loads only 
(Irvine, 1981), but this method cannot achieve a reasonable 
approximation for relatively large concentrated loads. 

4 Conclusions 
Two approximation and one exact solution methods have 

been developed to compute conductor tension and static profile 
under distributed and multiple concentrated loads. Formulae 
are given explicitly in three-dimensional space with different 
boundary conditions. The applications to two practical engi- 
neering examples show that the approximation (S) approach 
gives very accurate results for relatively small concentrated 

loads and the approximation (L) method produces excellent 
responses for very large concentrated loads, but the exact solu- 
tion procedure must be used if concentrated loads are compara- 
ble to the distributed loads. It is further shown that the approxi- 
mation (S) method, which is usually employed for a fiat line 
(a sag to span length ratio of less than 1:8) with only distributed 
loads, does not provide reasonable results if large concentrated 
loads are superimposed, and the exact solution procedure must 
be used. However, the approximation (L) method may be used 
applied to the exact solution if the concentrated loads are very 
large. 
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T h e r m a l  Stresses  in a Mul t i layered  
Anisotropic  M e d i u m  With  Interface  
T h e r m a l  Res is tance  

T. C. Chen 1,3 and H. I. Jang z'3 

This note is concerned with thermoplastic analysis of  a multilay- 
ered anisotropic medium under the state of  generalized plane 
deformation with interlayer thermal contact resistance. The 
powerful flexibility/stiffness matrix method is adopted here to 
obtain the complete solution of  the entire layered medium by 
introducing the thermal and mechanical boundary and layer 
interface conditions including interlayer imperfect thermal con- 
tact conditions. As a numerical illustration, the effects of  inter- 
layer thermal resistance on the distributions of temperatures 
and thermal stresses in a laminated anisotropic slab subjected 
to a uniform surface temperature rise are presented. 

Introduction 
When two layers of a multilayered composite media are 

brought into contact, an imperfect junction may exist. The flex- 
ibility/stiffness matrix method is one of the existing efficient 
analytical approaches for treating this kind of problem from the 
viewpoints of both physical interpretation and saving computer 
time. Choi and Thangjitham (1991, 1992) studied the steady- 
state thermo-elasticity problem and obtained the distributions 
of temperature and thermal stresses in a laminated anisotropic 
slab subjected to a uniform surface temperature rise by this 
method. The objective of this study is to further extend the 
flexibility/stiffness method to the steady-state thermo-elasticity 
problem of a multilayered anisotropic medium in consideration 
of the constant interlayer thermal contact resistance. 
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Analysis 
A layered slab (Fig. 1 ) composed of N fiber-reinforced layers 

is considered in this study. The detailed formulation of matrix 
equations and solution procedures can be found in the paper by 
Thangjitham and Choi ( 1991 ). In this note we only put empha- 
sis on the flexibility matrix formulation of a heat conduction 
problem pertaining to interlayer thermal contact resistance. 

For an imperfectly bonded N-layer medium with interlayer 
thermal resistance subjected to arbitrary temperature variations 
on the bounding surfaces, the following thermal boundary and 
interface conditions are prescribed: 

~F~ = Tv (la) 

q-k- = q~+,, q~- : ~ (T;+, - f~-), 

k = 1.2 . . . .  ( N .  1) ( l b ,  c) 

TN = TL ( l d )  

where R~ is the interlayer thermal contact resistance, which is 
defined as the reciprocal of interlayer thermal conductance h 
between the kth and (k + 1)th layers, i.e., Rk = 1/h. For a 
perfect bonded interface, Rk is equal null, and the temperature 
distrib_ution becomes_ continuou_s between two adjacent surfaces, 
i.e., T~ = T~+i. Tu(s) and TL(s) represent the transformed 
temperatures on the upper ( + )  and lower ( - )  surfaces of the 
medium, respectively. 

By denoting q-i = q~ and 'TN+J = q~ the transverse heat fluxes 
on the upper and lower bounding surfaces of the medium, re- 
spectively, and qk+l = q~ = q-~+l, k = 1, 2 . . . . .  (N - 1 ), the 
common interfacial transverse heat fluxes between the kth and 
(k + 1)th layers, the successive applications of the conditions 
in Eqs. ( l a ) -  ( l d )  lead to the global flexibility equations for 
the N-layer medium written as 

Fllq-i + F1292 = Tu (2a) 

k + l  --  .-~ Flk2qk + (F~2 + F~- '  - Rk)qk+l + Fi2 qk+2 0 

k = 1, 2 . . . . .  ( N -  1) (2b) 

,v - --TL. (2c)  F~2qu + F22qo+I = 

In matrix form, the above system of algebraic equations can 
be expressed as 

F~ = T (3) 
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where F is the banded and symmetric global flexibility matrix, 
~(s) is the global vector containing the unknown interfacial 
transverse heat fluxes, i.e., { qlq2 . . .  q'N÷l}, and T(s)  is the 
vector containihg the transformed surface temperature and zero 
elements. 
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BRIEF NOTES 

Numerica l  Examples  and Discuss ions  
The same numerical example analyzed in the paper by Thang- 

jitham and Choi (1991) is enumerated again in this article. 
Figures 2 - 3  show the distributions of temperature T and the 
stress crxx through the thickness at x = 0 with fiber angle 0 
= 60 deg for various interface thermal contact conductance, 
respectively. It can be seen that the temperature distributions 
are not continuous as expected between two adjacent layers. 
These discontinuities in temperature between two adjacent lay- 
ers increase as the values of interface thermal contact conduc- 
tance are decreased. Moreover, all the solutions without inter- 
layer thermal contact resistance (i.e., R = 0 or h = oo) shown 
here, which are the special cases of the present study, agree 
completely with the results shown in the literature (Thangjitham 
and Choi, 1991). By the way, the computation time was around 
one minute for each case of steady state by using a personal 
computer with a 486-33 processor. 

A c k n o w l e d g m e n t s  
This work was supported by the National Science Council 

of Taiwan, R.O.C. (Grant No. NSC 83-0401-E006-099). 

References  
Thangjitham, S., and Choi, H. J., 1991, "Thermal Stresses in a Multilayered 

Anisotropic Medium," ASME JOURNAL OF APPLIED MECHANICS, Vol. 58, pp. 
1021-1027. 

Choi, H. J., and Thangjitham, S., 1992, "Thermal Induced Local Effects in 
Laminated Composite," Journal of Thermal Stresses, Vol. 15, pp. 311-327. 

Packing Characterization of 
Granular Composite Media in Two 
Dimensions 

G. J. Fi latovs 4 

1 Introduct ion 
Coverage processes of planar assemblies of hard (impenetra- 

ble) disks have been used as geometric analogues for a variety 
of composite media. Characterizing their packing arrangement 
is of relevance to a wide range of mechanical, physical, and 
transport properties, particularly in light of recent efforts to 
embody stochasticity into micromechanics formulations (for a 
recent overview see Ostoja-Starzewski, 1993). Such assem- 
blages are not amenable to direct analytic approaches; explora- 
tion of their statistical phenomena rests largely on computer 
and experimental simulation. There is a scarcity of systematic 
exploration, particularly at high densities, and of incorporation 
of loading geometry and dynamic variables such as friction• 
While the literature has shown attempts to statistically charac- 
terize actual composite microstructures, the usefulness of these 
rests on the identification of reference states and bounds deter- 
mined under controlled conditions. 

This note summarizes an experimental simulation of two- 
phase fibrous composites modeled (in the sense of Hashin, 
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where F is the banded and symmetric global flexibility matrix, 
~(s) is the global vector containing the unknown interfacial 
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blages are not amenable to direct analytic approaches; explora- 
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BRIEF NOTES 

EDGE ! SIMULATION PACKING 
LOADING CONDITIONS DENSITY 

~ RANDOMLY PLACED 
AND REPLACED 0.54 
IF OVERLAPPING 

I 

I! 

IV 

V 

SMOOTH DISCS 

TEMPLATE WALLS 
FOR CASES II AND III 

DISC SMOOTH 
SURFACE ROUGH 

0.76 

ANISOTROPY AT 45 ° 
DIRECTIONS WHEN 
DISCS 'FLOW" 

0.82 0.76 

0,74 0.71 

DISC FREE 
ROTATION CONSTI IAINED 

SMOOTH WALLS 
AND DISCS 

2:1 ELLIPSE 

SMOOTH WALLS 
AND DISCS 

0.78 

0.62 

ANtSOTROPY AT 
45 ° TO ELLIPSE 
AXES 

Fig, 1 Summary of simulation conditions and results 

1983) by an array of parallel cylinders and represented here in 
a planar transverse cut as equidiameter hard disks. High density 
compacts were generated using varied edge loading and inter- 
disk conditions and examined for configurational statistics and 
quantities such as packing density (p) ,  coordination number 
(~),  and anisotropy. 

2 Simulation and Analysis 
Simulation was mechanically realized through edge loading 

an array of disks on a glass plate placed on a digitizing scanner. 
The edge and disk materials were Teflon; to study the effect of 
inter-disk friction a set of disks was roughened by sandblasting 
(raising the coefficient of friction from approximately 0.05 to 
0.15) and one set used wires to constrain rotation. 500, 10.00 
mm-diameter, 3 mm-thick disks were used with a sampling 
window of approximately 150 X 150 ram. Twenty trials were 
made for each configuration with scans made at various stages 
of compaction. 

Loading was accomplished through smooth and simulated 
random edges (template walls), the latter prompted by early 
trials in which smooth walls for some cases nucleated large 
ordered regions. Figure 1 contains schematics of the loading 
configurations, which were intended to approximate some of 
the conditions encountered in processing of fibrous composites. 
In case I disks were dropped onto an adhesive covered glass 
plate, and either stuck to the adhesive or were blocked by other 
disks and were redropped. Otherwise, the starting arrangement 
was placed by hand (p ~ 0.3) and in most cases loaded to the 
point of negligible further increase in p. 

Exploratory data analysis was conducted by examining the 
point processes created from the disc center coordinates. Meth- 
ods included grid sampling (Miles, 1978), reduced second- 
order measures such as the reduced K-function and its L-trans- 
form (Cressie, 1991a), and a directional distribution function 
(Stoyan et at., 1987) to investigate anisotropy. In determining 
p the toroid edge correction was used. 

3 Results and Discussion 
The compressive edge loading initially induced inward p 

gradients because compaction occurs by disk-disk interaction 

and accommodation. At p ~ 0.67 continuous load paths were 
formed throughout the arrays and resulted in'a threshold in the 
compaction force. Continuation of loading increased p to the 
limit given in Fig. 1 for each loading case. Using the method 
of Cressie (1991b) the arrays for cases I, III, and IV were found 
to be thinned (inhibited) Poisson-process variates i.e., mutually 
independent and random. Cases II and V also displayed anisot- 
ropy, discussion of which is forthcoming. 

In random packing, changes in p alter the local symmetry. 
This link was quantified by obtaining the mean values of r/from 
the distributions of touching nearest neighbors as a function of 
p; actual contacts were difficult to determine and approaches 
within 0.30 mm were admitted. It was found that 

~7 = 7 . 8 p -  2.1, ~7-+0.2, 0.67 < p - < 0 . 8 2  (1) 

the uncertainty stemming from the difficulty of assigning group 
membership at such high values of p. For the smooth disk, 
unconstrained conditions of cases l lI  and V, A~T/A p showed a 
large increase above p = 0.82, with r/rapidly approaching 6, 
through the formation of ordered hexagonal close packed (hcp) 
regions. The 0.82 value is therefore the highest planar density 
for the random state. 

Table 1 compares of the present results to representative 
literature values of the two statistically distinguishable states 
which appear to have correspondence in the literature but were 
determined through diverse approaches. The present work is 
apparently the only experimental determination of the first state, 
which results from the random sequential placement of disks 
with no subsequent disk motion, and contains few touching 
disks. While topologically important and applicable to physical 
situations such as percolation this state is unrealistic for actual 
composites. It is, however, amenable to computer simulation; 
the differences in Table 1 most likely reflect differences in 
computer algorithms. The situation is reversed in the second 
state, termed random dense packing (Prap) in which experimen- 
tal simulations predominate because large scale, collective disk 
interactions and movement are more difficult to computer simu- 
late. The range of values likely arise in the manner exemplified 
by the varied disk conditions of case III. There, rearrangement 
of assemblies into higher densities was hindered by friction and 
restriction of rotation (as in a tow structure), while it was 
difficult to avoid formation of hcp regions in the smooth, uncon- 
strained disk condition. These ordered regions also most likely 
contribute to the disagreement among the literature values for 
Prdp, as the degree of contaminating ordering will vary. 

Case IV resulted in lower p values because equidirectional 
loading reduced disk motion. Case V, with shear-inducing un- 
balanced loading, promoted disk motion which raised p. This 
unequal loading also resulted in slight anisotropy, which was 
much more evident in case II. There, once a maximum of p = 

Table 1 Selected literature values for random packing density 

Packing Simulation Reference 
Density Method 

LOOSE PACKING 

0 .50  

0.54 
0.55 
0.56 

DENSE PACKING 

0.81 
0.82 
0.82 
0.83 
0.89 

Computer 
Experimental 
Computer 
Computer 

Experimental 
Experimental 
Analytic 
Experimental 
Experimental 

Finegold and Donnell,1979 
Present Work 
Smith and Torquato,1988 
Lotwick,1982 

Stillinger el a1.,1964 
Present work 
Berryman,1983 
Quickenden and Tan,1974 
Shahinpoor,1980 
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0.76 was reached (and loading continued), the process entered 
a flow regime which imparted a 23 percent increase in linear 
density in a prevailing direction 45 degrees to the flow direction. 
No state corresponding to the 0.89 value of Table 1 was ob- 
served. 

In summary, the baseline simulated disk/fiber structures were 
essentially random configurations. Compaction occurred by col- 
lective accommodation and rearrangement, the degree of which 
depended on the factors of inter-disk friction, severity and an- 
isotropy of compaction, and constraint of rotation. The Prdp 
value was not easily realized and for ordinarily fabricated fi- 
brous composites the p = 0.71 - 0.76 range of cases II and III 
appears to represent realistic upper bounds; higher values re- 
quire more severe compaction conditions than expected in usual 
processing. The p = 0.54 state arises from a static process and 
shows minimum disk touching, while the 0.67 -< p -< 0.82 
range displays largely contiguous arrays. Antithetically, for the 
second, (I-p)  phase, in this latter range there is no interconnec- 
tion and thus no permeability. Flow through the medium re- 
quires connected pathways which can be formed by lowering 
of p or creation of underdispersion through ordered clustering. 
In modeling, the implications of the considerable deviation in 
local symmetry from the square or hcp packing customarily 
assumed for representative volume elements and the relation- 
ship which obtains between ~7 and p given by (1) should be 
recognized. 
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Elastic Buckling of a Circular Disk 
due to Internal Membrane  Forces 

W.-Y Shih, s's L. Kudryavtsev,  6's and 
K. K. W a n g  7's 

Residual internal stresses often remain in materials after ther- 
mal-mechanical processes. Considerable deformation, such as 
elastic buckling, may result from such stresses. Some cases of 
circular-plate buckling due to internal membrane forces are 
analyzed in this work. The internal membrane-force field is 
introduced with a nonuniform radial temperature distribution 
in the disk. Detailed analysis is performed and critical buckling 
criteria are tabulated for some specific sets of parameters. Al- 
though the membrane force in the plate is axially symmetric, 
symmetry breaking is found at buckling. When the temperature 
is higher at the disk center, the first buckling mode is dome- 
shaped, which maintains the polar symmetry. The mode of buck- 
ling, however, changes to a saddle shape when the radial tem- 
perature distribution is reversed. 

1 Introduction 
During material processing, residual (internal) stresses often 

arise as a result of noneven cooling or nonuniform plastic defor- 
mation. Such residual stresses can sometimes cause buckling 
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of the product. The onset of elastic buckling in a circular disk 
due to internal membrane forces is discussed in this paper. 

Internal stresses of volumetric origin can be conveniently 
represented in terms of thermal stresses since treatments on 
thermal stresses are readily available (Boley and Weiner, 
1960). We consider a circular plate that is stress-free when it 
is at a uniform temperature. Introducing a radial temperature 
distribution results in an axially symmetric internal plane-stress 
field in the absence of external load and constraint. The homoge- 
neous system of the circular plate is analyzed in detail using 
the method of Frobenius. Buckling criteria are obtained in terms 
of thermal loading, with critical thermal loadings being tabu- 
lated for some specific temperature profiles and deformation 
modes. We conclude with some observations. 

2 The Planar Thermal Stress 
Consider the temperature distribution in the disk to be (r)m 

r (m,  r) = T0 ~ + constant, (1) 

where a is the radius of the disk and r is the radial distance 
from the disk center. The constant m is a positive integer. Since 
the disk is stress-free under a uniform temperature field, the 
"constant" in the temperature distribution (1) is ignored in 
what follows. 

The plane-stress state of a thin plate can be described (Boley 
and Weiner, 1960) in terms of an Airy stress function ~p which 
satisfies 

V4~O "'~ ozEX72T = 0, (2) 

where a is the coefficient of linear thermal expansion. The 
stress components are: Cr rr ~ ( ~O,r/ r ) + ( tp.oo / r2 ) , a oo =-- ~O.rr and 
aro --= -(too~r),,.. For a disk free of boundary traction, Eq. (2) 
can be easily integrated for the temperature distribution in Eq. 
(1). The resulting planar stress-tensor components are 

aLTo ,,  
(3) 
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0.76 was reached (and loading continued), the process entered 
a flow regime which imparted a 23 percent increase in linear 
density in a prevailing direction 45 degrees to the flow direction. 
No state corresponding to the 0.89 value of Table 1 was ob- 
served. 

In summary, the baseline simulated disk/fiber structures were 
essentially random configurations. Compaction occurred by col- 
lective accommodation and rearrangement, the degree of which 
depended on the factors of inter-disk friction, severity and an- 
isotropy of compaction, and constraint of rotation. The Prdp 
value was not easily realized and for ordinarily fabricated fi- 
brous composites the p = 0.71 - 0.76 range of cases II and III 
appears to represent realistic upper bounds; higher values re- 
quire more severe compaction conditions than expected in usual 
processing. The p = 0.54 state arises from a static process and 
shows minimum disk touching, while the 0.67 -< p -< 0.82 
range displays largely contiguous arrays. Antithetically, for the 
second, (I-p)  phase, in this latter range there is no interconnec- 
tion and thus no permeability. Flow through the medium re- 
quires connected pathways which can be formed by lowering 
of p or creation of underdispersion through ordered clustering. 
In modeling, the implications of the considerable deviation in 
local symmetry from the square or hcp packing customarily 
assumed for representative volume elements and the relation- 
ship which obtains between ~7 and p given by (1) should be 
recognized. 
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Residual internal stresses often remain in materials after ther- 
mal-mechanical processes. Considerable deformation, such as 
elastic buckling, may result from such stresses. Some cases of 
circular-plate buckling due to internal membrane forces are 
analyzed in this work. The internal membrane-force field is 
introduced with a nonuniform radial temperature distribution 
in the disk. Detailed analysis is performed and critical buckling 
criteria are tabulated for some specific sets of parameters. Al- 
though the membrane force in the plate is axially symmetric, 
symmetry breaking is found at buckling. When the temperature 
is higher at the disk center, the first buckling mode is dome- 
shaped, which maintains the polar symmetry. The mode of buck- 
ling, however, changes to a saddle shape when the radial tem- 
perature distribution is reversed. 

1 Introduction 
During material processing, residual (internal) stresses often 

arise as a result of noneven cooling or nonuniform plastic defor- 
mation. Such residual stresses can sometimes cause buckling 
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of the product. The onset of elastic buckling in a circular disk 
due to internal membrane forces is discussed in this paper. 

Internal stresses of volumetric origin can be conveniently 
represented in terms of thermal stresses since treatments on 
thermal stresses are readily available (Boley and Weiner, 
1960). We consider a circular plate that is stress-free when it 
is at a uniform temperature. Introducing a radial temperature 
distribution results in an axially symmetric internal plane-stress 
field in the absence of external load and constraint. The homoge- 
neous system of the circular plate is analyzed in detail using 
the method of Frobenius. Buckling criteria are obtained in terms 
of thermal loading, with critical thermal loadings being tabu- 
lated for some specific temperature profiles and deformation 
modes. We conclude with some observations. 

2 The Planar Thermal Stress 
Consider the temperature distribution in the disk to be (r)m 

r (m,  r) = T0 ~ + constant, (1) 

where a is the radius of the disk and r is the radial distance 
from the disk center. The constant m is a positive integer. Since 
the disk is stress-free under a uniform temperature field, the 
"constant" in the temperature distribution (1) is ignored in 
what follows. 

The plane-stress state of a thin plate can be described (Boley 
and Weiner, 1960) in terms of an Airy stress function ~p which 
satisfies 

V4~O "'~ ozEX72T = 0, (2) 

where a is the coefficient of linear thermal expansion. The 
stress components are: Cr rr ~ ( ~O,r/ r ) + ( tp.oo / r2 ) , a oo =-- ~O.rr and 
aro --= -(too~r),,.. For a disk free of boundary traction, Eq. (2) 
can be easily integrated for the temperature distribution in Eq. 
(1). The resulting planar stress-tensor components are 

aLTo ,,  
(3) 
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O'rO = 0, (4) 

= ( aETo ~[1 - (m + 1)p"].  (5) 
(roe \ m  + 2 /  

where p ~ r/a.  The membrane-force tensor N is simply the 
product of the planar stress-tensor tr and the plate thickness h. 
W e  define gr~(p) =- (1 - pro)andgoo(P) =- [1 - (m + 1)p m] 
for later use. 

3 Modal Analysis of the Plate 
With a nonzero membrane-force field, the torque equilibrium 

of the plate can be shown as 

DVV2 w + Q - N ' V w  = O, (6) 

where D = Eh3/12(1 - uz),  u is the Poisson's ratio, w is the 
out-of-plane displacement, and Q is the shear force in the plate 
cross sections. Note that V. N = 0 for the force equilibrium in 
the plane; and V.  Q = - q  for the force equilibrium in the out- 
of-plane direction, where q is the distributed out-of-plane force. 
The plate equation (Timoshenko and Woinowsky-Krieger, 
1959) 

D~r4W -- N: VVw = q (7) 

is obtained by taking the divergence of Eq. (6). 
The deflection w and the lateral loading q can be expressed 

as the sums of their respective Fourier modes, i.e., 
ca 

w(p,  O) = a ~, S . ( p ) e  in°, q(p.  O) = Y, q . ( p ) e  ~"°. 
n=0 n=O 

By replacing w and q with their nth mode in Eq. (8), individual 
modes can be treated separately and the azimuthal (0) depen- 
dence can be factored out in the process. This leads to an ordi- 
nary differential equation for the nth mode: 

n 2 \ 2  d 2 1 d ~ )  
"-~pZ + p d p S . (p )  

a 4qn 
- D '  ( 8 )  

where 

h = [12(1 - uZ)aT0] 
(9) 

measures the strength of the thermal loading. 
When elastic buckling due to the thermal loading alone is 

concerned, qn = 0 and the governing Eq. (8) becomes homoge- 
neous. The corresponding free-edge boundary conditions are 

S~(1) + u[S~(1) - nZS.(1)] = 0 

for zero bending moment and 

S~'(1) + SZ(1) 

- S ~ ( 1 ) - n 2 [ ( 2 -  u)S~(1)-  ( 3 -  u)S.(1)] = 0  (11) 

for zero shear force along the outer edge. The continuity and 
smoothness at the center requires 

S.(0) = 0 (12) 
and 

S~(0) = 0, (13) 

respectively. The linear homogeneous system, Eq. (8) with qn 
= 0 and Eqs. ( 1 0 ) - ( 1 3 ) ,  has only the trivial solution S, ~ 0 
except for a set of discrete eigenvalues of k. The non-trivial 
solutions for S , (p )  at these special h's correspond to the buck- 
ling modes of the disk. 

4 The Formal Solution 

The method of Frobenius can be applied to obtain the comple- 
mentary solutions for Eq. (8). Let the solutions for S, assume 
the following form: 

S,.(p) = pS y~ cjpJ, (14) 
j=0 

and substitute this into Eq. (8) for S , (p ) .  After organizing 
terms according to the exponents of p, the allowable values for 
s are found to be 

S1, $2, $3, S 4 • ( n  + 2 ) ,  n, ( - n  + 2), - n .  ( 1 5 )  

In addition, Cl = 0 in all cases. It can be shown that only s 
= n + 2 and s = n lead to valid independent power-series 
complementary solutions to Eq. (8). The remaining two com- 
plementary solutions to Eq. (8) can be obtained by using a 
standard procedure (e.g., Hildebrand, 1976, Chap. 4). They are, 
however, singular and correspond to unbounded shear forces at 
the center. 

The regular power-series solutions derived with s = n + 2 
and s = n thus constitute the complete solution for the full disk 
under thermal loading alone. We shall call these two regular 
power-series solutions Unl and u,2 for later references, where 

u,.~(p) = p"+2(1 + ~ ajp j) (16) 
j=z 

and 

ec 

Un2(P ) = pn(1 -b Z hip J) • ( 1 7 )  
j=2 

(10) The recursion formula is given by 

ai+ 2 : 

I i  kai for 
i +  2)(2n + i +  2) 

+ 2 ) ( 2 n + i + 2 )  

0 - < i _ < ( m -  1) 

m(n  2 + n + i ) -  i(2n + i) 

i ( i  + 2)(2n + i)(2n + i + 2) 
ai-m] for m -~ i 

(18) 
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where a0 = 1 and al = 0, as indicated in Eq. (16).  Replacing 
a~ with b~ in Eq. (18) gives the recursion relation for the coeffi- 
cients of u,,2. 

With the exceptions of  n = 0 and n = 1, u, 1 and u,z automati- 
cally satisfy the continuity and smooth conditions (12) and ( 13 ) 
at the disk center. The complete solution Sn(p) is thus a linear 
combination of U.l(p) and u.2(p):  

S,,(p) = Au.~(p) + Bu.2(p). (19)  

One needs simply to meet the homogeneous moment and shear- 
force boundary conditions with eigenvalues of h and suitable 
B/A's to get the non-trivial solutions for the buckled disk. 

5 Except ions  

The complementary solutions Uo = 1 and u, = p represent 
rigid-body translation and rotation, respectively, regardless the 
value of k. They are not of interest and need to be removed in 
the particular solution (19).  

n = 0. For this axially symmetric case, B in Eq. (19) has 
to be zero so that the boundary condition (12) is satisfied. It 
may seem to be a problem how So (p) alone, 

So(p) = Auol(p) = Ap2( l  + ~ ajpJ), (20) 
j=2 

could satisfy both outer boundary conditions (10) and (11) 
with A ~ 0, Consider a concentric portion of the disk that 
has a radius of p. Its out-of-plane force equilibrium equation 

27rpQr(p) = -27ra f~ p'qo(p')dp'  = 0, can be simplified 

using the r-component  of Eq. (6) :  

d-p ~p \ ~ p / j  - -  ~kgrr(p) = 0, (21) 

which in turn reduces to the zero-shear-force boundary condi- 
tion (11) at p = 1. Since the Solution So always satisfies this 
force equilibrium condition, it is clear that only the bending- 
moment boundary condition (10) remains to be satisfied by the 
eigenvalues of k for non-trivial So to exist. 

n = 1. Similar to the previous case, B must be zero in Eq. 
(19) so that the boundary condition (13) is satisfied. We again 
have only one variable X in the solution St = Au,  to satisfy 
both boundary conditions (10) and (11 ) at buckling. Consider 
the torque T on the same concentric portion of  the disk. Let T, 
and T2 be the components of T along the axis directions of  a 
Cartesian system. Recognizing that Nee = 0, we have 

T, = ap dO(-M~ sin 0 + M~o cos 0 

+ Q,ap sin 0 - grrw sin O) (22) 

and 

f? T2 = ap dO(Mr~ cos 0 + M~o sin 0 

- Q,ap cos 0 + Nrrw COS 0). (23) 

The shear-force component Qr and the bending/twisting mo- 
ments Mrs, M~o can be expressed in terms of w using the r- 
component of Eq. (6) and the Kirchoff kinematic assumptions 
for plates. Substituting aS,(p)e i"° for w in the torque-equilib- 
rium equations, T, = 0 and Tz = 0, it can be shown that only 
n = 1 results in a non-trivial identity: 

3 S t ( p )  3S t (p )  
S'(' ( p ) p----5--- + p ~  

- K g ~ ( p ) [ S ~ ( p ) - S ' ( P ) ]  = O . p  (24) 

B R I E F  N O T E S  

Table 1 Lowest eigenvalues (~cr) of X for thermal buckling when the 
Poisson's ratio is 0.3. The cases of m = 1, 2 and 3 indicate a radial 
temperature distribution that is linear, quadratic, and cubic, respectively. 

717.= 1 m = 2  mr=3 

n To<0 T o > 0  T o < 0  To>O To<0 T o > 0  

O --15.52 -9.829 -7.935 

1 -49.70 -31.22 -25.07 

2 -138 .0  11.84 --76.29 7.234 - 5 7 . 0 8  5.697 

3 -299 .0  22.26 - 1 5 3 . 6  13.06 - 1 0 9 . 1  9.993 

4 --504.7 35.22 --255.3 20.19 - 1 7 8 . 6  15.17 

At p = 1, Eq. (24) becomes identical to the difference between 
boundary conditions (10)  and (11).  Hence, only one of  these 
two boundary conditions needs to be used in solving for the 
eigenvalues of k when n = 1. 

6 T h e  E igen va lu es  

The eigenvalues for h are obtained numerically using u,, and 
u,,2 constructed with the recursion formula (18) and the bound- 
ary conditions (10) and (11).  When n = 0 and 1, only u,,, and 
the bending-moment boundary condition (10) are needed. 

Listed in Table 1 are some of the smallest eigenvalues of k, 
Xcr, for the internal membrane-force states considered and v = 
0.3. We shall focus on the lowest eigenvalue in each column 
since they are of  most practical importance? 

Analogous to a circular disk under radial compression, the 
buckled disk maintains the polar symmetry (n = 0) for To < 
0 and has the dome shape. A saddle shape with n = 2, however, 
occurs as the first buckling mode when To is positive. There is 
no analogue to an externally loaded disk. 

It is seen that the critical value of X, Xcr, decreases as the 
value of m increases. The critical center-to-edge temperature 
difference, I T0.c,[ = [(m + 2 ) /12(1  - u2)a](h/a)21Xcr I, how- 
ever, varies slowly with the value of m. It is curious to note 
that the value of I T0.t,.I drops less than 20 percent from m = 1 
to m = 2 and is practically the same for m = 2 and m = 3, The 
critical values of X for v = 0.2, 0.4 and 0.5 show the same 
behavior. Since buckling is sensitive to structural imperfections 
and material inhomogeneity, the change of To.or due to changes 
in the detailed temperature distribution can be regarded as insig- 
nificant. For practical purposes, approximating the temperature 
distribution linearly might be sufficient. 

7 Con c lu s ion s  

We have presented some examples of circular-disk buckling 
due to internal membrane-force fields. The analysis gives the 
thresholds for different buckling modes in terms of the critical 
thermal-loading parameter To .... Only the dome and saddle- 
shaped buckling modes are of physical significance. The saddle- 
shaped buckling mode due to an axially symmetric loading in 
a full disk presents an interesting case of  symmetry breaking 
not seen when only external loading is involved. It is also found 
that the buckling threshold T0.c, is only weakly dependent on 
the detailed temperature distribution for both modes. 

9 It can be proved based on minimum potential energy that no positive eigen- 
value for k exists for n = 0 and non-negative or,, distribution. In the case of n = 
1. root-search up to 500 for ~r found nothing. It is speculated that positive he, 
may only exist in some odd internal membrane-force states. The proof in the n 
= 0 case is not shown here for brevity. 
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A Numerical  Investigation of the 
Elas tothermodynamic  Damping  of 
Fiber-Reinforced Metal-Matrix 
Composites  

K. B. Milligan ~o and V. K. Kinra n 

Introduction 
A problem of current interest to the composites community 

is the calculation of elastothermodynamic damping (ETD) in 
continuous fiber-reinforced metal-matrix composites (MMCs). 
As a first step in that direction, we recently reported an exact 
solution for ETD of a continuous fiber of circular cross-section 
embedded in a concentric matrix (Milligan and Kinra, 1994); 
this model will be referred to as the circular matrix model 
(CMM). The CMM suffers from several limitations; for exam- 
pie, the heat conduction is confined to only one (the radial) 
direction. Also, using the CMM with a fixed radius (i.e., a fixed 
volume fraction, V:), one cannot fill the entire space. We cannot 
use the composite cylinders (static) model of Hashin and Rosen 
(1964) where a continuous gradation of the fiber radius is used. 
In our (dynamic) model the damping is frequency dependent, 
and, therefore, we must use fibers of a fixed radius. Moreover, 
using the CMM we cannot estimate the effect of randomness 
in fiber distribution on the ETD. Addressing these limitations 
in the CMM is the objective of the present work. 

Recently we developed a numerical technique for calculating 
ETD for a variety of planar problems where the heat conduction 
may occur in both in-plane directions (Milligan, 1994). Using 
this technique, we present a numerical solution to a more realis- 
tic model of a MMC: a circular fiber embedded in a square 
matrix; for brevity, we will refer to it as the square matrix 
model (SMM). It is obvious that we can fill the entire space 
using SMM representative volume elements (RVEs). For iden- 
tical fiber size and volume fraction, we will compare the results 
of the CMM and SMM. We will also examine - -  to a first 
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Fig. 1 The volume-averaged damping of a fiber-reinforced metal-matrix 
composite using the circular matrix model for the SiC/Mg material com- 
bination under uniform radial load, To = 300 K. 

approximation - -  the effect of a random distribution of fibers 
on ETD. 

Analytical Results: Circular Matrix Model 
We define a normalized frequency ~2 = ~vpca2/k where p, 

c, and k are the density, specific heat per unit mass, and thermal 
conductivity, respectively, of the fiber; w is the frequency of 
vibration of the loading; and a is the fiber radius. Let • be the 
volume-averaged specific damping capacity. For a SiC fiber in 
a magnesium matrix subjected to a uniform radial loading, we 
reported ~ versus f~ for the CMM for 0 --< f~ -< 20 (Milligan 
and Kinra; 1994). For a later comparison with the numerical 
results for the SMM, we begin by presenting in Fig. 1 a plot 
of • versus ~2 over a much broader range of frequencies (see 
Table 1 for the elastothermodynamic properties of these materi- 
als). By way of comparison, the damping for a magnesium 
beam in pure bending is also shown (Kinra and Milligan, 1994); 
the total beam height was taken to be 2a. A peak damping of 
about four percent is achieved over a broad range of volume 
fractions (30 percent _< V: -< 60 percen0. An observation of 
great practical use is that a significant damping is obtained over 
a broad range of frequencies. Unlike the beam damping, the 
CMM damping is not symmetric about its peak value. The 
frequency at which • attains a maximum increases by an order 
of magnitude as V: increases. 

Numerical Results: Square Matrix Model 
In the present context we consider only the plane-strain condi- 

tion and the SiC/Mg material combination. Due to the symmetry 
of the problem, it is necessary to model only one quarter of 
the fiber/matrix region. Calculations were carried out for three 
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Elastothermodynamio properties of oonstituent materials 

p E k c a 
(103kg/m 3) (GPa) (J/s-m-K) (J/kg-K) (10-6/K)  

1.74 44 154 1030 27.1 
3.26 460 90.0 1330 4.3 

u=0 .333 fo r  each materlal 
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Introduction 
A problem of current interest to the composites community 

is the calculation of elastothermodynamic damping (ETD) in 
continuous fiber-reinforced metal-matrix composites (MMCs). 
As a first step in that direction, we recently reported an exact 
solution for ETD of a continuous fiber of circular cross-section 
embedded in a concentric matrix (Milligan and Kinra, 1994); 
this model will be referred to as the circular matrix model 
(CMM). The CMM suffers from several limitations; for exam- 
pie, the heat conduction is confined to only one (the radial) 
direction. Also, using the CMM with a fixed radius (i.e., a fixed 
volume fraction, V:), one cannot fill the entire space. We cannot 
use the composite cylinders (static) model of Hashin and Rosen 
(1964) where a continuous gradation of the fiber radius is used. 
In our (dynamic) model the damping is frequency dependent, 
and, therefore, we must use fibers of a fixed radius. Moreover, 
using the CMM we cannot estimate the effect of randomness 
in fiber distribution on the ETD. Addressing these limitations 
in the CMM is the objective of the present work. 

Recently we developed a numerical technique for calculating 
ETD for a variety of planar problems where the heat conduction 
may occur in both in-plane directions (Milligan, 1994). Using 
this technique, we present a numerical solution to a more realis- 
tic model of a MMC: a circular fiber embedded in a square 
matrix; for brevity, we will refer to it as the square matrix 
model (SMM). It is obvious that we can fill the entire space 
using SMM representative volume elements (RVEs). For iden- 
tical fiber size and volume fraction, we will compare the results 
of the CMM and SMM. We will also examine - -  to a first 
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approximation - -  the effect of a random distribution of fibers 
on ETD. 

Analytical Results: Circular Matrix Model 
We define a normalized frequency ~2 = ~vpca2/k where p, 

c, and k are the density, specific heat per unit mass, and thermal 
conductivity, respectively, of the fiber; w is the frequency of 
vibration of the loading; and a is the fiber radius. Let • be the 
volume-averaged specific damping capacity. For a SiC fiber in 
a magnesium matrix subjected to a uniform radial loading, we 
reported ~ versus f~ for the CMM for 0 --< f~ -< 20 (Milligan 
and Kinra; 1994). For a later comparison with the numerical 
results for the SMM, we begin by presenting in Fig. 1 a plot 
of • versus ~2 over a much broader range of frequencies (see 
Table 1 for the elastothermodynamic properties of these materi- 
als). By way of comparison, the damping for a magnesium 
beam in pure bending is also shown (Kinra and Milligan, 1994); 
the total beam height was taken to be 2a. A peak damping of 
about four percent is achieved over a broad range of volume 
fractions (30 percent _< V: -< 60 percen0. An observation of 
great practical use is that a significant damping is obtained over 
a broad range of frequencies. Unlike the beam damping, the 
CMM damping is not symmetric about its peak value. The 
frequency at which • attains a maximum increases by an order 
of magnitude as V: increases. 

Numerical Results: Square Matrix Model 
In the present context we consider only the plane-strain condi- 

tion and the SiC/Mg material combination. Due to the symmetry 
of the problem, it is necessary to model only one quarter of 
the fiber/matrix region. Calculations were carried out for three 
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Fig. 2 A comparison of the radial load case for the circular matrix model 
with the biaxial case for the square matrix model: the volume-averaged 
damping as a function of normalized frequency for the SiC/Mg material 
combination. To = 300 K. 

representative volume fractions of fibers: Vf = 30 percent, 50 
percent, and 70 percent. First we consider the RVE subjected 
to a homogeneous, biaxial boundary displacement perpendicular 
to the square boundary. The numerical results for the SMM 
(discrete points) are compared with the CMM (continuous 
lines) in Fig. 2. For Vy ~ 50 percent the agreement is considered 
very good. At the higher volume fraction, Vf = 70 percent, the 
agreement is good except near the peak. 

Although the SMM is superior to the CMM in that using a 
square RVE one can fill the entire space, an obvious drawback 
is that the resulting fiber arrangement is a periodic square array. 
In most MMCs the fibers are distributed in a fairly random 
manner. As a first step in understanding the influence of random 
fiber distribution on ~P, we consider one row of square RVEs 
in which pairs of adjacent fibers are shifted toward one another 
by an equal amount c (see Fig. 3). It is obvious that after this 
transformation, the RVE boundaries still remain adiabatic. Let 
6 = c/b, and let ~=o  be the damping when the fibers are not 
shifted (6 = 0). In Fig. 4 we have plotted ~/~6=0 versus 6 for 
V: = 50 percent and 70 percent. The effect of the fiber shift on 
the overall damping is considered to be negligibly small for 
most engineering applications. (The fibers in the neighboring 
RVEs contact each other when 6 = 1 - (4Vf/Tr)I/2.) We con- 
clude that for all practical purposes, the effect of random distri- 
bution of fibers on • may be neglected. 

Our attention so far has been confined to biaxial loading. 
We now consider the SMM subjected to a uniaxial loading, in 
particular,.to a homogeneous, uniaxial boundary displacement 
perpendicular to the square boundary. The damping, ~,  is plot- 
ted in Fig. 5. The discrete numerical results have been joined 
by smooth spline curve fits for visual clarity. Note that ~' for 
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Fig, 5 The uniaxial case for the square matrix model: the volume-aver- 
aged damping as a function of normalized frequency for the SiC/Mg 
material combination. To = 300 K, 

biaxial loading is roughly three times larger that that for the 
uniaxial loading. Elsewhere (Bishop and Kinra, 1994) it has 
been shown that the ETD for a plate subjected to biaxial bending 
is about three times higher than the ETD for a beam subjected 
to uniaxial bending. The essential physics for the two cases is 
identical (i.e., higher hydrostatic stress for the case of biaxial 
loading); therefore, for brevity, the detailed discussion given 
by Bishop and Kinra (1994) will not be repeated here. 

Conclusions 
For biaxial loading the closed form solution presented by the 

authors for elastothermodynamic damping in continuous fiber- 
reinforced metal-matrix composites (Milligan and Kinra, 1994) 
is an adequate engineering approximation for Vf -< 50 percent. 
For higher V/the CMM overpredicts the damping near its peak. 
For uniaxial loading, the damping is significantly smaller (about 
one-third) than that for biaxial loading as expected. A random 
versus a periodic distribution of fibers in the composite has very 
little effect on the damping. 
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Frequency spectra for odd modes of circumferential order four 

Vibrations of Solid Cylinders 
Revisited 

J. R. H u t c h i n s o n  12 

This brief note is a revisit to my previous paper on this 
subject, Hutchinson (1980). The reason for this revisit is three- 
fold: 

• to correct an error in the plots shown for the circumferential 
order four. 

• to extend the range of the graphical data shown in the origi- 
nal paper. 

• to consider modes of higher circumferential order. 

In the referenced paper the solution of the governing three- 
dimensional equations of linear elasticity tosether with appro- 
priate boundary conditions is found by forming three series of 
exact solutions of the governing equations which also identi- 
cally satisfy three of the boundary conditions. The remaining 
three boundary conditions are satisfied by orthogonalization on 
the boundary. The solution process leads to a matrix eigenvalue 
problem with the order of the matrix being the number of the 
terms in one of the series. 

Solutions are split into "even" and "odd" functions. The 
even functions are defined as those that have the radial and 
tangential displacements as even functions of the axial coordi- 
nate and the axial displacement as an odd function of the axial 
coordinate. For example, for small thickness to diameter ratio 
the odd modes are the plate bending modes. The parameters in 
the problem are the frequency parameter, the height-to-diameter 
ratio, the circumferential order, and Poisson's ratio, The dimen- 
sionless frequency parameter is the frequency times the radius 
divided by the shear wave velocity. 
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Fig. 2 Frequency spectra for even modes of circumferential order four 

In the previous paper there was an error in the plots for 
circumferential order four. The error was caused by a defective 
subroutine for computation of the modified Bessel Functions. 
The subroutine gave correct answers for circumferential order 
of zero, one, and two. It had the potential of causing problems 
for circumferential order three, but did not cause any trouble in 
the range considered. For circumferential order four, however, 
it caused a number of false roots to be predicted. The errant 
subroutine has been replaced and the program works well for 
all cases tried. 

Result were found for the six lowest frequencies correspond- 
ing to both the even and odd modes, for height-to-diameter 

Fig. 3 
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BRIEF NOTES 

ratios from zero to four, and circumferential wave numbers 
from zero to nine. Since the previous results for circumferential 
order zero to three were correctly shown and because results 
for circumferential order four through nine are similar, only the 
plots for circumferential order four and five are shown (Figs. 
1-4) .  These plots are for a Poisson's ratio of  0.300, however, 
the effect of  Poisson's ratio is slight for the modes of circumfer- 
ential order four and five. A Poisson's ratio of  0.250 produces 
frequency parameters which are between 0.0 percent and 3.2 
percent lower than for a Poisson's ratio of  0.300. A Poisson's 
ratio of 0.350 produces frequency parameters which are between 
0.0 percent and 3.5 percent higher than for a Poisson's ratio of 
0.300. For height-to-diameter ratios greater than about 1.25, the 
discrepancy is less than one percent. The frequency sprecta 
curves for this range of Poisson's ratio are almost identical in 
shape. 

Fig, 4 Frequency spectra for even modes of circumferential order five 
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O n  Y o u n g ' s  M o d u l u s  for Anisotropic  
M e d i a  

P. Boulanger 13 and M. Hayes 14 

I f  a piece o f  homogeneous anisotropic elastic material is subject 
to simple tension along a direction n for  which Young ' s modulus 
E ( n  ) is an extremum, then the corresponding strain field is 
coaxial with the simple tension stress field. An appropriate set 
o f  rectangular cartesian coordinate axes may be introduced 
such that three o f  the elastic compliances are zero. In this 
coordinate system the displacement field may be written explic- 
itly and corresponds to a pure homogeneous deformation. 

1 Introduction 
Within the context of lineafized elasticity theory let the con- 

stitutive equation for a homogeneous anisotropic elastic material 
be 

e U = Sukltkt, ( 1 ) 

where e 0 are strain components, Sukl are the compliances, as- 
sumed to be constant and to have the symmetries 

S~kl = Sjikl = Sijtk = Skl~, (2) 

and tkl are the stress components. 
Let 

t~ = Tninj, hint = 1, (3) 
where T is a constant. This corresponds to simple tension of 
amount T in the direction n. Then 

e o = TS;jktnknt (4) 

~3 Dtpartement de Mathtmatique, Universit6 Libre de Bruxelles, Campus Plalne 
C,P,218/1, 1050 Bruxelles, Belgium. 
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and e ( n )  -= eon~n J, the change in length per unit initial length 
of  an element along n in the undeformed state, is given by 

e ( n )  =- eijninj = TSijklninjnknt. (5) 

Young's  modulus E ( n ) ,  defined by T = E ( n ) e ( n ) ,  is given 
by (Love, 1927; Sirotine and Chaskolskaia, 1984) 

E ( n )  = 1/ ( Soklni ninknl ) . (6) 

The strain-energy density per unit mass W is given by 

2 W  = rue U. (7) 

It is assumed that W is positive. In the present case 

2W = Te(n)  = T21E(n) (8) 

so that E ( n )  > 0. It may be noted for a given tension T, that 
the energy density W is maximum for a direction n when the 
Young's  modulus E ( n )  is least and W is minimum for a direc- 
tion n for which E ( n )  is greatest. 

2 Extrema of E ( n )  
In order to determine those directions n for which E ( n )  is 

an extremum we write 

1 
E ( n )  = + 2h(njnj - 1), (9) 

Sijktnl njnknl 

where k is a Lagrange multiplier. Diffcrcntating (9) with respect 
to %, equating to zero and using the symmetries (2) ,  gives 

E(n)Sok~njnwl = nl. (10) 

Equation (10) has a similar structure to the equation determin- 
ing those directions n for which a purely longitudinal wave may 
propagate (Fedorov, 1968; Kolodner, 1966; Truesdell, 1966). 
It possesses at least two solutions. 

3 Displacement Field 
Without loss of generality we assume that a direction n for 

which (10) has a solution is along Ox3. Thus ni = 6i3 and 

tij = Tti36j3, e U = TS~33. (11)  
From (10) 

E(n)Si333 = ~i3, (12) 
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ratios from zero to four, and circumferential wave numbers 
from zero to nine. Since the previous results for circumferential 
order zero to three were correctly shown and because results 
for circumferential order four through nine are similar, only the 
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and e ( n )  -= eon~n J, the change in length per unit initial length 
of  an element along n in the undeformed state, is given by 

e ( n )  =- eijninj = TSijklninjnknt. (5) 

Young's  modulus E ( n ) ,  defined by T = E ( n ) e ( n ) ,  is given 
by (Love, 1927; Sirotine and Chaskolskaia, 1984) 

E ( n )  = 1/ ( Soklni ninknl ) . (6) 

The strain-energy density per unit mass W is given by 

2 W  = rue U. (7) 

It is assumed that W is positive. In the present case 

2W = Te(n)  = T21E(n) (8) 

so that E ( n )  > 0. It may be noted for a given tension T, that 
the energy density W is maximum for a direction n when the 
Young's  modulus E ( n )  is least and W is minimum for a direc- 
tion n for which E ( n )  is greatest. 

2 Extrema of E ( n )  
In order to determine those directions n for which E ( n )  is 

an extremum we write 
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E ( n )  = + 2h(njnj - 1), (9) 

Sijktnl njnknl 

where k is a Lagrange multiplier. Diffcrcntating (9) with respect 
to %, equating to zero and using the symmetries (2) ,  gives 

E(n)Sok~njnwl = nl. (10) 

Equation (10) has a similar structure to the equation determin- 
ing those directions n for which a purely longitudinal wave may 
propagate (Fedorov, 1968; Kolodner, 1966; Truesdell, 1966). 
It possesses at least two solutions. 

3 Displacement Field 
Without loss of generality we assume that a direction n for 

which (10) has a solution is along Ox3. Thus ni = 6i3 and 
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and hence 

51333 = 0 ,  52333 = 0 ,  (13) 

Then, from ( 11 ), 

el3 : e23 : 0 .  (14) 

It follows that the strain tensor e, with components eij, is 
coaxial with the stress tensor t, with components tij. Indeed, 
the principal axes of e are along n and two orthogonal directions, 
in the x~x2-plane, which depend upon the values of ell ,  e22, el2. 
These axes are also principal axes of t - -  but not conversely, 
because the principal axes of t are along n and two arbitrary 
directions in the XlX2-plane. 

A new set of rectangular cartesian axes Ox[x~x~ is now 
introduced. These are chosen to be the principal axes of e and 
are obtained by rotating the set OXlX2X3 about Ox3 through an 
angle 0 given by (Norris, 1989) 

253312 
tan 20 $3311 - -  5 3 3 2 2  (15) 

so that 

X~ : 53,  

x; = X l C O S O + x 2 s i n O ,  

x~ = -x~ sin 0 + xz cos 0. (16) 

In the new system 

5~312 : 0 .  (17) 

Also, using (13),  

S;313 = 5;323 = 0. (18) 
Thus three of the compliances are zero in the Ox~x~x~ system. 

Hence 

e~2 = e~3 = e~3 = 0, (19) 

ell = TS~m, e~2 = TS~233, e~3 = TS~333, (20)  

Thus, ignoring rigid-body deformations, it follows that the dis- 
placement components u[ in the Ox~x~x~ system are given by 
the pure homogeneous deformation 

U~ : TS~i33x~, u~ : TS~233x~, u~ : ZS~333x ~. ( 2 1 )  
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On Kinematical Conditions for 
Steady Motions of Strings and Rods 

T. R. Nordenholz lsa7 and O. M. O'Reilly 1657 

Introduction 
The purpose of this note is to establish the necessity and 

sufficiency of a representation for particular motions of rod-like 
bodies which are modeled as directed curves. These motions are 
defined by three conditions and are referred, to here as steady. 
The result is valid for a body modeled using an arbitrary number 
of deformable directors. Although the result includes strings as 
a special case, TM we find it convenient to establish the result 
for strings first. The representation is useful for formulating 
boundary value problems for drawn rods. 

The vast majority of studies on steady motions of strings and 
rods have used an inextensible constrained rod theory or an 
inextensible string theory. For theories of this type, the position 
vector r of a material point during a steady motion has the 
representation 

r = r(0,  t) = r ( 0  + ct), (1) 

where the convected coordinate 0 uniquely identifies a material 
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point, c is the constant speed of the material point as it moves 
along a fixed space curve C and 0 + ct may be conveniently 
identified as the arc-length parameter of C (c f ,  e.g., Cohen 
and Epstein (1994) or Wickert and Mote (1990)) .  For these 
particular constrained theories, the representation (1) is re- 
garded as classical. For nonlinearly elastic strings it is easy to 
see that a representation of the form (1) represents a steady 
motion of the string and this has motivated several successful 
semi-inverse type analyses (cf., e.g., Healey and Papadopoulos 
(1990) or O'Reil ly and Varadi (1995)) .  However, it is not 
clear exactly what class of motions is encompassed by represen- 
tations of the form ( 1 ). We will show that motions of the form 
(1) are necessarily steady motions, as defined by Green and 
Laws ( 1968, section 4),  for rod-like bodies which are modeled 
using a string or directed theory. In other words, a representation 
of the form ( 1 ) encompasses all steady motions as defined by 
Green and Laws. 

The reader is referred to the review article by Naghdi (1982) 
for relevant background information and references on directed 
theories of rods. Further details, pertaining to constrained rod 
theories, are contained in Naghdi and Rubin (1984). 

Strings 

A string is modeled as a deformable material curve ~' whose 
motion is specified by a vector valued function r = r(0,  t). 
This function uniquely identifies the location of a material point 
at a given instant t, where the material point is uniquely identi- 
fied by the convected coordinate 0. For future purposes we 
define a fixed space curve C which has the parametric represen- 
tation 

m = m ( ~ )  = x ( ( ) ~  + y(~)% + z(~)e~, (2) 

where ( is a suitably chosen coordinate which uniquely identi- 
fies points on C. 

The motion of interest is assumed to satisfy three conditions: 
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and hence 

51333 = 0 ,  52333 = 0 ,  (13) 

Then, from ( 11 ), 

el3 : e23 : 0 .  (14) 

It follows that the strain tensor e, with components eij, is 
coaxial with the stress tensor t, with components tij. Indeed, 
the principal axes of e are along n and two orthogonal directions, 
in the x~x2-plane, which depend upon the values of ell ,  e22, el2. 
These axes are also principal axes of t - -  but not conversely, 
because the principal axes of t are along n and two arbitrary 
directions in the XlX2-plane. 

A new set of rectangular cartesian axes Ox[x~x~ is now 
introduced. These are chosen to be the principal axes of e and 
are obtained by rotating the set OXlX2X3 about Ox3 through an 
angle 0 given by (Norris, 1989) 

253312 
tan 20 $3311 - -  5 3 3 2 2  (15) 

so that 

X~ : 53,  

x; = X l C O S O + x 2 s i n O ,  

x~ = -x~ sin 0 + xz cos 0. (16) 

In the new system 

5~312 : 0 .  (17) 

Also, using (13),  

S;313 = 5;323 = 0. (18) 
Thus three of the compliances are zero in the Ox~x~x~ system. 

Hence 

e~2 = e~3 = e~3 = 0, (19) 

ell = TS~m, e~2 = TS~233, e~3 = TS~333, (20)  

Thus, ignoring rigid-body deformations, it follows that the dis- 
placement components u[ in the Ox~x~x~ system are given by 
the pure homogeneous deformation 

U~ : TS~i33x~, u~ : TS~233x~, u~ : ZS~333x ~. ( 2 1 )  

References 
Fedorov, F. I., 1968, Theory of elastic waves in crystals (translated by J, E. S. 

Bradley), Plenum Press, New York, Chapter 3 pp. 101-102, 
Koledner, I., 1966, "Existence of longitudinal waves in anisotropic media," 

Journal of the Acoustical Society of America, Vol. 40, pp. 730-731. 
Love, A. E. H., 1927, Mathematical theory of elasticity, 4th ed., Cambridge 

University Press, Cambridge, U.K., pp. 107-108. 
Norris, A., 1989, " O n  the acoustic determination of the elastic moduli of 

anisotropic solids and acoustic conditions for the existence of symmetry planes," 
Quarterly Journal of Mechanics and Applied Mathematics, Vol. 42, pp. 
413-426.  

Sirotine, Y., and Chaskolskaia, M., 1984, Fondements de la physique des 
cristaux, Editor s MIR, Moscou, pp. 179-183. 

Tmesdell, C., 1966, "Existence of longitudinal waves," Journal of the Acousti- 
cal Society of America, Vol. 40, pp. 729-730.  

On Kinematical Conditions for 
Steady Motions of Strings and Rods 

T. R. Nordenholz lsa7 and O. M. O'Reilly 1657 

Introduction 
The purpose of this note is to establish the necessity and 

sufficiency of a representation for particular motions of rod-like 
bodies which are modeled as directed curves. These motions are 
defined by three conditions and are referred, to here as steady. 
The result is valid for a body modeled using an arbitrary number 
of deformable directors. Although the result includes strings as 
a special case, TM we find it convenient to establish the result 
for strings first. The representation is useful for formulating 
boundary value problems for drawn rods. 

The vast majority of studies on steady motions of strings and 
rods have used an inextensible constrained rod theory or an 
inextensible string theory. For theories of this type, the position 
vector r of a material point during a steady motion has the 
representation 

r = r(0,  t) = r ( 0  + ct), (1) 

where the convected coordinate 0 uniquely identifies a material 

~5 Graduate Student. 
~6 Assistant Professor. Assoc. Mem. ASME. 
~7 Department of Mechanical Engineering, University of California at Berkeley, 

Berkeley, CA 94720-1740. 
is We recall that a suing theory can be obtained as a special case of directed 

rod theory by, among others, omitting the director fields. 
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY 

OF MECHANICAL ENGINEERS for publication in the A S M E  JOURNAL OF APPLIED 
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, 
Nov. 21, 1994; final revision, Mar. 27, 1995. Associate Technical Editor: S. W. 
Shaw. 

point, c is the constant speed of the material point as it moves 
along a fixed space curve C and 0 + ct may be conveniently 
identified as the arc-length parameter of C (c f ,  e.g., Cohen 
and Epstein (1994) or Wickert and Mote (1990)) .  For these 
particular constrained theories, the representation (1) is re- 
garded as classical. For nonlinearly elastic strings it is easy to 
see that a representation of the form (1) represents a steady 
motion of the string and this has motivated several successful 
semi-inverse type analyses (cf., e.g., Healey and Papadopoulos 
(1990) or O'Reil ly and Varadi (1995)) .  However, it is not 
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tations of the form ( 1 ). We will show that motions of the form 
(1) are necessarily steady motions, as defined by Green and 
Laws ( 1968, section 4),  for rod-like bodies which are modeled 
using a string or directed theory. In other words, a representation 
of the form ( 1 ) encompasses all steady motions as defined by 
Green and Laws. 

The reader is referred to the review article by Naghdi (1982) 
for relevant background information and references on directed 
theories of rods. Further details, pertaining to constrained rod 
theories, are contained in Naghdi and Rubin (1984). 

Strings 

A string is modeled as a deformable material curve ~' whose 
motion is specified by a vector valued function r = r(0,  t). 
This function uniquely identifies the location of a material point 
at a given instant t, where the material point is uniquely identi- 
fied by the convected coordinate 0. For future purposes we 
define a fixed space curve C which has the parametric represen- 
tation 

m = m ( ~ )  = x ( ( ) ~  + y(~)% + z(~)e~, (2) 

where ( is a suitably chosen coordinate which uniquely identi- 
fies points on C. 

The motion of interest is assumed to satisfy three conditions: 

820 / Vol. 62, SEPTEMBER 1995 Transactions of the ASME 
Copyright © 1995 by ASME

Downloaded 04 May 2010 to 171.66.16.28. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



( i)  The material curve £ moves along a fixed curve C. 
(ii)  The velocity vector v of  a material point of  £ is a func- 

tion of  ~ only. 
(ii i)  The vector Or~O~9 is a function of ~ only. 

As in Green and Laws (1968),  a steady motion of  £ is defined 
by conditions ( i ) -  ( i i i) .  

It was noted by Green and Laws that steady motions in the 
s e n s e  used here do not encompass all three-dimensional steady 
motions as defined by Truesdell and Toupin ( 1960, section 67 ), 
for instance. In this respect, it is illustrative to consider a motion 
which is steady in the three-dimensional sense but which is not 
steady in the sense used here. Suppose an infinitely long string 
is being stretched during the motion 

r(/9, t) = /ge~'e~ = ~e~, k > 0. (3) 

Clearly 

O r  
v = v(~)  = k~e~, - - =  eX'ex, (4) 

0/9 

and this motion satisfies conditions ( i ) - ( i i )  but not (i i i) .  
With the preliminaries aside, we now establish the desired 

result for strings. In the course of the proof, the necessary and 
sufficient functional relationship between/9 and ~ for a motion 
of  g which satisfies conditions ( i ) - ( i i i )  will be established. 

T h e o r e m  1: A motion of a material curve is steady if and 
only if the position vector r has the following representations: 

r = r ( /9 ,  t )  = r ( 0  + ct), (5) 

where c is a constant. 

Proof .  We first prove the necessary part of the assertion. 
Condition (i)  and (2) imply that 

r = r(/9, t) = m = m ( { ) .  (6) 

This relation and our earlier comments on r(/9, t) and m ( { )  
imply the existence of a function ~ = 4(/9, t) which at each 
instant t is invertible: /9 = 0(~, t). This permits a different 
representation for the function r :  

r = r(/9, t) = r (0 (~ ,  t) ,  t) = ~(~). (7) 

Using (7) ,  we obtain an expression for the velocity of  a material 
point: 

Or 0 f  04 (0, t) = V(~, t). (8) 
v : ~ t  (/9, t) : o-~ 0-7 

Imposing condition (ii) on (8) ,  we obtain the relation 

0--2 (/9, t) = g , (~) .  (9)  
Ot 

In parallel with the 
posed by condition 
assistance of (7) ,  we first note that 

Or 0~ 04 
o~ (/9, t) = o~  o~ (/9, t). 

Imposing condition ( i i i ) ,  it follows from (10) that 

establishment of (9) ,  the restrictions im- 
(ii i)  on (7) are now considered. With the 

(10) 

04 
0--0 (/9, t) = g2(~). (11) 

It should be noted for future purposes that the invertibility of  
implies that gz (~)  ~ O. 

BRIEF NOTES 

We next determine the combined consequences of conditions 
( i i ) -  (ii i)  on 4- First we integrate ( 11 ): 

f ( ~ )  = - /9 + h ( t ) ,  (12) 
o g2(u )  

where we have subsumed any arbitrary constants into the func- 
tions f and h. After noting from (12) that f is invertible, it 
follows that 

= ~(/9 + h ( t ) ) .  (13) 

To consider the additional restrictions placed on ( 13 ) by condi- 
tion ( i i ) ,  we first differentiate (13) with respect to t and then 
use ( 12): 

0 ( ~ , ( f ( ~ ) )  dh 
0"-7 = -~f ( t ) ,  (14) 

where ' denotes the derivative of ~ with respect to its argument. 
However  from (9) ,  (14) is necessarily independent of t, and 
hence 

dh 
- -  = c ,  ( 1 5 )  
dt  

where c is a constant. After combining (13) and (15),  it is easy 
to see that ~ = 4(0 + c t ) .  The proof of  necessi[y is completed 
by substituting this final functional form gf ( into (7) and 
appropriately redefining ~(~).  

To establish the sufficiency part of the assertion, we first note 
that (5) implies condition (i)  automatically. The remaining 
conditions, (ii)  and ( i i i ) ,  follow trivially. 

R o d s  

We now consider a rod-like body which is modeled using a 
directed or Cosserat curve. A directed curve is a material curve 
g to which a set of  N deformable vectors di = di (/9, t) ,  i = 1, 
. . . .  N, at each point/9 are defined (cf., e.g., Naghdi, 1982). 
To establish the desired result for steady motions of  a directed 
curve, it suffices to supplement condition (iii) for the steady 
motion of  the string with the stipulations that the N directors 
di are functions of ( only. We note that these conditions are 
identical to those used by Green and Laws (1968, section 4).  
The desired result is established with some obvious modifica- 
tions to the previous proof and is now stated without proof. 

T h e o r e m  2:  A motion of  a directed curve is steady if and 
only if the position vector r and the N directors di have the 
following representations: 

r = r(/9, t) = r(/9 + c t ) ,  

d, = di(/9, t) = ai(/9 + c t ) ,  (16) 

where c is a constant. 
We note that the parameter c depends on the particular steady 

motion of interest and the parameterization 0 of £. In general, 
c is not equal to the speed of  the material point. 
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The Shear Center Problem for 
Nonlinear Material Behavior 

E. R e i s s n e r  ~9 

In what follows we reconsider a method proposed in Reissner 
(1992) to generalize the linear-theory determination of shear 
center coordinates for pdsmatical beams on the basis of a mixed 
boundary value problem of three-dimensional elasticity involv- 
ing prescribed in-plane rigid-body end-displacements u = U + 
yO and v = V - xO, in accordance with Reissner and Tsai 
(1972), as it has meanwhile been found that the earlier proposal 
needed to be modified. 

With the formulation of the problem and with the notation 
essentially as in Reissner and Tsai (1972) the question is how 
to generalize the linear-theory shear center formulas 

x, = Coo~Cot, y, = -Coe/  Cor, (1) 

which result upon introducing into the third of the three inverted 
load deflection relations for bending and twisting of end-loaded 
cantilevers 

U = CupP + CuQQ + CUT T,  V = . , . ,  

® = CoeP + CooQ + CorT, (2) 

the stipulation that the condition 

0 = 0 ,  T = P y , - Q x , ~  (3) 

be satisfied identically in P and Q. 
The corresponding nonlinear problem is how to determine 

shear center coordinates 

x~ = xs(P, Q), y~ = y,(P, Q) (4) 

for the case that we have in place of (2) 

U = f u ( P , Q , T ) ,  V = f v ( P , Q , T ) ,  

19 = fo(P,  Q, T) (5) 

Evidently, the statement that 

fo[P, Q, (Py, - Qx,)] = 0 (6) 

identically in P and Q, which is consistent with (2) and (3), 
does not permit a determination of x, and y, as functions of P 
and Q. 
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The proposal in Eqs. (18)-(20) of Reissner (1992) was to 
associate (6) with a requirement that additionally 

f o{P  + AP,  Q + AQ,  [(P + AP)(y ,  + Ay,) 

- (Q  + A Q ) ( &  + A x , ) ] }  = 0 ( 7 )  

identically in terms of  infinitesimal AP and AQ. Equation (7) 
and (6), were found to lead to two first-order partial differential 
equations for x, and y, which, it should have been seen at the 
time, do not allow a determination of x, and y, as functions of 
P and Q. 

It is now proposed that the appropriate generalization of (3), 
in place of (7), should have been the less restrictive requirement 
that 

fo[P + AP,  Q + AQ, (P + AP)y,  - (Q + AQ)x,] = 0 

(8) 

identically in AP and AQ. Equation (8) in conjunction with 
(6) gives the two relations 

ofo ofo 
- -  + Ys - 0,  ( 9 a )  
Oe O(Py, - Qxs) 

Ofo Ofo 
x, O. (9b) 

OQ O(Py~ - Qx,) 

These do not involve derivatives of x, and y, but do require the 
solution of two simultaneous in general nonlinear equations for 
x, and y,. 

For an explicit example consider a case with 

1 3 fo(P,  Q, T) = CpP + CoQ + CrT + 5DrT . (10) 

The introduction of ( 1 0 )  into ( 9 )  gives as equations for x, and 
Y, 

Cp + [Cr + Dr(Py, - Qx,)2]y, = 0, ( l l a )  

Co - [Cr + Dr(Pys - QxD2]&. = 0 ( l l b )  

which may be transformed into the decoupled cubic problem 

D r  (PCe + r~C ~2x3 C 0 -  Crx, - CZ ~ oJ , =0 ,  (12a) 

y,= Ce 
(12b) 

x, C o " 

The contents of (12) imply that for small P and Q 

Co DrC° (CpP + CQQ) 2 (13a) 
x ,  ~ Cr C~ 

DTCe 
_ C_2 + ~ ( c e e  + CoO) 2. (13b) 

Y" ~ Cr 

It turns out that the necessity of having to solve two simulta- 
neous nonlinear equations for x, and y, may be avoided by 
determining these quantities as functions of the prescribed rigid 
end translations U and V in place of the resulting end forces P 
and Q. With load displacement relations 

P = fp (U,  V), Q = f e ( U ,  V), T =fr (U,  V) (14) 

where O = 0 at the outset, one condition for the determination 
of x,(U, V) and y,(U, V) will be, in accordance with (3), 

fp(U, V)y, - f o ( U ,  V)x, = fr(U,  V). (15) 

In analogy to the step from (6) to (8) it is now stipulated, 
as a second condition, that 

fe (U + AU,  V +  AV)y ,  - fo (U + AU,  V +  AV)x ,  

= f r (U  + AU,  V + AV)  (16) 
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determining these quantities as functions of the prescribed rigid 
end translations U and V in place of the resulting end forces P 
and Q. With load displacement relations 

P = fp (U,  V), Q = f e ( U ,  V), T =fr (U,  V) (14) 

where O = 0 at the outset, one condition for the determination 
of x,(U, V) and y,(U, V) will be, in accordance with (3), 

fp(U, V)y, - f o ( U ,  V)x, = fr(U,  V). (15) 

In analogy to the step from (6) to (8) it is now stipulated, 
as a second condition, that 

fe (U + AU,  V +  AV)y ,  - fo (U + AU,  V +  AV)x ,  

= f r (U  + AU,  V + AV)  (16) 
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identically in terms of A U and A V. From ( 15 ) and (16) follows 
as a system of two simultaneous linear equations for the deter- 
mination of x, and Ys 

of, of Q oA oA of a oft 
O----~y.~ - ~ x ,  = O-U' O'--V y" - ~ x ,  = ~ (17) 

with the linear-theory relations in terms of stiffness coefficients 

Keuys - Keuxs = Kru, Kevy, - Kovx, = Krv, (1 8) 

in Reissner (1979) as a special case. 
The fact that the consequences of (17) are consistent with the 

consequences of (9) may be seen as follows. An introduction of 
&. and y, from (9) into (17) gives as consistency conditions the 
two relations 

Ofeaf°  +OfaOf° + O f r O f ° - o  (19a) 
OU OP OU OQ OU OT 

OfvOfo + OfQ03~.) OfrOfo O. (19b) 
0--7 0-7 oV 5~ + b~ oV = 

Seeing that (19a,b) does in fact hold follows as a consequence 

BRIEF NOTES 

of (5) and (14), in conjunction with the stipulation ® = 0, and 
the stipulation that 

V O  = 0 = Ofo A p  + OJ~., AQ + Ofo 
oP o~ 5~ ~r 

Of° ( OfP A u  + OfP ) 
: o-~ \ o u  ~ ~ v  + . . . .  (20) 

should hold indentically in AU and AV. 

Remark. Use of the deflection-load relations (2), in place 
of load-deflection relations P = KpvU + KpvV + KvoO, etc., 
for the linear-theory problem was a consequence of the explicit 
form of (1) in place of the implicit form (9). In the nonlinear 
range the generalization (17) of Eq. (18) is clearly preferable 
to the generalization (9) of Eq. (1). 
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B o o k  Revie  

Pressure Vessel Design: Concepts and Principles, edited by 
J. Spence and A. S. Tooth. E & FN Spon (Chapman & Hall), 
New York, 1994. 491 pages. Price: $119.95. 

REVIEWED BY C. W. BERT 1 

This book consists of 12 chapters, three of which were au- 
thored by Professor Spence, and the others by various special- 
ists. 

The emphasis is on design of pressure vessels including plas- 
tic design concepts (Chapter 3), design by rule and design by 

t Perkinson Chair, School of Aerospace and Mechanical Engineering, The Uni- 
versity of Oklahoma, Norman, OK 73019-0601. Fellow ASME. 

analysis (Chapter 4), design of nozzles and branch connections 
(Chapter 6), design of dished ends (Chapter 7), design for 
external pressure (Chapter 8), design of tubesheets (Chapter 
10), design of flanges (Chapter 11 ). Chapter 5 deals with local 
loads and supports, Chapter 9 is concerned with fatigue aspects. 
The final chapter addresses progress toward a European stan- 
dard for design of pressure vessels. 

The book is well illustrated and adequately referenced and 
indexed. It is recommended for design engineers concerned 
with the design of practical pressure vessels of homogeneous, 
isotropic materials. It is especially recommended to those con- 
cerned with British and European design practices and stan- 
dards. Unfortunately, it does not address vessels constructed of 
composite materials, although it does include some information 
on design of ring-stiffened shells. 
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